• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal PID Control of Spatial Inverted Pendulum With Big Bang–Big Crunch Optimization

    2020-05-21 05:44:50JiaJunWangandTufanKumbasar
    IEEE/CAA Journal of Automatica Sinica 2020年3期

    Jia-Jun Wang and Tufan Kumbasar,,

    Abstract—As the extension of the linear inverted pendulum(LIP)and planar inverted pendulum(PIP),this paper proposes a novel spatial inverted pendulum(SIP).The SIP is the most general inverted pendulum(IP)than any existing IP.The model of the SIP is presented for the first time.The SIP inherits all the characteristics of the LIP and the PIP,which is a nonlinear,unstable and underactuated system.The SIP has five degrees of motion freedom and three control forces.Thus,it is a multipleinput and multiple-output(MIMO)system with nonlinear dynamics.To realize the spatial trajectory tracking of the SIP,the control structure with five PID controllers will be designed.The parameter tuning of the multiple PIDs is a challenging work for the proposed SIP model.To alleviate the difficulties of the parameter tuning for the multiple PID controllers,optimal PIDs can be achieved with the help of Big Bang–Big Crunch(BBBC) optimization. The BBBC algorithm can successfully optimize the parameters of the multiple PID controllers with high convergence speed.The optimization performance index of the BBBC algorithm is compared with that of the particle swarm optimization(PSO).Simulation results certify the rightness and effectiveness of the proposed control and optimization methods.

    I.INTRODUCTION

    INVERTED pendulums(IPs)are one kind of the most important tools to test the control algorithms[1]?[4].The typical IP has a pendulum above the pivot point.According to the motion of the pivot point,the IPs can be mainly classified into three types of IPs.When the pivot point moves along a direct line,we call this type of IP as linear IP(LIP).When the pivot point moves in a horizontal or vertical plane,we call this type of IP as planar IP(PLP).The last one is defined when the pivot point moves in three dimensional space,and this type of IP can be called as spatial IP(SIP).Almost all the presented IPs can be classified as the above three types of IPs.The Furuta’s IP[5]and Kapitza’s IP[6]can be seen as the PIPs.The wheeled IPs,such like the Segway PUMA[7],can be seen as the PIPs that are restricted by nonholonomic(nonintegrable)constraints.The inverted 3-D pendulum proposed in[2],[8]was fully actuated by control forces.So it can be seen as a simplified SIP.As far as we know,at present,there does not exist any research literature on the general SIP.

    IP models have their pedagogical and research meanings.The models can represent the simplified robotics, rocket,spacecraft or some mechanical systems[9].They can be used to demonstrate the foundations of nonlinear dynamics and control.At the same time,they also motivate the research in nonlinear dynamics and nonlinear control[2].To the best of our knowledge,we can not find a model that can wholly describe the dynamics of balancing a thin rod or stick on the end of one’s finger at present.The dynamics of the rod or the stick have five degrees of motion freedom,which include three degrees of moving freedom and two degrees of rotating freedom.The LIP or PIP has not enough degrees of freedom to describe these dynamics of balancing the rod or the stick,and the high buildings in the earthquake.It is necessary to extend the LIP or PIP to SIP.The first objective of this paper is to find a model of the SIP,which can wholly describe the dynamics of balancing the rod or the stick.

    As the most general IP,the SIP inherits all the characteristics of the LIP and the PIP,which is a nonlinear,unstable and underactuated system.It is also a complex multiple-input and multiple-output(MIMO)system.The LIP and PIP can be seen as the special case of the SIP.The control design of the SIP is a challenging work.The PID controllers are the most popular controllers in the industrial control design[10].To design the controllers for the SIP,the first control strategy we can consider is the PID controller.In[11],a two-loop robust PID controller was designed for an IP system via pole placement technique.The model of the IP was linearized to reduce the difficulty of the design.In[12],the position tracking control of the PIP was designed with PID and neural networks.The neural network was used to decouple the system and compensate for dynamic coupling uncertainties.In[13],the PID control schemes were designed for the LIP and PIP.Although the proposed PID methods in[11]?[13]can not directly applied to the PID control design for the SIP,they give us some very useful hints.The second objective of this paper is to solve multiple PID controller design and the parameter tuning of the PIDs for the SIP.

    Although in[13],many PID adjusting methods were given for the LIP and the PIP,the PID parameters were still adjusted based on the operator’s experience.It is very difficult to achieve an optimal result for different control error,overshoot and settling time indexes.To alleviate the difficulties of the parameter tuning for the PID controllers,many evolutionary algorithms have been used to solve the problems,such as genetic algorithm(GA),particle swarm optimization(PSO)and differential evolution algorithm (DE) [14]?[16]. Big Bang–Big Crunch(BBBC)algorithm is a novel evolutionary computing algorithm proposed by Erol and Eksin in 2006[17].The BBBC algorithm has several advantages over other evolutionary methods,such as the inherent simplicity with few parameters,easy implementation,and quick convergence.In[18],[19],the BBBC algorithm was successfully applied to the optimization of the interval type-2 fuzzy PID controller and the zSlices-based general type-2 fuzzy PI controller in the mobile robot.Based on the application of the BBBC algorithm,the third objective of this paper is to realize the optimization of the multiple PID controllers with the BBBC algorithm for the SIP.

    This paper is organized as following six sections.Section II introduces the modelling procedure of the SIP step by step.Section III gives the control structure with multiple PID controllers for the SIP.Section IV shows the optimization of the multiple PIDs with BBBC algorithm.Section V gives some comparisons and discussions.And Section VI concludes the work presented in this paper.

