• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of group IIIA element impurities on the visible light absorption of doped zinc blende ZnS

    2020-05-13 13:49:18DONGMingHuiYUANGuangMingTANGShunLeiLIXiaoJie

    DONG Ming-Hui, YUAN Guang-Ming, TANG Shun-Lei, LI Xiao-Jie

    (Qilu Institute of Technology, Jinan 250200, China)

    Abstract: ZnS has been used for splitting water to produce hydrogen, however, the reaction cannot be driven by the visible light because of its wide energy band gap.In this paper, by using density functional theory (DFT), the effects of group IIIA element impurities on the electronic structures and visible light absorption of doped zinc blende ZnS were studied.The results reveal that the structures of B, Al, Ga and In substituting for Zn are easy to form, while that of Tl substituting for Zn is not.Moreover, the absorptions of the doped structures in the visible light range are significantly enhanced, and their band edge positions are still suitable for water splitting to generate hydrogen, which means that B, Al, Ga and In substituting for Zn are candidate materials for water splitting driven by visible light.

    Key words: Density functional theory (DFT); Absorption Coefficient; ZnS; Density of state

    1 Introduction

    With the development of technology andsociety, energy shortages and environmental pollution have become the major sectors restricting the country’s economic development and progress.Therefore, in order to ensure the development of the economy and society, it is urgent to find advanced technologies for producing renewable clean energy[1].Hydrogen (H2), as a clean, cheap, renewable energy, has attracted more attention[2, 3].Photocatalytic water splitting under sun light is an useful way for the generation of H2because it can convert light energy to hydrogen energy[4, 5].

    In the hydrogen production procedure, ZnS has been used to splitting water to produce hydrogen[6].ZnS has two allotropic forms: a hexagonal form with wurtzite structure and a cubic form with zinc blende structure[7].At room temperature, the zinc blende structure is much more stable than the wurtzite one, and has high optical transmittance, wide energy gap (3.68 eV), high refractive index (2.35), and luminescence emissions from the ultraviolet to the visible spectrum[8].However, the wide band energy gap makes it cannot be effectively driven by solar light.Therefore, decreasing the band gap and increasing the light absorption are very important for the development of photocatalysts.Experiments and theory reveal that doping is an efficient method to tune the band gap (Eg) of semiconductors and facilitates excitation of electrons from valence band (VB) to conduction band (CB).By now, several metallic elements have been doped into ZnS to modify its optical properties.For instance, Sahraeietal.[9]indicated that Ni2+ions could decrease the optical transmittance.Sharmaetal.[3]reported that Zr could reduce the band gap of ZnS from 3.7 eV to 2.9 eV.Alvarez-Coronadoetal.[8]observed a red shift of the optical absorption edge after Cu and Mn ions doped in ZnS.Azmand et al.[10]found that the band gap energy of undoped ZnS was estimated to be 3.93 eV, and reduced to 3.16 eV after Se-doping.Azmandetal.[11]clarified that Al-doping decreased the band gap energy of the ZnS samples from 3.93 to 3.50 eV, and Hurma[12]also found similar results in nanocrystalline ZnS and Al doped ZnS films.Gaikwad et al.[13]revealed that Pd doped ZnS showed obvious photocatalytic activity when irradiated with visible light compared to ZnS.Wangetal.[14]found Cu-N co-doped ZnS can reduce the band gap and enhance its photocatalytic properties.Density functional theory (DFT), especially the first-principle calculations, have proved to be invaluable in understanding the physical and chemical properties of nanomaterials.Further survey of literature reveals that DFT has been performed on the effect of carbon group elements[15], Si[16,17], N[18], H[19], V[20]doped ZnS on the optical properties.Recently, (B[21], Al[22,23], Ga[24,25], In[26])-doped ZnS has been successfully synthesized in experiment.Through Liu[27]has studied the dielectric function and absorption coefficient spectra of Al and Ga doped ZnS, however, other properties such as formation energy, band edge positions has not calculated.Therefore, in order to systematically understand the properties of group ⅢA elements doped ZnS, the formation energy, dielectric function, absorption coefficient spectra, band edge positions and density of states have been presented by using first principles based on DFT.

