• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Iterative Learning Control for Distributed Parameter Systems Based on Non-Collocated Sensors and Actuators

    2020-05-21 05:45:14JianxiangZhangBaotongCuiXishengDaiandZhengxianJiang
    IEEE/CAA Journal of Automatica Sinica 2020年3期

    Jianxiang Zhang, Baotong Cui, Xisheng Dai, and Zhengxian Jiang

    Abstract—In this paper, an open-loop PD-type iterative learning control (ILC) scheme is first proposed for two kinds of distributed parameter systems (DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.

    I. Introduction

    IN practice, most systems can be described by a partial differential equation or a partial integral equation, referred to as distributed parameter systems. The states of distributed parameter systems are dependent on time and spatial position.Therefore, these systems are more suitable to describe system dynamics. At the same time, this has attracted many researchers to study the control and estimation of distributed parameter systems in a number of fields, most recently in [1]–[3].Since the sensors and actuators are low-cost and low energy,the distributed parameter systems using sensors and actuators have been extensively studied by many specialists. Demetriou[4] considered a law for the guidance of a mobile collocated actuator/sensor for the enhanced control of spatially distributed processes. Accordingly, he suggested an algorithm to replace the full state information from a scalar multiple of the output measurement in finite horizon linear quadratic regulator control of DPSs in [5]. Meanwhile, Muet al.[6] considered a scheme aimed at guiding the moving actuator/sensor pair for enhanced control and estimation of the distributed parameter systems. Jianget al.[7] proposed an even-driven observer-based control for DPSs based on a mobile sensor and actuator.

    Iterative learning control (ILC) is an intelligent control method which particularly suits systems working in a fixed time interval with a repetitive model. ILC aims to find proper learning control schemes of the controlled system for the actual output signal to track the given desired output signal over a finite interval time. At the same time, the constructed learning control sequences can converge to a desired control.An effective ILC algorithm can promote tracking accuracy by adjusting the system input signal according to error observations from every iteration even when the system has incomplete knowledge. Initially, ILC was proposed in 1984 by Arimotoet al.[8] that mainly involved a class of ILC algorithm for robots to obtain better control performance.Since then, ILC has been established as a separate field of control theory [9]–[14]. This methodology has been given consideration in various industrial applications, including industrial robots [15], health care systems [16], batch processes [17], and so on [18]. Nowadays, ILC is extensively employed in distributed parameter systems [19]–[21]. In particular, Daiet al.[22] proposed a closed-loop P-type iterative learning law for uncertain linear DPSs. In addition,he considered ILC for second-order hyperbolic DPSs with uncertainties [23]. A D-type ILC law for a type of distributed parameter systems with collocated sensors and actuators is considered in [24]. In many industrial processes, the sensors and actuators are always non-collocated. Hence, a type of linear parabolic distributed parameter system based on noncollocated sensors and actuators is proposed. No research papers have taken into account the problem of a PD-type ILC for this system.

    The distributed parameter system based on non-collocated sensors and actuators is a complex system since it depends on time and spatial position. Furthermore, ILC can be better in controlling dynamic systems with complex modelling,uncertainty and with strong non-linear coupling effects. As such, we can obtain good control performance of a distributed parameter system by using ILC schemes. As discussed above,there is no existing research that has been carried out using ILC for distributed parameter systems using non-collocated sensors and actuators. Thus, we first propose an open-loop PD-type ILC scheme for a distributed parameter system with non-collocated single sensor andmactuators. After that, we consider the distributed parameter system based on non-collocatedmsensors as well asmactuators, which include numerous industrial processes, such as heat exchangers, industrial chemical reactors, and agricultural irrigation processes. Lastly,we present a closed-loop PD-type ILC algorithm for the distributed parameter system using a single sensor and multiple actuators when some errors exist in the initial states of the system.

    In distributed parameter systems with non-collocated sensors and actuators, the sensors are capable of gathering information from the systems in real time. At the same time, the actuators can perform various tasks. When the states change, an input is imposed to control the output of the actuators. However, the actual output of the systems may not represent the desired output in the running of actuators. In this case, it is crucial to use ILC schemes to learn the output error of the systems. This facilitates the actual output in tracking the desired output.Therefore, this work improves the performance of systems. At the same time, it significantly closes the existing theoretical gap.

