• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ab initio calculations of structural evolution and conductance of binary compound GaN chain on gold leads

    2020-05-15 10:59:44JIAXiaoMUYiCHANGJingZHANGTianZHOUXiaoLin

    JIA Xiao, MU Yi, CHANG Jing, ZHANG Tian, ZHOU Xiao-Lin

    (College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China)

    Abstract: By performing Ab inito density functional theory plus the non-equilibrium Green’s function method, we investigate the electron transport properties of binary GaN molecular chain sandwiched between the Au electrodes for the first time.We simulate the Au-(GaN)2-Au junctions breaking process, calculate the corresponding cohesion energy, obtain the equilibrium conductance and the projected density of states of junctions in the optimal position.In additional, both the current and conductance of junctions at the optimal position are computed under small bias.It is found that, with the increase of the bias voltage, the conductance of the GaN molecular chain always decreases.The I-V curve displays a non-linear relationship, indicating that the junctions have a semiconductor-like characteristic.

    Key words: Density functional theory; Non-equilibrium Green’s function; Electron transport properties; Projected density of states; I-V curve

    1 Introduction

    As we known, the energy spectrum of the molecule is quantized.Most of these materials show unusual results as soon as the diameters of the contacts are reduced.Due to the quantum nature of the electrons, the transport properties are determined by quantum effect.Using techniques such as scanning tunneling microcopy, mechanically controllable break junctions formed by mechanical strain, or electromigration, the transport properties of nanosized junctions were intensively studied.These techniques allow for forming atomic-sized contacts or for trapping molecules.The study of transport trough single-atomic contacts[1-3]and molecules[4-6]are of great fundamental interest since they might be applicable in future electronic and energy-conversion devices based on electron transfer, shot noise, heat transport, negative differential resistance, and gate-controlled effects[6-16].

    Molecular chains have received intensive investigations both theoretically and experimentally.In experiment,Lafferentzetal[5], measured the conductance and mechanical characteristics of a single polyfluoreme wire by pulling it up from an Au (1 1 1) surface with the tip of a scanning tunneling.In theoretical, Maslyuketal[4], using theabinitionon-equilibrium Green’s-function formalism, investigated the transport properties of the organometallic vanadium-benzene molecules sandwiched between magnetic Co (1 0 0) electrodes, and found that the zero bias conductance of the majority electrons is small and decays exponentially with increasing length of the molecule, and the minority electrons are responsible for the oscillatory character of the transmission.Such results are very similar to the even-odd oscillation in metallic junctions[17].There is intense interest in the development of semiconductor nanowire device structures[18,19], especially for Group III nitride.Group Ⅲ nitride semiconductors own generally large direct electronic band gap, and high chemical stability and excellent physical properties, including high saturated electron drift velocity, high breakdown voltage, high heat conductivity and so on.These superior performances inspire people to examining the transport properties of Group III nitride based nanowires for possible application in low-power and high-density field-effect transistors (FETs), solar cells, terahertz emitters, and detectors.Hence, in this paper, we will investigate the transport properties, and examine the conductance of the binary compound GaN molecular chains attached to Au leads using the density functional theory combined with the non-equilibrium Green’s function method.The rest of the paper is organized as follows: The theoretical methods and the computational details are given in Section 2.Some results and discussion are presented in Section 3.Finally, the summary of our main results is given in Section 4.

    2 Theoretical mode and calculation details

    Our theoretical investigations for the electronic transport properties of the system are based on theabinitiodensity functional theory (DFT) as implemented in the Siesta code[20]and the non-equilibrium Green’s function (NEGF) approach realized in the Smeagol[21-23].The structural model for our theoretical analysis is illustrated in Fig.1.In this two-probe system, a GaN molecular chain couples with two atomic scale Au (1 0 0) electrodes which extend to reservoirs at ± ∞ where the current is collected.Two Au atomic layers have been chosen for the electrode cell in thezdirection, and a large enough vacuum layer is included in the electrode cell in thexandydirection so that the device has no interaction with its mirror images.In the central scattering region, the GaN molecular chain couples with seven atomic layers to the left electrode and with six atomic layers to the right electrode.These atomic layers in the central scattering region are large enough[24]so that the perturbation effect from the scattering region is screened and they are denoted as surface-atomic layers.