    II.MODELLING PROCEDURE OF THE SIP

    A.The Structure of the SIP

    The structure of the SIP is given in Fig.1.The pivot of the SIP is activated by three control forces,which areFx,Fy,andFz.Three control forces are along the direction of thex-axis,y-axis andz-axis in the spatial coordinate system,respectively.We assume the pivot point is atin thexyzspatial coordinate system,and the origin point ofspatial coordinate system is set at pivot pointTheandaxes are parallel withx,yandzaxes,respectively.The center of mass of the pendulum is atp(xp,yp,zp)in thespatial coordinate system.The angleθis the angle between the pendulum with the projection of the pendulum in thevertical plane.And the angleφis the angle between the-axis with the projection of the pendulum in thevertical plane.The mass of the pivot isM.And the mass of the pendulum ism.The length of the pendulum is 2l.We assume that the center of mass of the pendulum is at the middle point of the pendulum.And the distance between the center of mass of the pendulum and pivot point isl.

    B.Modelling of the SIP

    In this subsection,we will present the derivation of the SIP model with six steps.

    Step 1:is the computation of the total kinetic energyKand potential energyPof the SIP.The total kinetic energyKcan be computed with the following expression:

    Fig.1. The structure of the SIP.

    The potential energyPcan be computed with the expression

    wheregrepresents the acceleration constant due to gravity.

    Step 2:is the computation of the Lagrangian formulationLof the SIP.The Lagrangian formulationLcan be computed with the difference between the total kinetic energyKand potential energyP,that isL=K ?P

    The expression of Lagrangian formulationLinxyzcoordinate is given in(39)of Appendix A.

    Step 3:is the computation of the Lagrangian equations of the SIP.The Lagrangian equations of the SIP can be expressed as the following six equations:

    The detailed computation of each formulation is given in(40)?(54)of Appendix A.

    Step 4:is the computation of the kinematic equations for the SIP.Based on the equation in(7)?(11)and(40)?(54),the kinematic equations of the SIP can be obtained as the following equations:

    Step 5:is the solvation of the system kinematic equations.In the equations(12)?(16),andare considered as the primary variables.The following equations can be defined:

    Step 6:is the transformation of the state equations.We define thatandx10= ˙φ.Then the state equations of the SIP can be easily obtained,which are given in Appendix B.From the state equation of the SIP in(55)of Appendix B,we can observe that the SIP has the following characteristics.

    1)Through the approximate linearization of the state equations of the SIP,we can find that the upright point is open-loop unstable.Without external forces,the SIP can not be stabilized at the vertical position.

    2)It can be concluded that the SIP model is a nonlinear MIMO system.The SIP has five degrees of motion freedom with only three control forces.Thus,the resulting system is a typical underactuated control system.

    3)Every state variable of the SIP is affected by at least two control forces.There exists strong coupling between the state variables.The SIP is a high dimensional,strong coupled nonlinear system.

    III.PID CONTROL DESIGN FOR THE SIP

    A.Control Structure Design With Multiple PID Controllers

    In Section II,the modelling problem of the SIP is solved.In this part,we will use and employ the PID controllers to solve the spatial trajectory tracking problem of the SIP.From the model of the SIP,we know that the SIP has five variables that should be controlled.According to the general idea,we should use five PID controllers to control these five variables.However,the main challenge is how to arrange/match the PID controllers with the system variables.If the kinematic equations in(17)?(21)are simplified near the origin point,we can obtain the following equations:

    From the above simplified kinematic equations,we can find the following three rules near the stable point.

    1)Thex-axis motion andθare mainly manipulated byFx.

    2)They-axis motion andφare mainly manipulated byFy.

    3)Thez-axis motion is mainly manipulated byFz.

    According to the above observations,the control structure of the SIP with five PID controllers can be designed as shown in Fig.2.In Fig.2,xd,ydandzdrepresent the desired position of the pivot.The control structure in Fig.2 has the following three characteristics.

    Fig.2. The control structure for the SIP.

    1)The PID1 to PID5 controllers are the controllers for the five variables of the SIP.PID1 and PID2 are combined to produce the control forceFx.PID3 and PID4 are combined to produce the control forceFy.And the PID5 is used to produce the control forceFz.

    2)This structure realizes the decoupling for the control forces in different directions of the SIP.This is very important for the control of the SIP.

    3)This structure make the control of the SIP become very simple and clear.Note that,other control strategies can be easily integrated into the PID control for the SIP.

    B.Parameter Tuning for the Multiple PID Controllers

    The control structure of the SIP is given in above subsection.There exist five PID controllers,therefore we need tune fifteen parameters.If the researcher has little experience in the tuning of the PID controllers,the task is a big challenge even for an experienced control engineer.Referenced from the idea in[13],the five PID controllers can be tuned with the following five steps.

    Step 1:Before tuning the PID1,we first disconnect four pointsA,B,CandDin Fig.2.At the same time,we makeFz=(M+m)gandFy=0.Then it is easy to tune the PID1 to make the angleθconverge to zero.

    Step 2:Based on the Step 1,other conditions are unchanged,we only connect the pointA.The PID1 need not change any more.We can only tune the PID2 to make the variablexof the SIP trackxd.When the tracking performance is acceptable.Then the parameters of PID2 is ok.

    Step 3:Based on the Step 2,other conditions are unchanged,we connect the pointDand cancel the conditionFy=0.According to the symmetrical kinematics ofx-axis andy-axis of the SIP,the parameters of PID1 can be used as the reference parameters of the PID3.And the parameters of the PID3 can be easily obtained by fine-tuning to make the angleφconverge to zero.

    Step 4:Based on the Step 3,other conditions are unchanged,we connect the pointC.Similar with the Step 3,the parameters of PID2 can be used as the reference parameters of the PID4.The parameters of the PID4 can be easily obtained by fine-tuning to make the variableyof the SIP trackyd.

    Step 5:Based on the Step 4,other conditions are unchanged,we connect the pointBand cancel the conditionFz=(M+m)g.Without changing the parameters of PID1 to PID4,we only need to tune the parameters of the PID5 to make the variablezof the SIP trackzd.

    C.Simulation Results With PID Controllers

    In above subsection,a systematic design method for tuning the five PID controllers was presented.Next,we will test the control performance of the five PID controllers for the SIP with MATLAB/Simulink.The parameters of the SIP and five PID controllers are given in Tables I and II,respectively.