    The remainder of this paper is as follows: In Section II, we first discuss the system and problem formulation. Next, the open-loop PD-type and closed-loop PD-type ILC schemes are presented in a distributed parameter system with a sensor andmactuators. In addition, the proposed ILC schemes are extended to a class of distributed parameter systems using non-collocatedmsensors andmactuators in Section III. The effectiveness of the proposed methods are illustrated through numerical simulation in Section IV and conclusions follow in Section V.

    Notations:R, Rnand R+are the set of all real numbers,ndimensional space and the set of all positive real numbers.

    The definition of theL2-norm of the functionW(x,t):[0,h]×[0,T]→Ris

    II. The System and Problem Formulation

    Consider the distributed parameter system with a noncollocated single sensor andmactuators as follows:

    with the Neumann boundary conditions

    and the initial condition

    wherexandtare the spatial position and time which satisfyis a known continuous function ofx(?0is a constant).kdenotes thekth iteration of the repetitive operation of the system.qk(x,t) andyk(t) denote the state and output of the system at thekth iteration. When the system operates in thekth iteration,u(k,i)(t) is the associated control signal of theith actuator.denotes the spatial distribution of the actuating device of theith actuator anddenotes the centroid position of theith actuator.c(x) is the spatial distribution of the sensor. The sensor spatial distribution and the actuators spatial distribution satisfy

    and

    where δ and γ are constants. σ>0 is the spatial support of the actuators.

    Throughout this paper, two lemmas and one assumption are first given as follows:

    Lemma 1 [22]:Iff(t) andg(t) are two continuous nonnegative functions on [0,T], and there exist nonnegative constants ρ andMsatisfying

    then

    Lemma 2 [22]:If the constant sequence {dk}k≥0converges to zero, and the sequence {Zk(t)}k≥0?C[0,T] satisfies

    then {Zk(t)}k≥0(k→ ∞) uniformly converges to zero, whereM>0 and 0 ≤θ<1 are constants.

    Assumption 1:For a desired outputyd(t), a uniqueu(d,i)(t)exists such that

    whereqd(x,0)=0.

    In this paper, an open-loop PD-type ILC scheme is employed as follows:

    whereek(t) is the output error ofkth iteration which satisfiesek(t)=yk(t)?yd(t). Γ and Υ are the open-loop ILC learning gains.

    III. Convergence Analysis

    In this section, we first prove the effectiveness of the openloop PD-type ILC for a distributed parameter system with non-collocated single sensor andmactuators. In addition, we extend the proposed scheme to the distributed parameter system with non-collocatedmsensors andmactuators. The following theorem is first given.

    Theorem 1:Consider the open-loop PD-type ILC scheme(7) for the repetitive distributed parameter system (1) with the desired output satisfying Assumption 1. If the learning gain exists and satisfies (1+2mδγσΓ)2<1/2, then the output error converges to zero for allt∈[0,T] ask→∞, i.e.,∈[0,T].

    Proof:The input erroru(k+1,i)(t)?u(d,i)(t) at the (k+1)th iteration can be expressed as

    According to the state equation of system (1), we have

    Applying integration by parts and using the boundary conditions for the third term on the right hand side of (9), we obtain

    Substituting (10) into (9) yields

    Based on the spatial distribution of the sensor (4) and actuators (5), (11) can be further rewritten as

    Squaring both sides of (12) and using the definition of theL2-norm, we have

    Integrating (14) with respect toxon [ 0,h], it satisfies

    According to the spatial distribution of the actuators (5), and the definition ofL2-norm, the following gives

    Integrating (17) with respect totand using the Bellman-Gronwall Lemma, we have

    Substituting (18) into (13), we get

    Because (1+2mδγσΓ)2<1/2, we can obtain(2(1+2mδγσΓ)2+4mσ(Υδγ)2/(λ?1))<1 if λ is chosen large enough. Hence,

    According to (18), we have

    And from the output equation of system (1), we readily conclude that

    Remark 1:In engineering applications, there always need to be multiple sensors to finish complicated tasks. Hence, we consider the following distributed parameter system with noncollocatedmsensors andmactuators which exists the same boundary conditions and initial condition as system (1) in a repeatable environment

    wheredenotes the spatial distribution of the sensing device of theith sensor andis the centroid position of theith sensor.

    The spatial distribution of the sensors are assumed to be the boxcar function

    and the spatial distribution of the actuators are also assumed to be a boxcar function

    where β and α are constants. ε>0 and η>0 are the spatial support of the sensors and actuators, respectively.

    Remark 2:In some practical engineering applications, the actuator needs to perform a task so the spatial distribution of actuating device is wider than sensing device. Therefore, we assume

    According to the system (23), the following assumption is given.