    Fig.1 Model used for the calculation of the GaN chain connecting (1 0 0) oriented fcc Au leads.

    This simulation procedure of such two-probe systems can be described briefly as follows: Firstly, the electronic structure of two electrodes is calculated only once by Smeagol to get a self-consistent potential.This potential will be shifted rigidly relative to each other by the external potential bias and provided the natural real space boundary conditions for the Kohn-Sham (KS) effective potential of the central scattering region.Then from the Green’s function of the central scattering region, we can obtain the density matrix and thereby the electron density.Once the electron density is known, the DFT Hamiltonian matrix, which is used to evaluate the Green’s function, can be computed using the above boundary conditions by means of standard methods.The central quantity of the method is the retarded Green’s function of the entire system, which is defined by direct inversion of the equation:

    (ε+S-H)GR(E)=I,

    (1)

    ε+=limδ→0+E+iδ,

    (2)

    whereHis the Hamiltonian matrix,Sis the corresponding overlap matrix,Iis an infinite-dimensional identity matrix, andEis the energy.Because the interaction of the GaN molecular chain with electrodes can be incorporated into the self-energy ΣL/R(E).we can focus our attention on the calculation of the retarded Green’s function of the scattering region

    (3)

    More calculation details on how this procedure is performed in Smeagol can be found in theliterature[23, 25].To calculate the most stable structure of the Au-(GaN)2-Au contacts, we perform geometry relaxation by keeping all gold atoms in the leads fixed and relaxing the apexes of the point contact in the center until the force on each atom is smaller than 0.1 eV/ ? in the optimization[26].The ground state energy is therefore calculated as a function of the distancedzbetween the outer slices, i.e.we simulate a junction breaking process.The experimental lattice constant of gold, a=4.078 ?, is used for the electrodes[27].

    In our calculations, we use the Perdew-Zunger form[28]of the local-density approximation to the exchange-correlation functional.Nonlocal scalar-relativistic Troullier-Martins pseudo-potentials are generated from the configurations: Au (5d106s1), Ga (4s24p1) and N (2s22p3).A single-zeta is used as the basis set for Au, whereas a double-zeta basis is adopted for the orbitals of the other species (Ga and N).A periodic boundary condition is applied in the basal plane (orthogonal to the transport direction) with four irreducible k-points in the two-dimensional Brillouin zone.The Brillouin zone is set to be 2×2×100 points following the Monkhorst-Pack k-point scheme[29].The cut-off energy and iterated convergence criterion for total energy are set to 200 Rydberg and 10-4, respectively.Furthermore, the charge density is integrated over 50 energy points along the semi-circle, 20 energy points along the line in the complex plane and 20 poles are used for the Fermi distribution.

    3 Results and discussion

    As we known, it is difficult to precisely measure and control the separation between the tip and the surface in STMexperiments[30]or the molecule-metal separation in the mechanically controllable break-junction (MCB) experiments.Especially in the MCB experiments, the molecule is probably lengthened or compressed from the metal and may not locate in its equilibrium position[31].Hence, in order to calculate the most stable structures for the GaN molecular chain attached to leads in different distances, we calculate the cohesion energy as a function ofdzduring the simulation process.The cohesion energy is defined as follows: △E=E(Au electrodes + GaN molecular chain) -E(GaN molecular chain)-E(Au electrodes).The calculated results are shown in Fig.2 (marked in solid pink squares and right-hand side axis).