    The spatial moving trajectory of the pivot are given as two spatial curves.The first spatial curve is a spatial spiral curve,which is shown as following expressions:

    The second spatial curve is a spatial periodic waveform curve,which is given as the following expressions:

    TABLE I THE PARAMETERS OF ISP

    TABLE II THE PARAMETERS OF THE FIVE PID CONTROLLERS

    Assumption 1:In the simulation,we assume that the operation space of the SIP is confined with the following conditions:

    In the simulation,we define thatex=xd ?x,ey=yd ?yandez=zd ?z. The initial state variables are set asθ(0)=π/6,φ(0)=?π/6,x(0)=?0.2,y(0)=0,andz(0)=0.Fig.3 shows the simulation results when the SIP tracks the spatial spiral curve given in(27)with five PID controllers.And Fig.4 demonstrates the simulation results when the SIP tracks the spatial periodic waveform curve given in(28).In Figs.3 and 4,(a)represents the anglesθandφ,(b)is the tracking errorex,eyandez,(c)is the three control forcesFx,FyandFz,and(d)shows the tracking of the desired space trajectory.From the simulation results in Figs.3 and 4,we can obtain the following three conclusions.

    1)The proposed control structure with five PID controllers can solve the tracking control problem of the SIP with a satisfactory control performance.

    2)The simulation is based on the nonlinear model of the SIP.It need not do any simplification for the SIP model.The proposed control structure with five PID controllers are effective for the SIP with strong nonlinearity.

    3)The PID controllers for the SIP can realize the stabilization of the pendulum in a relatively large range.And the PID controllers have robustness to the disturbances or uncertainties.

    IV.PID OPTIMIZATION WITH BBBC

    In the above section,five PID controllers are successfully applied to the trajectory tracking control for the SIP.There are fifteen parameters that need to be tuned.It is very difficulty to obtain the optimal PID parameters only according to the research’s experience.In this section,the BBBC algorithm will be adopted to optimize the parameters of the five PID controllers designed for the SIP.

    Fig.3. Tracking of spatial spiral curve with PIDs.(a)θ and φ.(b)ex,ey and ez.(c)Fx,Fy and Fz.(d)Spatial trajectory tracking of the SIP.

    A.The Design of the BBBC

    The working principle of the BBBC algorithm can transform a convergent solution to a chaotic or disorder state and then pullback the state to a single tentative solution point.The flowchart of the BBBC algorithm is given in Fig.5[20].According to the flowchart,the design of PID controller via the BBBC algorithm can be realized with following six steps.

    Step 1:This step is used to specify the parameters for the BBBC algorithm.In BBBC,there are normally three parameters that need to be specified,which are iteration parameterNi,population size parameterNp,and space limiting parameterα.

    Fig.4. Tracking of spatial periodic waveform curve with PIDs.(a)θ and φ.(b)ex,ey and ez.(c)Fx,Fy and Fz.(d)Spatial periodic trajectory tracking of the SIP.

    Step 2:This step is used to initialize the first population for the BBBC algorithm.To optimize the five PID controllers,there are fifteen parameters that need to be optimized.The optimized variable for the BBBC can be defined as

    wherek,P,IandDrepresent population number,proportion parameter,integral parameter and derivative parameter,respectively.And the subscripts ofP,IandDrepresent five different PIDs.The first time populations can be initialized with the following expression:

    wherexmaxandxminrepresent are the upper and lower limits defined with in a 15-dimensional search space.Andrand(Np,1)representsNprandom numbers in the interval[0,1].

    Fig.5. The flowchart of the BBBC algorithm.

    Step 3:This step is the design of the fitness function or objective function for the BBBC algorithm.Different fitness functions can be used in the BBBC optimization,such as integral absolute error(IAE),integral squared error(ISE),integral time-weighted squared error(ITSE)or integral timeweighted absolute error(ITAE).The IAE performance index is selected to optimize the five PID controllers for the SIP,which is defined as the following expression:

    wherek=1,2,...,Nkis thekth population number.

    Step 4:This step is the Big Crunch phase.Big Crunch phase is a contraction procedure.The contraction operation takes the current position of each candidate solution in the population and its associated fitness function value,and then computes the centroid of the population.The centroid of the population can be computed with the following expression:

    wherexcis the centroid,xkis the position of the candidate,fkis the fitness function value of thekth candidate.

    Step 5:This step is the Big Bang phase.The new generation for the next iteration Big Bang phase is normally distributed aroundxcand can be computed as the following expression:

    whereis the new generated candidates,ris random number generated in the interval[?1,1],αis space limiting parameter,andiis the current iteration step.

    Step 6:This step is the design of the stopping criteria for the BBBC optimization.The stopping criteria of the BBBC can use the maximal iteration criteria or minimal error criteria.In this optimization of the five PID controllers,the maximum number of iteration is applied as the stopping criteria.

    B.Simulation Results With BBBC Optimized PID Controllers

    In the BBBC optimization for the five PID controllers,the tracking trajectories and the initial value of the SIP are the same as in Section III.The initial value of the BBBC are set as:the iteration parameterNi=40,the population size parameterNp=40,and the space limiting parameterα=0.15.

    Because the SIP is strongly nonlinear system,the change of the PID parameters may make the system unstable.The optimization range for the BBBC can not be given arbitrarily.In the BBBC optimization,for the positive values,we confine the maximal value is the 180%of the PID parameter values that we have obtained in Table II,and the minimal value is the 20% of the PID parameter values. While for the negative values,the maximal value is the 20%of the PID parameter values,and the minimal value is the 180%of the PID parameter values.

    Figs.6 and 7 show the simulation results for the optimization of the five PID controllers with the desired spatial spiral curve and spatial periodic waveform curve,respectively.In Figs.6 and 7,(a),(b)and(c)shows the optimizedP/Pb,I/IbandD/Dbof the five PID controllers respectively,and(d)demonstrates the tracking performance with BBBC optimization.