    Assumption 2:For a desired outputy(d,i)(t), a uniqueu(d,i)(t)exists such that

    In this part, we consider the open-loop PD-type ILC scheme

    wheree(k,i)(t) is the output error ofit h sensor duringkth iteration which satisfiese(k,i)(t)=y(k,i)(t)?y(d,i)(t). Υiand Γiareith number of open-loop PD-type learning gains.

    Theorem 2:If the open-loop PD-type gain Γiof the ILC scheme ( 27) satisfies ( 1+2αβεΓi)2<1/2, and the system with the desired output satisfies the Assumption 2 under the initial and boundary conditions, the output errors of ( 23) converge to zero when

    Remark 3:In previous proof, we just consider that the initial condition is zero at every iterative learning process, however,there always exits some errors at the beginning in every iterative process. Hence, a more favorable initial condition is given as follows:

    For the system (1), if we consider using a closed-loop PDtype ILC scheme to replace the open-loop PD-type ILC scheme (7), we can obtain the convergence conditions of tracking error. The closed-loop PD-type ILC scheme is employed

    where Φ and Ψ are the P-type learning gain and D-type learning gain, respectively.

    Proof:From the desired input and actual input, the following gives

    whereand

    From ( 30), We can get

    According to the definition ofL2-norm, we have

    Similar to the proof of Theorem 1, we can investigateby using the spatial distribution of the actuators and the definition ofL2-norm as follows:

    Substituting ( 34) into ( 32), we have

    Multiply both sides of (35) bye?t, and letwe can get

    whereo1=2|1?2mΨδγσ|?2,o2=2|Φδ|2l?k+1/|1?2mΨδγσ|2ando3=|4Φ2δ2mγ2σ|/|1?2mΨδγσ|2.

    From Lemma 1, we can have that

    Multiply both sides of (37) byand letWe obtain

    From the initial condition, we know ? ∈[0,1), henceo2→0, whenk→∞. And wheno1<1, we can obtainV(k,i)(t)→0 (k→∞) from Lemma 2. BecauseV(k,i)(t)=we have

    Hence, we can obtain

    IV. Numerical Simulations

    Consider the following distributed parameter system with a sensor and two actuators in a repeatable environment

    wherex∈[0,1],t∈[0,0.8] and ? (x)=0.01>0.

    Assume that the sensor spatial distribution satisfies

    and the actuators spatial distribution satisfy

    and

    In this example, we employ the open-loop and closed-loop PD-type ILC schemes, and assume Γ=?0.7, Φ=?0.3 and Υ=Ψ=?15. Thus, we can obtain (1+2mδγσΓ)2<1/2 and 1/|1?2mΨδγσ|2<1/2which satisfy Theorems 1 and 3,respectively. The desired trajectory is given asyd=sin(5πt).

    Using the difference method for partial differential equations, the simulation results can be obtained which are shown in Figs. 1–6.

    Figs. 1–3 are obtained using an open-loop PD-type ILC scheme. Fig. 1 shows the desired output and actual output of system atk=15,25,30, respectively. Fig. 2 shows the statesqk(x,t) of system atk=25, and it is seen that only whenx∈[0.3125,0.375]∪[0.5,0.5625], the statesFig. 3 shows a curve chart which describes the variation in the error of output with the number of iterations. Whenk=25, the maximum error of the output function is 1.2×10?3. The simulation results demonstrate the effectiveness of the proposed scheme.

    Figs. 4–6 are obtained using a closed-loop PD-type ILC algorithm. Fig. 4 shows the desired output and actual output of system atk=15,25,30, respectively. Fig. 5 shows the statesqk(x,t) of system atk=25, and it is seen that only whenx∈[0.3125,0.375]∪[0.5,0.5625], the statesFig. 6 shows a curve chart which describes the variation in the error of output with the number of iterations. Whenk=25, the maximum error of the output function is 0.64×10?3. The simulation results demonstrate the effectiveness of the proposed algorithm.

    Fig. 1. The desired output yd(t) and iterations for output function yk(t) when k = 15,25,30, respectively (open-loop PD-type ILC scheme).

    Fig. 2. The states qk(x, t) of system when k = 25 (open-loop PD-type ILC scheme).

    Fig. 3. The variation of maximum output error ek(t) along with iterative number (open-loop PD-type ILC scheme).