    Fig.2 Conductance (pink squares and left-hand side axis) and the cohesion energy (blue squares and right-hand side axis) as a function of distance dz.

    we can find that after relaxation, all the Au-(GaN)2-Au junctions remain straight, i.e.the GaN molecules align perfectly.From this figure we can see that, there is an obvious parabola in the curve of the total energy as a function ofdzfor the GaN molecular chain.The distancedz,eqcorresponding to those energy minima describes the equilibrium position, which is the system that will naturally form if the electrodes are free to relax.It can be found that, in the range from 16.8 ? to 18.8 ?, there is a minimum value of the cohesion energy.The minimum energy in the curve is located at the equilibrium distance,dz,eq= 17.6 ?.When the junctions are the optimal equilibrium position, the Ga-N bond-length is 1.871 ?, which is well consistent with other theoretical results[32-34].Additionally, during the simulations, we calculate the conductance as a function of distancedz, which is shown in Fig.2 (marked in solid blue squares and left-hand side axis).This conductanceGassociated to the two-probe device can be calculated by using Fisher-Lee’s relation[35]

    (4)

    where the ГL/Ris the anti-Hermitian part of the self-energy,eis the electron charge, andhis the Planck’s constant.T(E) is the simple energy-dependent total transmission coefficient of standard scattering theory[36].We can clearly find that the conductance changes significantly with thedz, demonstrating that the conductance of junction is sensitive to the variation of the two-contact distance and anchoring geometries, in other words, high sensitivity of the conductance to the local atomic re-arrangement of the contact region[37].For more details, the conductance changes from 0.93G0(G0= 2e2/his the conductance quantum) atdz~ 16.8 ? to 0.36G0atdz~ 18.8 ? with the junctions stretched, and then atdz= 19.2 ?, its conductance jumps abruptly to 0, where is the N-Au bond breaks point.From the Fig.2, we can see that, when the distancedzis larger than the value of 19.2 ?, almost no electron can tunnel from one electrode to the other.Additionally, it can be found that the equilibrium conductance of the GaN chain is 0.85G0which is not the largest in the range of 16.8 ? to 20.8 ?.In fact, the conductance value is the direct consequence of the small energy difference between the electrodes’ Fermi energyEFand the molecular orbital which dominates HOMO or LUMO.Because the Kohn-Sham orbitals are mathematical objects rather than true molecular orbitals, their energies should be shifted, the calculated value of conductance may be larger than the experimental value.Some previous studies on single-molecule junctions in a solvent, considered the energy offset of the dominant molecular orbital relative to the electrode Fermi level, which obtained very meaningful results[38,39].Unfortunately, there is no experimental value of conductance of the GaN molecular chain to compare.But we expect that our theoretical prediction might be useful in further experiments and theories.

    To further understand the conductance of the junctions, we analyze the transmission spectrumT(E,V=0) (See Fig.3), and the projected density of states (PDOS) (See Fig.4) of the GaN molecular chain at the optimal position.EFof Au is located at a peak in the transmission function.Thus,T(EF;0) is dominated by a resonance corresponding to the energy of the highest occupied molecular orbital (HOMO),εHOMO.This provides a large conductance, so the Au-(GaN)2-Au junctions have large transmission.By observing the Fig.4, we can find that the transport channel is mainly formed by thepxandpyorbital electrons of Ga and N atoms, with an almost negligible contributions from theirpzorbital electrons.

    Fig.3 Transmission coefficient as a function of energy at the equilibrium position.

    Fig.4 The PDOS for the GaN chain at the equilibrium position.

    The current is self-consistently calculated within the non-equilibrium Green’s function approach with the voltage-dependentLandauer formula[40]

    (5)

    f(E-μL,R)=1/{exp[(E-μL,R)/kBT]+1},

    (6)