    Remark 1:To show the BBBC optimization procedure for the parametersP,I,Dmore clearly in one figure,the optimized valueP,IandDare divided by their base valuesPb,Ib,Dbthat are given in Table II.

    From the simulation results in Figs.6 and 7,we can obtain the following three conclusions.

    1) The BBBC algorithm can successfully optimize the parameters of the five PID controllers for the SIP in the spatial trajectory tracking.And the optimized PID parameters can be obtained with fast convergence.

    2)The BBBC algorithm not only can alleviate the difficulty of the parameter tuning for the five PID controllers,but also can enhances the control performance for the spatial trajectory tracking control.The adoption of the BBBC algorithm in the PID controller optimization simplify the parameter tuning for five PID controllers.

    3)The BBBC algorithm can realize the optimization of strong nonlinear and high dimensional control problems with few population and iteration.

    Fig.6. PID parameter optimization with BBBC algorithm for the spatial curve tracking.(a)P/Pb.(b)I/Ib.(c)D/Db.(d)Spatial trajectory tracking of the SIP.

    V.COMPARISONS AND DISCUSSIONS

    A.Comparisons for Different Control Method

    In the above sections,we have solved the control problems of the SIP.In this section,we will give some comparisons among the PID control,PID control with BBBC optimization and PID control with PSO optimization.

    The PSO algorithm are given as following expressions:

    Fig.7. PID parameter optimization with BBBC algorithm for the spatial periodic waveform curve.(a)P/Pb.(b)I/Ib.(c)D/Db.(d)Spatial periodic trajectory tracking of the SIP.

    wherek,V(k+1),X(k+1),Vk,Xk,XBkandXGkare population number(k=1,2,...,Np ?1),new velocity,new position,present velocity,present position,local best value and global best value,respectively.λis the weighted(inertia)factor which has a range from 0.1 to 0.9,c1andc2are acceleration coefficients,andr1andr2are random numbers uniformly distributed in[0,1].

    In the simulation,the population number and the iteration number for the PSO are set as 40,which are the same as in the BBBC algorithm.And the control parameters are set as:ω=0.5,c1=1.5 andc2=0.25.

    Firstly,we compare the optimization speed between the BBBC and PSO in the optimization of the five PID controllers for the SIP.The desired tracking trajectories are the same.And the initial state variables are given as the following two cases.

    1)Initial state variables of the first case:θ(0)=π/6,φ(0)=0,x(0)=0,y(0)=0,andz(0)=0.

    2)Initial state variables of the second case:θ(0)=0,φ(0)=π/6,x(0)=0,y(0)=0,andz(0)=0.

    The comparison results are given in Figs.8 and 9.From the simulation results in Figs.8 and 9,we can find that the BBBC optimization not only has faster convergence speed,but also has less fitness value than the PSO.

    Fig.8. The comparison of the BBBC and PSO for the first case.(a)Fitness function of spatial spiral curve.(b)Fitness function of spatial periodic waveform curve.

    Secondly,the IAE performance of the SIP are compared between the PID controllers with and without optimization.The initial state variables are the same as the above first comparison.Figs.10 and 11 show the simulation results of the IAE performance indexes.It can be seen from the simulation results in Figs.10 and 11 that the PID controllers without optimization has larger IAE.The optimization with BBBC and PSO can greatly reduce the IAE performance indexes for trajectory tracking control of the SIP.

    Thirdly,to further prove the effectiveness of the proposed method for the SIP,the IAE for different control methods with different initial values are given in Table III.In Table III,the initial values of the SIP for Cases 1 and 2 are the same as given in the first part in this section.And Case 3 is given asθ(0)=π/6,φ(0)=?π/6,x(0)=?0.2,y(0)=0,andz(0)=0.

    The parameters of the SIP,such as the mass of the pivotM,the massmand the lengthlof the pendulum,can not be given very accurately,or they may change at some conditions.The sensitivity analysis of the SIP for the parameter variations are given in Tables IV and V for spatial spiral curve and spatial periodic waveform curve,respectively.The initial data are given asθ(0)=π/6,φ(0)=0,x(0)=0,y(0)=0,andz(0)=0.In the sensitivity analysis,we assume thatMandmcan only be increased.Whereas,the lengthl,representing the distance between the mass of the center of the pendulum and the pivot,can become longer or shorter.When one of the parameter is changed,the other parameters are assumed to be unchanged.From Tables IV and V,it can be seen that the BBBC still can maintain perfect optimization performance under the variation of the system parameters.

    Fig.9. The comparison of the BBBC and PSO for the second case.(a)Fitness function of spatial spiral curve.(b)Fitness function of spatial periodic waveform curve.

    Fig.10. The comparison of IAE for the first case.(a)IAE of spatial spiral curve.(b)IAE of spatial periodic waveform curve.

    B. Discussions

    In the above sections,we gave the modelling procedure for the SIP,successfully designed the control structure with five PID controllers and realized the optimization of the parameters of the five PID controllers.Furthermore,we certified the rightness of the model for the SIP,and demonstrated the effectiveness of the PID controllers and their optimization strategies.However,there are still some questions that need to be discussed and explained.

    Fig.11. The comparison of IAE for the second case.(a)IAE of spatial spiral curve.(b)IAE of spatial periodic waveform curve.

    TABLE III THE IAE FOR DIFFERENT CONTROL METHODS WITH DIFFERENT INITIAL VALUES

    TABLE IV THE IAE FOR SPATIAL SPIRAL CURVE WITH PARAMETER VARIATIONS

    TABLE V THE IAE FOR SPATIAL PERIODIC WAVEFORM CURVE WITH PARAMETER VARIATIONS

    1)In modelling procedure for the SIP,we only considered the ideal conditions.We omitted lots of tiny and uncertain factors,such like the friction between the pivot and the pendulum,the moment of inertia,the measuring error and control error.We assume that the center of mass is at the middle point of the pendulum.In fact,the mass of the pendulum is distributed along the pendulum.