    V. Conclusion

    Fig. 4. The desired output yd(t) and iterations for output function yk(t) when k = 15,25,30, respectively (closed-loop PD-type ILC scheme).

    Fig. 5. The states qk(x, t) of system when k = 25 (closed-loop PD-type ILC scheme).

    Fig. 6. The variation of maximum output error ek(t) along with iterative number (closed-loop PD-type ILC scheme).

    In this paper, we extended the open-loop and closed-loop PD-type ILC schemes for two types of the parabolic distributed parameter systems based on non-collocated sensors and actuators working in a repeatable environment. Firstly, we took into consideration the convergence condition of a type of distributed parameter system with non-collocated single sensor andmactuators by using two classes of ILC schemes.Thereafter, we discussed the convergence condition of a class of distributed parameter systems using non-collocatedmsensors andmactuators. Lastly, we presented a distributed parameter system based on one sensor and two actuators to illustrate the effectiveness of the proposed control. From Figs. 3 and 6, we know the maximum error of the output function are 1.2×10?3(open-loop PD-type) and0.64×10?3(closed-loop PD-type), respectively. Hence, the closed-loop PD-type ILC scheme is more effective.

    久久99热这里只有精品18| 午夜免费观看网址| 亚洲精品美女久久av网站| 一个人观看的视频www高清免费观看 | 亚洲成a人片在线一区二区| 啦啦啦观看免费观看视频高清| 色婷婷久久久亚洲欧美| 人人妻,人人澡人人爽秒播| 亚洲熟妇中文字幕五十中出| a级毛片在线看网站| 99热6这里只有精品| 免费观看精品视频网站| 在线观看66精品国产| 亚洲国产精品sss在线观看| 国产精品爽爽va在线观看网站 | 欧美激情久久久久久爽电影| 久久久国产欧美日韩av| 亚洲av日韩精品久久久久久密| 成年人黄色毛片网站| 国产久久久一区二区三区| 欧美绝顶高潮抽搐喷水| av天堂在线播放| 久久久水蜜桃国产精品网| 91国产中文字幕| 一本精品99久久精品77| 亚洲欧美精品综合一区二区三区| 国产又色又爽无遮挡免费看| 制服丝袜大香蕉在线| av片东京热男人的天堂| 在线国产一区二区在线| 一进一出抽搐gif免费好疼| 亚洲男人天堂网一区| 午夜福利在线观看吧| 99热这里只有精品一区 | 亚洲男人的天堂狠狠| 搞女人的毛片| 成人三级黄色视频| 欧美日韩亚洲综合一区二区三区_| 国产国语露脸激情在线看| 国产99久久九九免费精品| 久久香蕉精品热| 国产精品久久久人人做人人爽| 日韩av在线大香蕉| 