    2 Computational details

    All of the calculations were performed using first principle[28]based on DFT[29].Generalized gradient approximation (GGA) and the Perdew-Burke-Ernzerhof (PBE)[30]function were employed as exchange-correlation potential.The interaction between valence electron and ion core was ultrasoft pseudopotential.For PBE potential, only Zn(3d104s2), S (3s23p4), B(2s22p1), Al(3s23p1), Ga(3d104s24p1), In(4d105s25p1), Tl(5d106s26p1) are considered as the valence electron.The cut off energy was set as 400 eV and Monkhorst-Pack[31]k-points were chosen to 4×4×4 in the Brillouin zone to ensure that all of the calculations were converged.For the geometry optimization process, the energy change and the maximum tolerances of the force, stress, and displacement were set to 2.0×10-5eV/atom, 0.05 eV/?, 0.05 GPa and 0.002 ?, respectively.

    3 Results and discussion

    3.1 Geometry optimization results

    The zinc blende ZnS possesses stable structure and good photocatalytic performance with a space group of 216 (F4-3m).The atomic position of Zn and S atoms are selected at (0, 0, 0) and (1/4, 1/4, 1/4), respectively.Fig.1 shows a unit cell structure of pristine ZnS, which was optimized by the first principles calculation.

    The optimized cell parameters are shown in Table 1.It can be seen that the optimized lattice parameters of pristine ZnS crystal cell area=b=c=5.425 ?, which are in good agreement with the experimental data (a=b=c=5.41 ?[32, 33]).Other previous theoretical research reports[15, 34]are also in good agreement with our results.These analyses show that our computational method is reasonable.

    3.2 Impurity formation energy

    The formation energy(Ef) is used to evaluate the

    Table 1 The optimized cell parameters, crystal volume changes for the pristine, ZnS: B, ZnS: Al, ZnS: Ga, ZnS: In and ZnS: Tl, as well as experimental values.

    Exp.Cal.pristineZnS: BZnS: AlZnS: GaZnS: InZnS: Tla=b=c(?)5.41a,5.41b5.436c,5.42d5.4255.4135.4215.4395.4525.481V(?3)158.34a,158.34b160.63c,159.22d159.66158.6159.31160.9162.06164.66ΔV(?3)-1.06-0.351.243.465

    aref.[32],bref.[33],cref.[15],dref.[34]

    relative stability of a doping system and the degree of difficulty of atomic doping.The smaller theEfis, the more stable will be the structure.Formation energy can be calculated by using the following equation[35].

    Ef=E(doped)-E(pristine)-μX+μZn

    (1)

    whereE(doped) andE(pristine) are total energies of doped ZnS and pristine ZnS, respectively.TheμX, andμZnstand for the chemical potentials of dopants atom and Zn, respectively.μZnis very close to each Zn atom energy in bulk Zn, and so doesμX.The formation energies of five doped systems are given in Fig.2.

    Fig.2 The formation energies of pristine and five doped systems

    Fig.2 reveals that formation energies for structures of B, Al, Ga and In substituting for Zn are all negative, which imply that all structures are stable.However, for Tl substituting for Zn, the formation energy is 0.12 eV, which indicates that this structure is not easy to form.This is because the radius of Tl is larger than Zn, therefore, the lattice distortion caused by substitution is very serious.As shown in Table 1, the volume changes by B, Al, Ga and In substituting for Zn are about 1 ?3, however, for Tl is 5 ?3.Therefore, in the following work, the properties of B, Al, Ga and In doped ZnS systems has been studied.

    3.3 Band structures

    It must be mentioned that all of our calculations in this paper were based on the DFT.However, experience has proved that the energy gap calculated by DFT is smaller than that obtained by experiments[36].In order to overcome this defect, scissors operator is usually used to correct the results in optical properties[37, 38].In this paper, the energy gap of pristine ZnS is 2.93 eV, while the reported is 3.68 eV[8], therefore, 0.75 eV was chosen as scissors operator.Fig.3 shows that the calculated band gap of pristine ZnS, and B, Al, Ga, In substituting for Zn are 3.68 eV, 2.83 eV, 2.65 eV, 3.06 eV, 3.23 eV, respectively.All of the band gaps of impurities systems are narrower than that of pristine structure.This is beneficial for the transfer of the photogenerated electrons from valence band maximum (VBM) to the conduction band minimum (CBM), improving the solar light absorption and enhancing the photocatalytic properties of ZnS.