    2)In the simulation with five PID controllers and their optimization,we did not consider the disturbances and the uncertainties.In fact,the disturbances and the uncertainties exist in all control systems.Thus,there is a need of robust or intelligent control structures that can be integrated with the PID controllers,such like the sliding mode control,neural network,fuzzy control or other advanced control strategies.

    3)In the optimization of the PID controllers,we only considered the BBBC and PSO algorithms.Other optimization algorithms,such like genetic algorithm,differential evolution algorithm or other evolutionary algorithms can also be tested in the optimization of the PID controllers.

    VI.CONCLUSIONS

    In this paper,for the first time in literature as far as we know,a novel SIP was proposed that could wholly describe the dynamics of balancing a thin rod or stick on the end of one’s finger.We have also presented an optimization based control design strategy to solve the tracking problem of the SIP.The main contributions of this paper can be summarized as the following four points.

    1)The model of the SIP was first given step by step.The SIP inherits all the characteristics of the LIP and the PIP.And almost all the present IPs can be seen as one special case of the proposed SIP.The SIP has three degrees of moving freedom and two degrees of rotating freedom.The proposed SIP can be seen as the most general IP.

    2)The SIP has nonlinear,unstable and underactuated features.Thus,the control of the SIP is a challenging work.In this paper,a control structure with five PID controllers was proposed for the SIP.The proposed PID controllers could decouple three control forces and made the control structure become every clear.And the procedure of the parameter tuning for the five PIDs was given step by step.

    3)The parameter tuning for five PIDs is not an easy work.To alleviate the difficulties of the parameter tuning of the PIDs,the BBBC algorithm was successfully applied to optimize the parameters of the PIDs.The optimization results of the BBBC was compared with that of the PSO.Simulation results validated that the BBBC optimization had faster convergence speed and less IAE than the PSO optimization.

    4) Many simulation results are given, which not only certified the rightness of the model of the SIP, but also demonstrated the effectiveness of the proposed control and optimization methods.

    This paper extended the research on the IPs and gave a new idea in the control of the IPs.The proposed method has its generality and can be directly applied in the control of the LIP,PIP and planar vertical take off and landing aircraft(PVTOL).In future,we will construct a platform to realize the control of the SIP and certify the simulation results in this paper.

    APPENDIX A

    1)Computation ofL

    2)Computation of

    3)Computation of

    4)Computation of

    5)Computation of

    6)Computation of

    7)Computation of

    8)Computation of

    9)Computation of

    10)Computation of

    11)Computation of

    12)Computation of

    13)Computation of

    14)Computation of

    15)Computation of

    16)Computation of

    APPENDIX B

    The state equation of the SIP is given in the shape of the following expression

    With the kinematic equations(17)?(21),we can know thatX,F(X),B(X),Ucan be defined as the following forms

    where the parameters inF(X) can be given as the following expressions:

    The parameters inB(X)can be given as the following expressions

    In(55),Drepresents the disturbances or uncertainties.