婷婷丁香在线五月| 欧美国产精品va在线观看不卡| 亚洲自拍偷在线| a级毛片a级免费在线| 久99久视频精品免费| 91老司机精品| 夜夜看夜夜爽夜夜摸| 国产私拍福利视频在线观看| 欧美成人一区二区免费高清观看 | 少妇的丰满在线观看| 久久久久免费精品人妻一区二区 | 国产av又大| 亚洲在线自拍视频| 精品一区二区三区视频在线观看免费| 国产欧美日韩一区二区三| 色精品久久人妻99蜜桃| 日本在线视频免费播放| 国产精品一区二区精品视频观看| 丁香欧美五月| 亚洲一区中文字幕在线| 国产成人系列免费观看| 国产伦人伦偷精品视频| 精品久久蜜臀av无| 亚洲最大成人中文| 最好的美女福利视频网| 精品久久久久久久毛片微露脸| 中文字幕精品亚洲无线码一区 | 久久久久久久久久黄片| 在线观看免费日韩欧美大片| 中文在线观看免费www的网站 | 1024香蕉在线观看| 日韩高清综合在线| 亚洲在线自拍视频| 亚洲成人久久性| 国产午夜精品久久久久久| 午夜精品久久久久久毛片777| 免费在线观看日本一区| 一进一出抽搐gif免费好疼| 色综合站精品国产| 非洲黑人性xxxx精品又粗又长| 看黄色毛片网站| 日韩精品青青久久久久久| 91成年电影在线观看| 久久久精品国产亚洲av高清涩受| 热re99久久国产66热| 久久欧美精品欧美久久欧美| 久久久精品欧美日韩精品| 国产97色在线日韩免费| 中文字幕精品免费在线观看视频| 18禁黄网站禁片免费观看直播| 中文字幕另类日韩欧美亚洲嫩草| 国产v大片淫在线免费观看| 美女国产高潮福利片在线看| 婷婷六月久久综合丁香| www.www免费av| 最新美女视频免费是黄的| 动漫黄色视频在线观看| 十八禁网站免费在线| 午夜精品久久久久久毛片777| 一区二区三区国产精品乱码| 国产av在哪里看| 日韩欧美免费精品| 久久久国产成人精品二区| 国产精品乱码一区二三区的特点| 午夜福利欧美成人| a级毛片在线看网站| 一本精品99久久精品77| 丝袜在线中文字幕| 啦啦啦 在线观看视频| 国产成人一区二区三区免费视频网站| 韩国av一区二区三区四区| 日韩成人在线观看一区二区三区| 免费人成视频x8x8入口观看| 日韩欧美国产在线观看| 免费在线观看影片大全网站| 欧美性猛交黑人性爽| 国产亚洲欧美98| 欧美日韩瑟瑟在线播放| 国产av一区二区精品久久| 俺也久久电影网| 成人一区二区视频在线观看| 欧美+亚洲+日韩+国产| 日本免费a在线| 成人亚洲精品av一区二区| 一二三四在线观看免费中文在| 欧美黄色片欧美黄色片| 久99久视频精品免费| 国产亚洲精品一区二区www| 国产又爽黄色视频| 麻豆av在线久日| 人妻丰满熟妇av一区二区三区| 久久久久久人人人人人| 国产精品精品国产色婷婷| 特大巨黑吊av在线直播 | bbb黄色大片| 国产伦在线观看视频一区| 国内揄拍国产精品人妻在线 | 国语自产精品视频在线第100页| 亚洲激情在线av| 麻豆国产av国片精品| 99久久99久久久精品蜜桃| 巨乳人妻的诱惑在线观看| 中亚洲国语对白在线视频| 黄片播放在线免费| 日本五十路高清| 国产高清有码在线观看视频 | 99精品在免费线老司机午夜| 午夜影院日韩av| 亚洲五月天丁香| 一级毛片女人18水好多| 亚洲精品一区av在线观看| 欧美在线一区亚洲| 日本一本二区三区精品| 亚洲 国产 在线| 国产黄色小视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 欧美亚洲日本最大视频资源| 亚洲狠狠婷婷综合久久图片| 亚洲精品国产一区二区精华液| 亚洲国产高清在线一区二区三 | 50天的宝宝边吃奶边哭怎么回事| 国产精品影院久久| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品国产区一区二| 久久久久久大精品| 可以免费在线观看a视频的电影网站| 精品福利观看| 十八禁网站免费在线| 成年免费大片在线观看| 麻豆成人av在线观看| 亚洲熟妇熟女久久| 久久久国产成人精品二区| 变态另类成人亚洲欧美熟女| 欧美激情极品国产一区二区三区| 特大巨黑吊av在线直播 | 亚洲免费av在线视频| 777久久人妻少妇嫩草av网站| 欧美黑人欧美精品刺激| 亚洲成a人片在线一区二区| 亚洲色图av天堂| www.999成人在线观看| 国产日本99.