    Fig.3 The band gap of pristine and various doped systems

    3.4 Optical properties

    In order to calculate theeffects of element impurities on optical properties, the dielectric function and absorption coefficient have been calculated.As we all know, the dielectric function can explained as the transitions between occupied and unoccupied states.In the linear response range, the optical material properties can be determined from the dielectric function[39, 40]

    ε(ω)=ε1(ω)+iε2(ω)

    (2)

    The imaginary partε2(ω) of dielectric function determines the probability that electrons jump from the valence band to the conduction band.The bigger the imaginary part is, the more obvious the effect is[41].The imaginary partε2(ω) of pristine ZnS and element impurities are shown in Fig.4.It can be seen that the peaks of doped structures are all located at 2.51 eV, 2.23 eV, 2.72 eV and 2.83 eV, respectively, however, pristine structure is in the ultraviolet region.Therefore, the imaginary partε2(ω) edges of all doped structures shift towards the visible light region in comparison with the pristine one.This is consistent with the band gap change regulation.

    Fig.4 The imaginary part of the dielectric function of the pristine and doped ZnS systems.

    Based on the real partε1(ω) and imaginary partε2(ω) of dielectric function, the optical absorption coefficient can be calculated through the following expression[42].

    (3)

    where,I(ω) is absorption coefficient.The absorption coefficient of pristine and doped ZnS are presented in Fig.5.

    Fig.5 The absorption coefficient spectra of pristine and doped ZnS systems

    For pristine ZnS, the obvious absorption peak occurs in the ultraviolet region, however, for the doped systems, the peaks of absorption coefficient appear in the visible light region.Therefore, compared with the pristine one, the absorption spectra shift towards the visible light region.This is consistent with the band gap and imaginary partε2(ω) change regulation in the visible light region.The results of calculation demonstrate that B, Al, Ga and In could significantly enhance the absorption coefficient of ZnS in the visible light range, especially for ZnS: B, ZnS: Ga and ZnS: In.

    3.5 Hydrogen production

    It is well known that the band edge positions of a semiconductor and the redox potentials of the adsorbate are very important to the photocatalytic performance.Thus, in this paper, the band edge positions of the conduction band and the valence band were calculated by the following expression[43].

    (4)

    EVB=ECB+Eg

    (5)

    where,EVBandECBare the VB and CB edges potentials, respectively.Xis the Mulliken electronegativity of the system, and theXis calculated to be about 5.26 eV for ZnS[44, 45].Eeis the normal hydrogen electrode (NHE) (~ 4.5 eV), andEgis band gap.Fig.6 shows the schematic diagrams for pristine and B, Al, Ga, In substituting for Zn as photocatalyst.In particular, conduction band potential for pristine and element impurities are -1.08 eV, -0.655 eV, -0.565 eV, -0.77 eV, -0.855 eV, respectively, while the valence band potential of these structures are 2.6 eV, 2.175 eV, 2.084 eV, 2.29 eV, 2.375 eV, respectively.According to the conditions of water splitting[44]: the valence band potential of photocatalyst should be higher than that of O2/H2O (1.23 eV vs NHE), and the conduction band potential should be lower than that of H+/H2O (0 eV vs.NHE).Fortunately, all the conduction band potentials are more negative than H+/H2(0 V) and hence can reduce H+to H2.On the other hand, the valence band potentials are all more positive than O2/H2O (1.23 V) and have the ability to oxidize H2O to produce O2.Among these doped structures, ZnS: Al has the lowest reducibility to produce H2and the lowest oxidation ability to produce O2, while opposite to the ZnS: In.

    Fig.6 The calculated band potential of pristine and doped ZnS systems

    3.6 Density of states (DOSs)

    To further analyze the effect of substitutional elements on the electronic structure of ZnS, the density of states (DOSs) for the doped systems are successively shown in Fig.7.In each calculation, the highest occupied state is featured as the Fermi level (EF) and is set to zero, and he dotted lines at the zero point of horizontal coordinates represent the Fermi level.Fig.7(a) shows that the valence band maximum (VBM) of pristine ZnS is mainly dominated by S-3p and Zn-3p states, while the conduction band minimum (CBM) includes a small number of 3p, 4s states of Zn and 3s, 4p states of S.These states will result in a 3.68 eV energy band gap.For the doped structures, s states of the dopants have been found in the band gap.These impurity states cross the Fermi level serve as springboard under excitation, which are benefit for the transfer of the photogenerated electrons to the conduction band, improving the solar light absorption and utilization, and enhancing the photocatalytic properties of doped ZnS.Meanwhile, shallow donor levels above the CBM also act as capturing centers for photo-generated electrons, thus the recombination probabilities of electrons and holes will be reduced.On the other hand, doping will impel the valence band to move downward stronger than that of the conduction band, therefore, the energy band gap decreases to 2.83 eV, 2.65 eV, 3.06 eV and 3.23 eV, which might result in red shift of absorption spectra in experiments.The small energy band gap can significantly enhance the absorption in the visible light range, and the results have been confirmed in Fig.4 and Fig.5.