    亚洲 欧美 日韩 在线 免费| bbb黄色大片| 亚洲一区中文字幕在线| 午夜福利,免费看| 色综合欧美亚洲国产小说| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线观看吧| 国产精品亚洲美女久久久| 国产一区二区激情短视频| 亚洲精品国产一区二区精华液| 亚洲精品国产区一区二| 精品久久久久久久毛片微露脸| 成人18禁高潮啪啪吃奶动态图| 国产又色又爽无遮挡免费看| 两人在一起打扑克的视频| 99久久久亚洲精品蜜臀av| 最近最新免费中文字幕在线| 一本大道久久a久久精品| 欧美绝顶高潮抽搐喷水| 国产激情久久老熟女| 中文字幕人成人乱码亚洲影| 国产麻豆69| 精品人妻1区二区| 女人精品久久久久毛片| 伊人久久大香线蕉亚洲五| 久久性视频一级片| 精品一区二区三区视频在线观看免费| 婷婷六月久久综合丁香| 一个人观看的视频www高清免费观看 | 免费在线观看亚洲国产| 91成人精品电影| e午夜精品久久久久久久| 亚洲电影在线观看av| 岛国视频午夜一区免费看| 亚洲人成伊人成综合网2020| 国产麻豆69| 黄色 视频免费看| 国产乱人伦免费视频| 亚洲,欧美精品.| 亚洲国产毛片av蜜桃av| 国产单亲对白刺激| 老汉色av国产亚洲站长工具| 久久精品亚洲熟妇少妇任你| 亚洲人成电影免费在线| 精品少妇一区二区三区视频日本电影| 日本免费a在线| 91老司机精品| 国产精品久久久人人做人人爽| 免费看十八禁软件| 又黄又粗又硬又大视频| 久久精品国产清高在天天线| 极品人妻少妇av视频| 午夜激情av网站| 午夜福利免费观看在线| 午夜久久久在线观看| 亚洲成人久久性| 久久久久久国产a免费观看| 亚洲男人的天堂狠狠| 亚洲成人久久性| a在线观看视频网站| 亚洲国产欧美网| 天堂动漫精品| 欧美另类亚洲清纯唯美| 欧美 亚洲 国产 日韩一| ponron亚洲| 深夜精品福利| 成人18禁高潮啪啪吃奶动态图| 91在线观看av| videosex国产| 国产日韩一区二区三区精品不卡| 国产精品国产高清国产av| 国产精品精品国产色婷婷| 亚洲国产精品久久男人天堂| 国产99白浆流出| 99riav亚洲国产免费| 精品久久久精品久久久| 美女高潮喷水抽搐中文字幕| 午夜老司机福利片| 午夜视频精品福利| 天天添夜夜摸| 丝袜美足系列| 国产精品一区二区三区四区久久 | 国产国语露脸激情在线看| 欧美日本视频| 成人免费观看视频高清| 熟女少妇亚洲综合色aaa.| 精品久久久精品久久久| 国产蜜桃级精品一区二区三区| 国产免费男女视频| 午夜亚洲福利在线播放| 午夜免费鲁丝| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| 午夜日韩欧美国产| 99精品欧美一区二区三区四区| 亚洲精品久久成人aⅴ小说| 久久精品国产清高在天天线| 亚洲国产中文字幕在线视频| av中文乱码字幕在线| 性色av乱码一区二区三区2| 亚洲一区二区三区色噜噜| 免费观看人在逋| 国产亚洲精品综合一区在线观看 | 亚洲国产欧美一区二区综合| 乱人伦中国视频| 超碰成人久久| 欧美另类亚洲清纯唯美| 久久久水蜜桃国产精品网| 欧美亚洲日本最大视频资源| 久久久久国内视频| 精品国产亚洲在线| 在线观看免费午夜福利视频| 757午夜福利合集在线观看| 欧美激情高清一区二区三区| 国产1区2区3区精品| 美女午夜性视频免费| 国产国语露脸激情在线看| 亚洲国产毛片av蜜桃av| 国产免费男女视频| 国产成人欧美在线观看| 19禁男女啪啪无遮挡网站| 亚洲五月色婷婷综合| 99国产精品99久久久久| 亚洲av成人av| 麻豆一二三区av精品| 91精品三级在线观看| 色av中文字幕| 一进一出好大好爽视频| 国产人伦9x9x在线观看| 久久精品国产清高在天天线| 一区在线观看完整版| 亚洲精品在线美女| 亚洲人成电影免费在线| 精品福利观看| 午夜精品在线福利| 久久久久久人人人人人| 日韩大码丰满熟妇| 一边摸一边做爽爽视频免费| 亚洲av日韩精品久久久久久密| av天堂久久9| 深夜精品福利| 国产1区2区3区精品| 老汉色av国产亚洲站长工具| 亚洲精品av麻豆狂野| 在线免费观看的www视频| 成人18禁在线播放| 亚洲精品久久成人aⅴ小说| 女人被狂操c到高潮| 国产成人系列免费观看| 人人妻人人澡人人看| 999精品在线视频| 热99re8久久精品国产| 大型黄色视频在线免费观看| 一进一出抽搐动态| 美女午夜性视频免费| 欧美成人免费av一区二区三区| 精品国产一区二区三区四区第35| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 国产欧美日韩综合在线一区二区| 91成人精品电影| 久久国产亚洲av麻豆专区| 免费女性裸体啪啪无遮挡网站| 久久精品国产综合久久久| 在线天堂中文资源库| 久久久久精品国产欧美久久久| 在线永久观看黄色视频| 国产av一区在线观看免费| 国产不卡一卡二| 两人在一起打扑克的视频| 国产成人系列免费观看| 国产精品亚洲av一区麻豆| 国产真人三级小视频在线观看| 人妻久久中文字幕网| 亚洲激情在线av| 成人精品一区二区免费| 大陆偷拍与自拍| 好看av亚洲va欧美ⅴa在| 国产成人精品久久二区二区91| 亚洲午夜精品一区,二区,三区| 嫁个100分男人电影在线观看| 不卡一级毛片| 国产精品亚洲av一区麻豆| 久久国产乱子伦精品免费另类| 午夜福利成人在线免费观看| 久热这里只有精品99| 淫妇啪啪啪对白视频| 黑丝袜美女国产一区| 午夜福利影视在线免费观看| 他把我摸到了高潮在线观看| 精品久久久久久久久久免费视频| www.999成人在线观看| 久久久久久久久中文| 夜夜爽天天搞| 99国产极品粉嫩在线观看| 99久久综合精品五月天人人| 国产成年人精品一区二区| 男女午夜视频在线观看| 免费无遮挡裸体视频| 久久久国产成人免费| or卡值多少钱| 1024香蕉在线观看| 欧美精品亚洲一区二区| 国产色视频综合| 久久精品aⅴ一区二区三区四区| 欧美最黄视频在线播放免费| av在线天堂中文字幕| 亚洲国产精品合色在线| 