免费观看| 老熟妇乱子伦视频在线观看| www.999成人在线观看| 久久久国产成人精品二区| 日本成人三级电影网站| 成人免费观看视频高清| 午夜福利成人在线免费观看| 国产一级毛片七仙女欲春2 | 久久香蕉精品热| 久久久久久国产a免费观看| 精品欧美一区二区三区在线| 精品国产超薄肉色丝袜足j| 嫩草影院精品99| 国内久久婷婷六月综合欲色啪| 老汉色∧v一级毛片| www.999成人在线观看| 99久久精品国产亚洲精品| 亚洲一区中文字幕在线| 久久久水蜜桃国产精品网| 可以免费在线观看a视频的电影网站| 亚洲 欧美 日韩 在线 免费| 国产亚洲欧美在线一区二区| 可以免费在线观看a视频的电影网站| 在线观看www视频免费| 国产一卡二卡三卡精品| 嫁个100分男人电影在线观看| 男男h啪啪无遮挡| 999精品在线视频| 美女高潮喷水抽搐中文字幕| 国产区一区二久久| 亚洲人成网站在线播放欧美日韩| 国产精品爽爽va在线观看网站 | 中文字幕人成人乱码亚洲影| 欧美色视频一区免费| 老司机深夜福利视频在线观看| 亚洲久久久国产精品| 久久久久久亚洲精品国产蜜桃av| 久久香蕉精品热| 香蕉丝袜av| 精品久久久久久久久久免费视频| 巨乳人妻的诱惑在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品合色在线| 日韩三级视频一区二区三区| 亚洲男人的天堂狠狠| 伊人久久大香线蕉亚洲五| 老鸭窝网址在线观看| 免费一级毛片在线播放高清视频| 国产蜜桃级精品一区二区三区| 人人妻人人澡人人看| 精品少妇一区二区三区视频日本电影| 国产精品av久久久久免费| 欧美大码av| 国产在线观看jvid| 日韩有码中文字幕| 国产精品98久久久久久宅男小说| 欧美日韩中文字幕国产精品一区二区三区| 色尼玛亚洲综合影院| 久久欧美精品欧美久久欧美| 国产精华一区二区三区| 在线十欧美十亚洲十日本专区| 国产精品一区二区三区四区久久 | 国产三级在线视频| 欧美乱妇无乱码| 天天一区二区日本电影三级| 亚洲熟妇熟女久久| www.熟女人妻精品国产| 欧美+亚洲+日韩+国产| a在线观看视频网站| 国产伦在线观看视频一区| 十八禁网站免费在线| 欧洲精品卡2卡3卡4卡5卡区| 最好的美女福利视频网| 午夜精品久久久久久毛片777| 欧美精品亚洲一区二区| 成人亚洲精品一区在线观看| 精品第一国产精品| www日本黄色视频网| 免费在线观看黄色视频的| 一二三四在线观看免费中文在| 叶爱在线成人免费视频播放| 窝窝影院91人妻| 国产精品久久久久久精品电影 | 免费在线观看完整版高清| 可以免费在线观看a视频的电影网站| 成人av一区二区三区在线看| 亚洲精品久久国产高清桃花| 在线十欧美十亚洲十日本专区| videosex国产| 欧美久久黑人一区二区| 日本 av在线| av片东京热男人的天堂| 国产高清视频在线播放一区| 日韩大码丰满熟妇| 亚洲最大成人中文| 亚洲av电影在线进入| 精品一区二区三区av网在线观看| 男女做爰动态图高潮gif福利片| 欧美黄色淫秽网站| 国产爱豆传媒在线观看 | 黑人欧美特级aaaaaa片| 国产不卡一卡二| 两人在一起打扑克的视频| 老司机靠b影院| 麻豆av在线久日| 欧美性长视频在线观看| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 国产免费av片在线观看野外av| 亚洲第一欧美日韩一区二区三区| 日韩精品青青久久久久久| 制服诱惑二区| 熟女电影av网| cao死你这个sao货| 中文字幕精品免费在线观看视频| or卡值多少钱| 成人一区二区视频在线观看| 亚洲男人天堂网一区| 色尼玛亚洲综合影院| 啦啦啦免费观看视频1| 亚洲成a人片在线一区二区| 久久久久久九九精品二区国产 | 黄片播放在线免费| 香蕉av资源在线| 国产亚洲欧美精品永久| 国产亚洲精品第一综合不卡| 无人区码免费观看不卡| 亚洲成人久久性| 51午夜福利影视在线观看| 亚洲avbb在线观看| 欧美精品亚洲一区二区| 中文字幕久久专区| 国产在线观看jvid| 真人一进一出gif抽搐免费| 搞女人的毛片| 男女床上黄色一级片免费看| 