    4 Conclusions

    In summary, the electronic structures and optical properties of group ⅢA elements doped zinc blende ZnS are thoroughly studied based on the density functional theory.The obtained conclusions are as following.

    (1)The analyses of formation energy reveal that the structures of B, Al, Ga and In substituting for Zn are easy to form, while that of Tl substituting for Zn is not.

    (2)B, Al, Ga and In substituting for Zn on the one hand could narrow band gap obviously, which will enhance the solar light absorption significantly,on the other hand, it satisfy the requirement of water splitting to generate hydrogen.

    Fig.7 Density of states (DOSs) of (a)Pristine ZnS; (b)ZnS: B; (c) ZnS: Al; (d) ZnS: Ga; (e) ZnS: In

    国产熟女欧美一区二区| 午夜免费激情av| 午夜a级毛片| 日韩,欧美,国产一区二区三区 | 国产精品一区二区三区四区免费观看| 成人一区二区视频在线观看| 美女高潮的动态| 久久久精品94久久精品| 99久久九九国产精品国产免费| 免费看日本二区| 热99re8久久精品国产| 免费观看的影片在线观看| 少妇的逼好多水| 日日啪夜夜撸| 欧美激情久久久久久爽电影| 精品久久久久久成人av| 国产精品一区www在线观看| av国产久精品久网站免费入址| 久久6这里有精品| 男人舔女人下体高潮全视频| 亚洲不卡免费看| 国产亚洲av嫩草精品影院| 嫩草影院新地址| eeuss影院久久| 日韩,欧美,国产一区二区三区 | av在线蜜桃| 中国美白少妇内射xxxbb| 美女高潮的动态| 综合色av麻豆| 久久久久久九九精品二区国产| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久中文| 国产黄色视频一区二区在线观看 | 99久国产av精品| 插阴视频在线观看视频| 18禁在线播放成人免费| 五月伊人婷婷丁香| 1000部很黄的大片| 天堂中文最新版在线下载 | 精品不卡国产一区二区三区| 男人狂女人下面高潮的视频| 狠狠狠狠99中文字幕| 亚洲av免费在线观看| 午夜a级毛片| 久久久久精品久久久久真实原创| 91久久精品电影网| 99久久九九国产精品国产免费| 赤兔流量卡办理| 啦啦啦韩国在线观看视频| 国产亚洲av片在线观看秒播厂 | 午夜福利在线观看免费完整高清在| 久久精品国产亚洲av天美| 狂野欧美白嫩少妇大欣赏| 国产精品嫩草影院av在线观看| 99九九线精品视频在线观看视频| 久久久久久久久大av| 看免费成人av毛片| 成人二区视频| 天美传媒精品一区二区| 久久久成人免费电影| 哪个播放器可以免费观看大片| 岛国毛片在线播放| 国产精品蜜桃在线观看| 国产片特级美女逼逼视频| 国产精华一区二区三区| 观看美女的网站| 亚洲伊人久久精品综合 | 亚洲av成人精品一二三区| 午夜福利网站1000一区二区三区| 欧美+日韩+精品| 欧美一级a爱片免费观看看| 麻豆乱淫一区二区| 国内精品宾馆在线| 