    wherefis the Fermi-Dirac distribution function of two electrodes withμL/R, the chemical potential for the left/right electrode.The results of relationship between current and bias voltage are shown in Fig.5 (circles and right-hand axis).We can easily see that the conductance (dI/dV) is larger for V < 0 than that for V > 0.This asymmetric shape is rationalized for the configuration, which can be due to an asymmetry in either the leads or in its couplings to the molecule, and the latter factor can be due to an intrinsic property of the molecule.Overall, theI-Vcurve displays a non-linear relationship, indicating that the junctions have a semiconductor-like characteristic.In order to achieve a qualitative understanding of the underling physics, it is useful to calculate the transmission coefficients as a function of the energy for different biases and configurations, because the current through the system is proportional to the integral of the transmission coefficients in the energy window (EF-eV/2,EF+ eV/2).The transmission spectrum ofT(E) is shown in Fig.3, under the bias of 0 V, 0.3 V, 0.6 V, 0.9 V.We can observe a significant drift of the HOMO resonance to lower energies as the bias increases.Such a drift of the HOMO makes the HOMO away from the Au Fermi level.Additionally, we can find, in the low bias zone (|V|< 0.3 eV), the transmission peak does not leave the energy window, and therefore the conductance remains relatively large which can be found in Fig.5 (squares and left-hand axis).However, when the external bias |V|> 0.3 eV, the HOMO drifts away from the Fermi energy, thus the conductance becomes small.

    Fig.5 The conductance (squares and left-hand side axis) and the current (circles and right-hand axis) as a function of the bias.

    4 Conclusions

    To summarized, we have systematically investigated the transport properties of the GaN molecular chain sandwiched between two semi-infinite Au (1 0 0) metal electrodes by usingabinitodensity functional theory plus the non-equilibrium Green’s function method.We simulate the Au-(GaN)2-Au junctions breaking process and calculate the corresponding cohesion energy.The obtained conductance of the GaN molecular chain at the optimal position is 0.85G0.The transport channel is mainly formed by thepxandpyelectron orbitals of Ga and N atoms.Additionally, we also calculate the conductance and the current of the junctions at the equilibrium position under small voltage.It is found that: Firstly, with the increase of the bias voltage, the conductance of the GaN molecular chain always decreases; secondly, the shape of theI-Vcurve is asymmetric.Such behavior shows that the (GaN)2junctions have the characteristic of the semiconductor-like junction.It is expected that these results are useful in understanding the electronic transmission mechanism of GaN molecule and designing the GaN naoscale wires.