午夜精品久久久久久毛片777| 天天躁夜夜躁狠狠躁躁| www国产在线视频色| 日韩视频一区二区在线观看| 色综合站精品国产| 国产真人三级小视频在线观看| 国产亚洲精品久久久久久毛片| 久久国产亚洲av麻豆专区| 免费久久久久久久精品成人欧美视频| 免费不卡黄色视频| 亚洲av电影在线进入| 侵犯人妻中文字幕一二三四区| 极品人妻少妇av视频| 国产精品香港三级国产av潘金莲| 久久国产亚洲av麻豆专区| 露出奶头的视频| 此物有八面人人有两片| 国内久久婷婷六月综合欲色啪| av有码第一页| 亚洲电影在线观看av| 亚洲avbb在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产成人精品久久二区二区免费| 午夜福利免费观看在线| 国产91精品成人一区二区三区| 精品久久久久久久久久免费视频| 91av网站免费观看| 老司机靠b影院| 国内精品久久久久精免费| 精品免费久久久久久久清纯| 9191精品国产免费久久| 真人一进一出gif抽搐免费| 久久久国产欧美日韩av| 久久影院123| 午夜福利在线观看吧| 99国产极品粉嫩在线观看| 最近最新中文字幕大全电影3 | 在线视频色国产色| 亚洲av成人一区二区三| 久久精品91无色码中文字幕| 此物有八面人人有两片| 在线播放国产精品三级| 俄罗斯特黄特色一大片| 一区二区三区激情视频| 欧美成人免费av一区二区三区| 色综合站精品国产| 韩国精品一区二区三区| 三级毛片av免费| 久久久水蜜桃国产精品网| 麻豆成人av在线观看| 精品欧美一区二区三区在线| 国产精品久久久久久精品电影 | 欧美黑人精品巨大| 在线观看66精品国产| 黄色片一级片一级黄色片| 午夜福利一区二区在线看| 精品一区二区三区四区五区乱码| 午夜激情av网站| 日韩欧美国产在线观看| 亚洲熟妇中文字幕五十中出| 女性被躁到高潮视频| 午夜福利在线观看吧| 久久久国产欧美日韩av| 国产欧美日韩综合在线一区二区| 国产又爽黄色视频| 免费在线观看视频国产中文字幕亚洲| www国产在线视频色| 国产av精品麻豆| 国产亚洲精品第一综合不卡| 精品久久久久久久人妻蜜臀av | 好男人电影高清在线观看| 在线播放国产精品三级| 夜夜爽天天搞| 亚洲成人国产一区在线观看| 少妇熟女aⅴ在线视频| 国产区一区二久久| 亚洲精品中文字幕一二三四区| 亚洲专区国产一区二区| 欧美黄色淫秽网站| 一个人观看的视频www高清免费观看 | 亚洲七黄色美女视频| 亚洲av成人不卡在线观看播放网| 正在播放国产对白刺激| 99国产精品一区二区蜜桃av| 色综合亚洲欧美另类图片| 欧美日本中文国产一区发布| 神马国产精品三级电影在线观看 | 老司机深夜福利视频在线观看| 中文字幕色久视频| 1024视频免费在线观看| 国产91精品成人一区二区三区| 国语自产精品视频在线第100页| 日本三级黄在线观看| 久久久久九九精品影院| 88av欧美| 精品久久久久久,| 免费无遮挡裸体视频| 国产成人啪精品午夜网站| 狠狠狠狠99中文字幕| 色精品久久人妻99蜜桃| 丝袜美腿诱惑在线| 露出奶头的视频| 成在线人永久免费视频| 色综合站精品国产| 免费高清在线观看日韩| 免费看美女性在线毛片视频| 男女午夜视频在线观看| 亚洲中文字幕日韩| 日本黄色视频三级网站网址| 国产乱人伦免费视频| 久久精品亚洲熟妇少妇任你| 色综合婷婷激情| 亚洲国产日韩欧美精品在线观看 | 国产1区2区3区精品| 91老司机精品| 脱女人内裤的视频| 中文字幕久久专区| 可以在线观看毛片的网站| 久久久久久久久免费视频了| 亚洲精品国产色婷婷电影| 国产亚洲欧美98| 精品久久蜜臀av无| 性欧美人与动物交配| 一进一出抽搐动态| 人成视频在线观看免费观看| 91麻豆精品激情在线观看国产| 日本黄色视频三级网站网址| 看免费av毛片| 可以免费在线观看a视频的电影网站| 亚洲精品中文字幕一二三四区| 亚洲片人在线观看| 婷婷精品国产亚洲av在线| 成人国产综合亚洲| 亚洲精品av麻豆狂野| 国内精品久久久久久久电影| 两个人视频免费观看高清| 美女高潮喷水抽搐中文字幕| 欧美一区二区精品小视频在线| 中文字幕精品免费在线观看视频| 亚洲精品国产色婷婷电影| av福利片在线| 搡老妇女老女人老熟妇| 男女做爰动态图高潮gif福利片 | 视频在线观看一区二区三区| 国产成人精品在线电影| 人人妻人人澡欧美一区二区 | 日本免费一区二区三区高清不卡 | 亚洲一区高清亚洲精品| 久久精品成人免费网站| 日韩 欧美 亚洲 中文字幕| 亚洲三区欧美一区| 一区二区三区国产精品乱码| 99久久精品国产亚洲精品| 中亚洲国语对白在线视频| 夜夜爽天天搞| 如日韩欧美国产精品一区二区三区| a在线观看视频网站| 亚洲精品久久国产高清桃花| 日本 欧美在线| 午夜精品久久久久久毛片777| 欧美色视频一区免费| 午夜福利在线观看吧| 男女下面插进去视频免费观看| 变态另类丝袜制服| 中文字幕人成人乱码亚洲影| 老司机靠b影院| 夜夜看夜夜爽夜夜摸| 免费观看精品视频网站| 精品午夜福利视频在线观看一区| 国产成人影院久久av| 嫩草影院精品99| 午夜福利欧美成人| 午夜影院日韩av| 亚洲av成人不卡在线观看播放网| 一级毛片高清免费大全| 国产人伦9x9x在线观看| 在线观看免费日韩欧美大片| 国产av又大| 真人一进一出gif抽搐免费| 黄色视频,在线免费观看| 一二三四社区在线视频社区8| 亚洲自拍偷在线| 午夜精品国产一区二区电影| 老司机深夜福利视频在线观看| 亚洲天堂国产精品一区在线| 亚洲人成伊人成综合网2020| 大香蕉久久成人网| 香蕉国产在线看| 久久久久国内视频| 最近最新免费中文字幕在线| 久久香蕉国产精品| 免费高清视频大片| 午夜免费观看网址| 久久婷婷人人爽人人干人人爱 | 一级黄色大片毛片| 又黄又爽又免费观看的视频| 一进一出抽搐动态| 欧美日韩一级在线毛片| 亚洲国产中文字幕在线视频| 国产在线精品亚洲第一网站| 啦啦啦观看免费观看视频高清 | 国产免费男女视频| 亚洲成人久久性| 精品人妻1区二区| 国产精品久久久久久亚洲av鲁大| 精品国产亚洲在线| 