久久久国产成人免费| 97在线视频观看| 国产一区二区三区av在线| 中文字幕亚洲精品专区| 99久久精品国产国产毛片| 18禁在线播放成人免费| 国产一区二区亚洲精品在线观看| 婷婷色麻豆天堂久久 | 亚洲熟妇中文字幕五十中出| 亚洲国产精品专区欧美| 2022亚洲国产成人精品| 亚洲性久久影院| 女的被弄到高潮叫床怎么办| 超碰97精品在线观看| 99热全是精品| 热99re8久久精品国产| 能在线免费看毛片的网站| 久久久精品欧美日韩精品| 日韩成人av中文字幕在线观看| 偷拍熟女少妇极品色| 淫秽高清视频在线观看| 日本与韩国留学比较| 少妇熟女aⅴ在线视频| 九九爱精品视频在线观看| 成人二区视频| 老司机福利观看| 国产精品国产三级国产专区5o | 三级毛片av免费| 久久韩国三级中文字幕| 少妇裸体淫交视频免费看高清| 亚洲最大成人av| 中国国产av一级| 婷婷色综合大香蕉| 精品国产露脸久久av麻豆 | 久久人人爽人人片av| 亚洲精品影视一区二区三区av| 99久久精品热视频| 亚洲精品aⅴ在线观看| 国产精品不卡视频一区二区| 国产综合懂色| 亚洲久久久久久中文字幕| 美女cb高潮喷水在线观看| 色播亚洲综合网| 日日摸夜夜添夜夜爱| 国模一区二区三区四区视频| 69人妻影院| 成年女人永久免费观看视频| 久久99热这里只有精品18| 男女啪啪激烈高潮av片| 国产极品天堂在线| 自拍偷自拍亚洲精品老妇| 网址你懂的国产日韩在线| 91精品一卡2卡3卡4卡| 成人美女网站在线观看视频| 中文字幕制服av| 久久草成人影院| 国产老妇伦熟女老妇高清| 2021少妇久久久久久久久久久| 男女视频在线观看网站免费| 亚洲一级一片aⅴ在线观看| 人人妻人人澡欧美一区二区| 精品国产一区二区三区久久久樱花 | 亚洲美女搞黄在线观看| 99久久人妻综合| 精品人妻一区二区三区麻豆| 99热这里只有是精品在线观看| 国产精品一二三区在线看| 午夜精品在线福利| 久久综合国产亚洲精品| 久久久精品94久久精品| 午夜a级毛片| 村上凉子中文字幕在线| 欧美日韩一区二区视频在线观看视频在线 | videos熟女内射| 国产精品麻豆人妻色哟哟久久 | 91久久精品国产一区二区成人| 日本av手机在线免费观看| 少妇的逼好多水| 亚洲欧洲日产国产| 欧美性感艳星| 一个人观看的视频www高清免费观看| 久久久久久大精品| 日本wwww免费看| 亚洲欧美精品专区久久| 男人舔奶头视频| 亚洲精品自拍成人| 色尼玛亚洲综合影院| 日韩 亚洲 欧美在线| 亚洲国产精品成人久久小说| 成人av在线播放网站| 亚洲欧美一区二区三区国产| 能在线免费观看的黄片| 精品无人区乱码1区二区| 水蜜桃什么品种好| 99久国产av精品国产电影| 午夜福利视频1000在线观看| 狂野欧美白嫩少妇大欣赏| 18禁裸乳无遮挡免费网站照片| 国产精品精品国产色婷婷| 色哟哟·www| av.在线天堂| 精品熟女少妇av免费看| 国产av码专区亚洲av| 人人妻人人澡人人爽人人夜夜 | 亚洲四区av| videossex国产| 丰满少妇做爰视频| 亚洲欧美清纯卡通| 亚洲国产精品成人综合色| 日本爱情动作片www.在线观看| 日本av手机在线免费观看| 青青草视频在线视频观看| 亚洲一级一片aⅴ在线观看| 黄片wwwwww| 亚洲精品日韩av片在线观看| 亚洲av免费在线观看| 亚洲一级一片aⅴ在线观看| 青青草视频在线视频观看| 天天躁日日操中文字幕| 综合色丁香网| 亚洲国产最新在线播放| 人妻少妇偷人精品九色| 久久精品夜色国产| 中文字幕亚洲精品专区| 成人二区视频| 日本一二三区视频观看| 美女xxoo啪啪120秒动态图| 亚洲av熟女| 亚洲人与动物交配视频| 久久草成人影院| 联通29元200g的流量卡| 99热精品在线国产| 赤兔流量卡办理| 不卡视频在线观看欧美| 日日摸夜夜添夜夜添av毛片| 久久久久久久久中文| 色综合色国产| 