99久久综合精品五月天人人| 一级a爱视频在线免费观看| 国产亚洲欧美在线一区二区| 精品午夜福利视频在线观看一区| 亚洲国产高清在线一区二区三 | 成人国语在线视频| 亚洲国产欧美日韩在线播放| 亚洲国产欧美一区二区综合| 可以在线观看毛片的网站| 日韩欧美一区视频在线观看| 久久香蕉激情| 亚洲av五月六月丁香网| 国产精品免费一区二区三区在线| av福利片在线| 国产成+人综合+亚洲专区| 亚洲激情在线av| svipshipincom国产片| av在线播放免费不卡| 中出人妻视频一区二区| 波多野结衣av一区二区av| 非洲黑人性xxxx精品又粗又长| ponron亚洲| 久久香蕉激情| 99久久久亚洲精品蜜臀av| 久久九九热精品免费| 又紧又爽又黄一区二区| 亚洲精品久久国产高清桃花| 久久国产精品影院| 久久精品91无色码中文字幕| 国语自产精品视频在线第100页| 国产成人精品无人区| 日本熟妇午夜| 国产黄色小视频在线观看| av电影中文网址| 一个人免费在线观看的高清视频| 色综合婷婷激情| 久久久久久大精品| 精品卡一卡二卡四卡免费| 午夜福利免费观看在线| 麻豆一二三区av精品| 哪里可以看免费的av片| 脱女人内裤的视频| 亚洲精品美女久久久久99蜜臀| 久久人妻av系列| 一本精品99久久精品77| 婷婷六月久久综合丁香| 高清在线国产一区| avwww免费| 麻豆国产av国片精品| 一级a爱视频在线免费观看| 日韩av在线大香蕉| 天堂影院成人在线观看| 日韩成人在线观看一区二区三区| 成年女人毛片免费观看观看9| 村上凉子中文字幕在线| 在线av久久热| 亚洲国产精品999在线| 最新在线观看一区二区三区| 午夜影院日韩av| 久久久国产成人精品二区| 成人三级黄色视频| 欧美另类亚洲清纯唯美| 两个人免费观看高清视频| 亚洲第一欧美日韩一区二区三区| 成人三级黄色视频| 欧美另类亚洲清纯唯美| 久久精品国产亚洲av香蕉五月| 欧美中文综合在线视频| 国产蜜桃级精品一区二区三区| 在线播放国产精品三级| 香蕉av资源在线| 男女那种视频在线观看| 国产精品二区激情视频| 一级毛片精品| 嫩草影院精品99| 亚洲专区字幕在线| 欧美zozozo另类| 国产黄片美女视频| a在线观看视频网站| 一区二区三区激情视频| 国产av又大| ponron亚洲| 久久这里只有精品19| 神马国产精品三级电影在线观看 | 久久精品国产综合久久久| 亚洲狠狠婷婷综合久久图片| 熟妇人妻久久中文字幕3abv| 欧美在线一区亚洲| 在线观看免费视频日本深夜| 91国产中文字幕| 国产成人欧美| 三级毛片av免费| 国产野战对白在线观看| 成人亚洲精品av一区二区| 男女做爰动态图高潮gif福利片| 日韩欧美国产在线观看| 国产欧美日韩精品亚洲av| 成人一区二区视频在线观看| 日韩视频一区二区在线观看| 欧美 亚洲 国产 日韩一| 亚洲国产精品成人综合色| 国产精品一区二区精品视频观看| 久久久久九九精品影院| 久久久久久人人人人人| 国产视频内射| 久久国产精品男人的天堂亚洲| 亚洲avbb在线观看| 亚洲,欧美精品.| 亚洲欧美日韩高清在线视频| 91成年电影在线观看| 啦啦啦免费观看视频1| 国产真实乱freesex| 好男人电影高清在线观看| 国产区一区二久久| 日韩欧美一区视频在线观看| 日本一本二区三区精品| 国产亚洲欧美在线一区二区| 亚洲自偷自拍图片 自拍| 日韩av在线大香蕉| 妹子高潮喷水视频| 国产成人av教育| 亚洲美女黄片视频| 日韩欧美在线二视频| 18禁国产床啪视频网站| 久久国产亚洲av麻豆专区| 欧美日韩亚洲综合一区二区三区_| 欧美激情久久久久久爽电影| 91国产中文字幕| 大型黄色视频在线免费观看| 国产v大片淫在线免费观看| 国产av一区二区精品久久| 50天的宝宝边吃奶边哭怎么回事| 日韩视频一区二区在线观看| 老司机在亚洲福利影院| 精品欧美国产一区二区三| 神马国产精品三级电影在线观看 | 手机成人av网站| 一区二区三区精品91| 老熟妇仑乱视频hdxx| 欧美色欧美亚洲另类二区| 国产又爽黄色视频| 国产在线精品亚洲第一网站| 天天添夜夜摸| 亚洲色图av天堂| 久久午夜亚洲精品久久| 国产野战对白在线观看| 久久久久精品国产欧美久久久| 一二三四社区在线视频社区8| 