国产高清视频在线播放一区| 色老头精品视频在线观看| 精品久久久久久久人妻蜜臀av | 深夜精品福利| 国产黄a三级三级三级人| 自线自在国产av| 亚洲av成人不卡在线观看播放网| 精品卡一卡二卡四卡免费| 老汉色∧v一级毛片| 久久久久久久午夜电影| 日韩高清综合在线| 黄色丝袜av网址大全| 久久午夜综合久久蜜桃| 欧美精品亚洲一区二区| 欧美+亚洲+日韩+国产| 国产亚洲欧美在线一区二区| 久久香蕉激情| 精品一区二区三区av网在线观看| 97人妻天天添夜夜摸| 亚洲片人在线观看| 嫁个100分男人电影在线观看| 99久久综合精品五月天人人| 亚洲av五月六月丁香网| 欧美av亚洲av综合av国产av| 视频区欧美日本亚洲| 国产91精品成人一区二区三区| 高清黄色对白视频在线免费看| 久久精品国产99精品国产亚洲性色 | 精品久久久久久,| 国产成人精品无人区| 99久久综合精品五月天人人| 国产伦一二天堂av在线观看| 日本五十路高清| 欧美激情极品国产一区二区三区| 在线观看日韩欧美| 久久久久久久久中文| 婷婷精品国产亚洲av在线| 国产精品自产拍在线观看55亚洲| 黄频高清免费视频| 首页视频小说图片口味搜索| 9191精品国产免费久久| 日本欧美视频一区| 高清黄色对白视频在线免费看| 午夜精品久久久久久毛片777| 看免费av毛片| 村上凉子中文字幕在线| 国产精品日韩av在线免费观看 | 母亲3免费完整高清在线观看| 日韩欧美国产在线观看| 国产精品99久久99久久久不卡| 国产av一区二区精品久久| 欧美激情 高清一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 制服丝袜大香蕉在线| 十分钟在线观看高清视频www| 久久午夜综合久久蜜桃| 亚洲精品在线美女| 69av精品久久久久久| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| 国产精品一区二区免费欧美| 男女午夜视频在线观看| 99在线视频只有这里精品首页| 九色亚洲精品在线播放| 精品久久久久久久毛片微露脸| 久久久久久久久免费视频了| 一区二区日韩欧美中文字幕| 桃色一区二区三区在线观看| 免费看a级黄色片| aaaaa片日本免费| 亚洲全国av大片| 在线观看66精品国产| 大陆偷拍与自拍| 日本vs欧美在线观看视频| 久久久久久人人人人人| 亚洲欧美日韩无卡精品| 久久久精品国产亚洲av高清涩受| 久久香蕉精品热| 亚洲国产精品成人综合色| 亚洲情色 制服丝袜| 国产91精品成人一区二区三区| 亚洲 欧美 日韩 在线 免费| 免费女性裸体啪啪无遮挡网站| 一级毛片高清免费大全| 黄片小视频在线播放| 久久久精品国产亚洲av高清涩受| 成人av一区二区三区在线看| 色播亚洲综合网| 在线观看www视频免费| 午夜精品在线福利| 无遮挡黄片免费观看| 中文字幕另类日韩欧美亚洲嫩草| 国产国语露脸激情在线看| 欧美日本亚洲视频在线播放| 亚洲成a人片在线一区二区| 亚洲国产精品999在线| 自拍欧美九色日韩亚洲蝌蚪91| 黄色女人牲交| 精品高清国产在线一区| а√天堂www在线а√下载| 在线观看66精品国产| 麻豆国产av国片精品| 99国产极品粉嫩在线观看| 婷婷丁香在线五月| 99精品欧美一区二区三区四区| 一区二区三区国产精品乱码| 亚洲av第一区精品v没综合| 一二三四在线观看免费中文在| 电影成人av| 日韩免费av在线播放| av片东京热男人的天堂| 国产主播在线观看一区二区| 亚洲情色 制服丝袜| 久久精品人人爽人人爽视色| 色婷婷久久久亚洲欧美| 亚洲人成电影观看| 日韩欧美国产一区二区入口| 国产亚洲欧美精品永久| 99精品欧美一区二区三区四区| 亚洲中文日韩欧美视频| 亚洲一码二码三码区别大吗| 亚洲电影在线观看av| 日本一区二区免费在线视频| 一级a爱片免费观看的视频| 正在播放国产对白刺激| 亚洲中文av在线| 国产亚洲精品av在线| 亚洲视频免费观看视频| 亚洲第一电影网av| 亚洲片人在线观看| 国产精品 欧美亚洲| 久久久国产欧美日韩av| 97超级碰碰碰精品色视频在线观看| ponron亚洲| 精品一区二区三区四区五区乱码| 国产欧美日韩一区二区三区在线| 国产欧美日韩一区二区精品| 在线观看免费视频日本深夜| 电影成人av| 久久香蕉精品热| 欧美色视频一区免费| 999久久久精品免费观看国产| 国产精华一区二区三区| 亚洲成人免费电影在线观看| 一边摸一边抽搐一进一小说| 岛国在线观看网站| 亚洲精品久久国产高清桃花| 久久国产精品影院| 成人手机av| 午夜福利高清视频| 97超级碰碰碰精品色视频在线观看| 99国产极品粉嫩在线观看| 免费在线观看亚洲国产| av天堂在线播放| 大码成人一级视频| 亚洲片人在线观看| 亚洲情色 制服丝袜| 91精品三级在线观看| 一级毛片女人18水好多| 久久精品影院6| 精品国产国语对白av| 亚洲狠狠婷婷综合久久图片| 老熟妇乱子伦视频在线观看| 午夜精品久久久久久毛片777| 一级a爱片免费观看的视频| 人人澡人人妻人| а√天堂www在线а√下载| 妹子高潮喷水视频| 午夜福利成人在线免费观看| АⅤ资源中文在线天堂| 少妇熟女aⅴ在线视频| 午夜精品在线福利| 久久狼人影院| 麻豆一二三区av精品| 老鸭窝网址在线观看| 99久久久亚洲精品蜜臀av| 久久精品国产99精品国产亚洲性色 | 他把我摸到了高潮在线观看| 色综合婷婷激情| 在线观看免费日韩欧美大片| 老司机靠b影院| 99久久精品国产亚洲精品| 亚洲自拍偷在线| 国产精品 欧美亚洲| 亚洲激情在线av| 日日摸夜夜添夜夜添小说| 国产黄a三级三级三级人| 一级毛片精品| 亚洲av电影在线进入| 黑人操中国人逼视频| 国产av精品麻豆| 欧美性长视频在线观看| 亚洲av第一区精品v没综合| 又黄又爽又免费观看的视频| av网站免费在线观看视频| 一级a爱视频在线免费观看| 1024视频免费在线观看| 亚洲电影在线观看av| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看影片大全网站| 99精品久久久久人妻精品|