亚洲精品日韩在线中文字幕| 亚洲综合色惰| 少妇裸体淫交视频免费看高清| 亚洲精品乱久久久久久| 成人漫画全彩无遮挡| 国产一区二区在线av高清观看| 免费电影在线观看免费观看| 国产成人福利小说| 最近视频中文字幕2019在线8| 亚洲精品影视一区二区三区av| 51国产日韩欧美| 热99re8久久精品国产| 成人二区视频| 国产高清三级在线| 国产成人一区二区在线| 97超碰精品成人国产| 精品酒店卫生间| 身体一侧抽搐| 欧美精品一区二区大全| 国产精品国产三级专区第一集| 成人国产麻豆网| 超碰av人人做人人爽久久| 淫秽高清视频在线观看| 美女xxoo啪啪120秒动态图| 国产黄色小视频在线观看| 色综合站精品国产| 校园人妻丝袜中文字幕| 99久久无色码亚洲精品果冻| 亚洲综合精品二区| 日本免费a在线| 丰满乱子伦码专区| 一边摸一边抽搐一进一小说| 国产视频内射| 亚洲精品国产av成人精品| 精品免费久久久久久久清纯| 亚洲欧美日韩卡通动漫| 热99re8久久精品国产| 亚洲天堂国产精品一区在线| 特级一级黄色大片| 国产精品一区二区三区四区免费观看| 在线a可以看的网站| 男人舔奶头视频| 国产成年人精品一区二区| 国产成人a∨麻豆精品| 国产亚洲精品久久久com| 欧美zozozo另类| videossex国产| 久久久色成人| 亚洲不卡免费看| 特级一级黄色大片| 在线观看av片永久免费下载| 日韩,欧美,国产一区二区三区 | 午夜a级毛片| 国产男人的电影天堂91| 国产精品久久视频播放| 亚洲国产精品成人久久小说| 蜜桃久久精品国产亚洲av| 91精品一卡2卡3卡4卡| 亚洲精品亚洲一区二区| 国产高清视频在线观看网站| 亚洲婷婷狠狠爱综合网| 日本欧美国产在线视频| 我要搜黄色片| 亚洲欧美清纯卡通| 亚洲久久久久久中文字幕| 内射极品少妇av片p| 久久99精品国语久久久| 七月丁香在线播放| 日韩强制内射视频| 国产在视频线精品| 中文字幕免费在线视频6| 看片在线看免费视频| 国产熟女欧美一区二区| www日本黄色视频网| 久久久久久国产a免费观看| 丰满乱子伦码专区| 亚洲欧美中文字幕日韩二区| 丝袜喷水一区| 永久网站在线| 亚洲成人中文字幕在线播放| 亚州av有码| 日日干狠狠操夜夜爽| 亚洲人与动物交配视频| 天堂影院成人在线观看| 国产伦在线观看视频一区| av.在线天堂| 免费播放大片免费观看视频在线观看 | 欧美精品一区二区大全| 国产私拍福利视频在线观看| 视频中文字幕在线观看| 精品人妻熟女av久视频| 99久久人妻综合| 国产精品.久久久| 日韩av在线免费看完整版不卡| 美女国产视频在线观看| 两个人视频免费观看高清| 国产视频内射| 中国美白少妇内射xxxbb| 在线a可以看的网站| 亚洲av二区三区四区| 高清午夜精品一区二区三区| 中文天堂在线官网| 国产av码专区亚洲av| 色噜噜av男人的天堂激情| 亚洲精品乱码久久久久久按摩| 又粗又爽又猛毛片免费看| av在线观看视频网站免费| 狂野欧美激情性xxxx在线观看| 毛片一级片免费看久久久久| 国产淫片久久久久久久久| 日本免费a在线| 我要看日韩黄色一级片| 欧美成人一区二区免费高清观看| 亚洲欧美日韩高清专用| 国产精品熟女久久久久浪| 韩国av在线不卡| 久久久久久久久久久丰满| 久久鲁丝午夜福利片| 美女脱内裤让男人舔精品视频| 精品熟女少妇av免费看| 久久精品人妻少妇| 爱豆传媒免费全集在线观看| 日韩制服骚丝袜av| 又粗又硬又长又爽又黄的视频| 一区二区三区四区激情视频| 精品一区二区三区视频在线| 亚洲精品乱码久久久v下载方式| 午夜视频国产福利| a级一级毛片免费在线观看| 成人美女网站在线观看视频| 日韩国内少妇激情av| 精品人妻视频免费看| 午夜亚洲福利在线播放| 久久久久久久国产电影| 午夜久久久久精精品| 亚洲无线观看免费| 亚洲在久久综合| 日韩一区二区视频免费看| 联通29元200g的流量卡| 夜夜爽夜夜爽视频| 欧美另类亚洲清纯唯美| 极品教师在线视频| 99九九线精品视频在线观看视频| 听说在线观看完整版免费高清| av在线播放精品| 日韩强制内射视频| or卡值多少钱| 成人午夜高清在线视频| 国产免费视频播放在线视频 | 精品人妻一区二区三区麻豆| 又黄又爽又刺激的免费视频.