一级毛片高清免费大全| 亚洲精品中文字幕一二三四区| 亚洲欧美精品综合一区二区三区| 久久久国产成人免费| 国产野战对白在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲av成人av| 一本综合久久免费| 国产成人影院久久av| 日韩免费av在线播放| 精品久久蜜臀av无| 99精品欧美一区二区三区四区| 在线国产一区二区在线| 一个人观看的视频www高清免费观看 | 欧美日韩一级在线毛片| 一级a爱片免费观看的视频| 级片在线观看| 国产精品爽爽va在线观看网站 | 免费观看人在逋| 一级a爱视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 亚洲精品一区av在线观看| svipshipincom国产片| 亚洲熟妇熟女久久| 天天一区二区日本电影三级| 一本一本综合久久| 在线视频色国产色| 国产在线精品亚洲第一网站| 国内毛片毛片毛片毛片毛片| 熟女电影av网| e午夜精品久久久久久久| 国产蜜桃级精品一区二区三区| 日日夜夜操网爽| 91av网站免费观看| 欧美成人午夜精品| 欧美色欧美亚洲另类二区| 黄色女人牲交| 人人妻人人看人人澡| 大型av网站在线播放| 身体一侧抽搐| 99久久综合精品五月天人人| 十八禁网站免费在线| 欧美乱色亚洲激情| 在线观看免费日韩欧美大片| 亚洲美女黄片视频| 欧美久久黑人一区二区| 91av网站免费观看| 精品国产超薄肉色丝袜足j| 国产亚洲欧美98| 宅男免费午夜| 亚洲一区二区三区不卡视频| 午夜福利视频1000在线观看| 亚洲自拍偷在线| 精品第一国产精品| 欧美日韩乱码在线| 亚洲精品在线美女| 国产区一区二久久| 88av欧美| 日本熟妇午夜| 一级作爱视频免费观看| avwww免费| 久久国产亚洲av麻豆专区| 啪啪无遮挡十八禁网站| 久久久久久九九精品二区国产 | 亚洲专区国产一区二区| x7x7x7水蜜桃| 精品国产美女av久久久久小说| 午夜日韩欧美国产| 18禁裸乳无遮挡免费网站照片 | 1024手机看黄色片| 丁香欧美五月| 日日夜夜操网爽| 色播亚洲综合网| 一进一出抽搐gif免费好疼| 校园春色视频在线观看| 变态另类丝袜制服| 欧美日韩精品网址| 国产麻豆成人av免费视频| 草草在线视频免费看| 一本精品99久久精品77| 中文字幕人妻丝袜一区二区| 日日夜夜操网爽| 一本综合久久免费| or卡值多少钱| 国产伦一二天堂av在线观看| 香蕉丝袜av| 欧美精品亚洲一区二区| 国产亚洲av嫩草精品影院| 老熟妇仑乱视频hdxx| 久久久国产成人精品二区| 国产蜜桃级精品一区二区三区| 免费观看精品视频网站| 淫秽高清视频在线观看| 亚洲欧美日韩高清在线视频| 长腿黑丝高跟| 国产免费男女视频| 两个人视频免费观看高清| 老熟妇乱子伦视频在线观看| 日韩高清综合在线| 999久久久精品免费观看国产| 久久九九热精品免费| 久久久久久久午夜电影| 中文字幕av电影在线播放| 天天添夜夜摸| 天天一区二区日本电影三级| a级毛片在线看网站| 国产午夜福利久久久久久| 欧美色视频一区免费| 亚洲精品在线观看二区| 精品午夜福利视频在线观看一区| 日韩欧美一区二区三区在线观看| 男女那种视频在线观看| 久久久久久国产a免费观看| 欧美乱色亚洲激情| 一级片免费观看大全| 中文亚洲av片在线观看爽| 久9热在线精品视频| 99国产极品粉嫩在线观看| 色综合欧美亚洲国产小说| 久久天堂一区二区三区四区| 欧美最黄视频在线播放免费| 淫秽高清视频在线观看| 岛国在线观看网站| 丝袜人妻中文字幕| 亚洲国产欧美日韩在线播放| 99久久精品国产亚洲精品| 久久狼人影院| 日本一本二区三区精品| 亚洲熟妇熟女久久| 国产精品一区二区精品视频观看| 两人在一起打扑克的视频| 一二三四社区在线视频社区8| 国语自产精品视频在线第100页| 两人在一起打扑克的视频| АⅤ资源中文在线天堂| 欧美精品亚洲一区二区| 亚洲一区高清亚洲精品| 女生性感内裤真人,穿戴方法视频| 欧美成人午夜精品| 老司机福利观看| 亚洲狠狠婷婷综合久久图片| 亚洲一区二区三区色噜噜| 成人18禁在线播放| 免费女性裸体啪啪无遮挡网站| 99久久久亚洲精品蜜臀av| 级片在线观看| 成人午夜高清在线视频 |