| 成人综合一区亚洲| 国产精品不卡视频一区二区| 亚洲丝袜综合中文字幕| 看黄色毛片网站| 亚洲国产精品合色在线| 久久精品人妻少妇| 精华霜和精华液先用哪个| 日韩 亚洲 欧美在线| 精品无人区乱码1区二区| 欧美极品一区二区三区四区| 免费一级毛片在线播放高清视频| 又粗又爽又猛毛片免费看| 亚洲av.av天堂| 国产高清视频在线观看网站| 一个人免费在线观看电影| 人妻少妇偷人精品九色| 一级毛片aaaaaa免费看小| 人体艺术视频欧美日本| 亚洲自偷自拍三级| or卡值多少钱| 欧美激情在线99| 日本一二三区视频观看| 男人和女人高潮做爰伦理| 黄色欧美视频在线观看| 色网站视频免费| 黄片wwwwww| 久久精品影院6| av又黄又爽大尺度在线免费看 | 中文字幕av在线有码专区| 最近最新中文字幕大全电影3| 人妻制服诱惑在线中文字幕| ponron亚洲| 日本wwww免费看| 亚洲国产精品成人综合色| 99久国产av精品国产电影| 国产在视频线在精品| 我的老师免费观看完整版| 少妇裸体淫交视频免费看高清| 中文字幕亚洲精品专区| 中文字幕精品亚洲无线码一区| 禁无遮挡网站| 高清毛片免费看| 免费无遮挡裸体视频| 久久婷婷人人爽人人干人人爱| 久久韩国三级中文字幕| 国产在线一区二区三区精 | av在线蜜桃| 七月丁香在线播放| 亚洲最大成人手机在线| 欧美变态另类bdsm刘玥| 亚洲成人精品中文字幕电影| 视频中文字幕在线观看| 国产人妻一区二区三区在| 天堂av国产一区二区熟女人妻| 久久精品人妻少妇| 国产一区亚洲一区在线观看| 在线观看美女被高潮喷水网站| 久久草成人影院| 国产一区有黄有色的免费视频 | 日韩av在线免费看完整版不卡| 久久久久久久久大av| 成人漫画全彩无遮挡| 男人的好看免费观看在线视频| 最近手机中文字幕大全| 建设人人有责人人尽责人人享有的 | 欧美xxxx性猛交bbbb| videos熟女内射| 欧美高清成人免费视频www| 国产熟女欧美一区二区| 日本与韩国留学比较| 国产男人的电影天堂91| 免费大片18禁| 99在线视频只有这里精品首页| 日韩成人伦理影院| 又粗又爽又猛毛片免费看| 变态另类丝袜制服| 观看美女的网站| 日韩亚洲欧美综合| 国产91av在线免费观看| 观看免费一级毛片| 在线观看66精品国产| eeuss影院久久| 综合色丁香网| 麻豆乱淫一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 午夜日本视频在线| 国产高清视频在线观看网站| 午夜福利视频1000在线观看| 尾随美女入室| 国产老妇女一区| 国产一区亚洲一区在线观看| 久久6这里有精品| 一本一本综合久久| 蜜桃久久精品国产亚洲av| 国产免费一级a男人的天堂| 国产亚洲91精品色在线| 18禁动态无遮挡网站| 国产爱豆传媒在线观看| 麻豆国产97在线/欧美| 成人二区视频| 国产成人精品久久久久久| 午夜a级毛片| 丰满乱子伦码专区| 久久久久久久久久久丰满| 色网站视频免费| 草草在线视频免费看| 亚洲av电影在线观看一区二区三区 | 久久久精品94久久精品| 午夜免费激情av| 日韩成人伦理影院| 午夜福利在线在线| av在线天堂中文字幕| 久久久a久久爽久久v久久| 身体一侧抽搐| 亚洲国产欧美人成| 色尼玛亚洲综合影院| 看十八女毛片水多多多| 国产av不卡久久| 男插女下体视频免费在线播放| 国产在线一区二区三区精 | 欧美激情久久久久久爽电影| 成人三级黄色视频| 一边摸一边抽搐一进一小说| 亚洲美女搞黄在线观看| 亚洲国产精品合色在线| 91aial.com中文字幕在线观看| 亚洲精品影视一区二区三区av| 99久久成人亚洲精品观看| 亚洲欧美精品自产自拍| 九九久久精品国产亚洲av麻豆| 国产老妇伦熟女老妇高清| 不卡视频在线观看欧美| 亚洲自偷自拍三级| 国产淫片久久久久久久久| 亚洲最大成人中文| 精品一区二区免费观看| 毛片女人毛片| 中国美白少妇内射xxxbb| 国产 一区精品| 国产真实乱freesex| 国产成人a区在线观看| 黄片无遮挡物在线观看| 亚洲国产精品成人综合色| 国产一区有黄有色的免费视频 | 成年女人看的毛片在线观看| 天堂√8在线中文| 日本欧美国产在线视频| 九九爱精品视频在线观看| 国内精品美女久久久久久| 亚洲av电影在线观看一区二区三区 | 免费看a级黄色片| 亚洲欧美日韩卡通动漫| 国产久久久一区二区三区| 成人欧美大片| 日日撸夜夜添| 国产91av在线免费观看| 老司机影院毛片| 中国国产av一级| 亚洲国产成人一精品久久久| 黄色一级大片看看| 麻豆国产97在线/欧美| 韩国高清视频一区二区三区| 国产精品人妻久久久久久| 国产av在哪里看| av在线天堂中文字幕| 国产淫语在线视频| www日本黄色视频网| 日本黄色片子视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区亚洲一区在线观看| 亚洲欧美一区二区三区国产| 伦理电影大哥的女人| 亚洲精品,欧美精品| 51国产日韩欧美| 亚洲成人av在线免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近视频中文字幕2019在线8| 久久精品国产99精品国产亚洲性色| 中文字幕av成人在线电影| 日本一二三区视频观看| 色5月婷婷丁香| 色综合亚洲欧美另类图片| 午夜精品在线福利| 成人一区二区视频在线观看| 免费看光身美女| 国产精品久久久久久精品电影| 六月丁香七月| 亚洲av中文字字幕乱码综合| 99久久中文字幕三级久久日本| 国产精品一区www在线观看| 在线观看66精品国产| 久久99热这里只频精品6学生 | 长腿黑丝高跟| 女的被弄到高潮叫床怎么办| 欧美日韩综合久久久久久| 色吧在线观看| 九九爱精品视频在线观看| 亚洲欧美精品自产自拍| 丰满乱子伦码专区| 免费人成在线观看视频色| 黑人高潮一二区| 国产av一区在线观看免费| 久久久久久九九精品二区国产| 一区二区三区乱码不卡18| 一级爰片在线观看| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久精品电影小说 | 97在线视频观看| 国产大屁股一区二区在线视频| 波多野结衣高清无吗| 日韩av在线大香蕉| www.av在线官网国产| 久久人人爽人人爽人人片va| 亚洲四区av| 色网站视频免费| 一边亲一边摸免费视频| 精品人妻熟女av久视频| 两个人的视频大全免费| 久久6这里有精品| 久久鲁丝午夜福利片| 国产亚洲午夜精品一区二区久久 | 中文字幕制服av| 两个人的视频大全免费| 国产在视频线精品| 国产又色又爽无遮挡免| 精品一区二区免费观看| av在线老鸭窝| 亚洲18禁久久av| 亚洲欧美精品综合久久99| 久久精品熟女亚洲av麻豆精品 | 午夜激情欧美在线| 亚洲三级黄色毛片| 午夜福利高清视频| 男女边吃奶边做爰视频| 天堂影院成人在线观看| 国产精品,欧美在线| 麻豆乱淫一区二区| 插逼视频在线观看| 国产亚洲精品久久久com| 亚洲国产高清在线一区二区三| 日本猛色少妇xxxxx猛交久久| 女的被弄到高潮叫床怎么办| 在线观看一区二区三区| 国产成人aa在线观看| 又粗又爽又猛毛片免费看| 国产成人aa在线观看| 三级男女做爰猛烈吃奶摸视频| 男人舔奶头视频| 男插女下体视频免费在线播放| av在线蜜桃| 亚洲婷婷狠狠爱综合网| 欧美人与善性xxx| 91精品伊人久久大香线蕉| 看片在线看免费视频|