    激情在线观看视频在线高清| 欧美另类亚洲清纯唯美| 亚洲av第一区精品v没综合| 久久精品国产自在天天线| 日韩国内少妇激情av| 夜夜夜夜夜久久久久| 欧美zozozo另类| 草草在线视频免费看| 99热只有精品国产| 国产高清视频在线观看网站| av中文乱码字幕在线| 又爽又黄无遮挡网站| 亚洲欧美日韩卡通动漫| 露出奶头的视频| 久久精品国产清高在天天线| 九九热线精品视视频播放| 男插女下体视频免费在线播放| 黄色片一级片一级黄色片| 99久国产av精品| 久久久久性生活片| 亚洲av熟女| 香蕉av资源在线| 欧美又色又爽又黄视频| 在线十欧美十亚洲十日本专区| 亚洲最大成人中文| 小说图片视频综合网站| 亚洲精品一卡2卡三卡4卡5卡| 久久人妻av系列| 亚洲aⅴ乱码一区二区在线播放| 亚洲,欧美精品.| 亚洲真实伦在线观看| 精品人妻1区二区| 最好的美女福利视频网| 黑人欧美特级aaaaaa片| 在线观看免费午夜福利视频| 久久久久久久精品吃奶| 久久久久久国产a免费观看| 亚洲av免费在线观看| 国产精品一区二区三区四区久久| 麻豆成人av在线观看| 国产成人a区在线观看| 色av中文字幕| 99在线视频只有这里精品首页| 中文字幕av在线有码专区| 老司机在亚洲福利影院| 婷婷六月久久综合丁香| 母亲3免费完整高清在线观看| 国产69精品久久久久777片| 亚洲av中文字字幕乱码综合| 日韩人妻高清精品专区| 国产免费av片在线观看野外av| 亚洲精品色激情综合| 免费高清视频大片| 色综合亚洲欧美另类图片| 久久人人精品亚洲av| 国产老妇女一区| 亚洲欧美日韩东京热| 天天一区二区日本电影三级| 亚洲在线观看片| 国产亚洲精品一区二区www| 大型黄色视频在线免费观看| 久久久久久大精品| 两个人视频免费观看高清| 一夜夜www| 88av欧美| 亚洲18禁久久av| 国产一区在线观看成人免费| 欧美又色又爽又黄视频| 国产三级在线视频| 国产主播在线观看一区二区| 黄色女人牲交| 日韩精品青青久久久久久| 国产99白浆流出| 在线观看66精品国产| 精品不卡国产一区二区三区| 亚洲av中文字字幕乱码综合| 一区二区三区激情视频| 国产一区二区在线av高清观看| 男人和女人高潮做爰伦理| 精品午夜福利视频在线观看一区| 99久久综合精品五月天人人| 女人被狂操c到高潮| 一进一出抽搐动态| 在线观看免费午夜福利视频| 女警被强在线播放| 精品无人区乱码1区二区| 特大巨黑吊av在线直播| 欧美黄色淫秽网站| 内地一区二区视频在线| 国产激情偷乱视频一区二区| 网址你懂的国产日韩在线| 老熟妇乱子伦视频在线观看| 成人鲁丝片一二三区免费| 午夜福利视频1000在线观看| 99在线视频只有这里精品首页| 欧美乱妇无乱码| 国产淫片久久久久久久久 | 亚洲人成网站在线播| 亚洲国产中文字幕在线视频| 看免费av毛片| 国产在线精品亚洲第一网站| 狂野欧美激情性xxxx| 美女 人体艺术 gogo| 国产淫片久久久久久久久 | 国产成人系列免费观看| 12—13女人毛片做爰片一| 久久精品亚洲精品国产色婷小说| 色综合欧美亚洲国产小说| aaaaa片日本免费| 欧美色欧美亚洲另类二区| 欧美国产日韩亚洲一区| 淫妇啪啪啪对白视频| 欧美成人免费av一区二区三区| 亚洲精华国产精华精| 丝袜美腿在线中文| 麻豆国产97在线/欧美| 欧美乱妇无乱码| 黄色丝袜av网址大全| av专区在线播放| 脱女人内裤的视频| 色综合欧美亚洲国产小说| 亚洲人成电影免费在线| 国产97色在线日韩免费| 老司机福利观看| 欧美另类亚洲清纯唯美| 精品一区二区三区av网在线观看| 中文字幕av在线有码专区| 亚洲一区二区三区不卡视频| 国产精品1区2区在线观看.| 日韩欧美在线乱码| 国产亚洲精品综合一区在线观看| 啦啦啦韩国在线观看视频| 18+在线观看网站| 婷婷亚洲欧美| 欧美+日韩+精品| 久久久久国产精品人妻aⅴ院| 久久精品91蜜桃| 亚洲成人久久性| 亚洲专区中文字幕在线| 国产99白浆流出| 老汉色∧v一级毛片| av中文乱码字幕在线| 亚洲性夜色夜夜综合| 在线十欧美十亚洲十日本专区| 欧美日韩精品网址| 欧美日韩瑟瑟在线播放| 人人妻人人看人人澡| 中文资源天堂在线| 久久久久免费精品人妻一区二区| 国产精品亚洲美女久久久| 91久久精品电影网| 免费电影在线观看免费观看| 九九热线精品视视频播放| 久久久久久国产a免费观看| 少妇的逼好多水| 床上黄色一级片| 女生性感内裤真人,穿戴方法视频| 观看美女的网站| 久久久国产成人免费| 少妇的丰满在线观看| 国产中年淑女户外野战色| 一卡2卡三卡四卡精品乱码亚洲| 蜜桃亚洲精品一区二区三区| www.熟女人妻精品国产| 日韩欧美在线乱码| 午夜福利在线观看免费完整高清在 | 免费在线观看亚洲国产| 别揉我奶头~嗯~啊~动态视频| 亚洲av电影不卡..在线观看| 欧美激情久久久久久爽电影| 日本五十路高清| 18禁黄网站禁片免费观看直播| 波多野结衣高清无吗| 日本与韩国留学比较| 精品国产三级普通话版| 国产一区二区亚洲精品在线观看| 欧美性猛交╳xxx乱大交人| 亚洲五月天丁香| 国产精品久久久久久久久免 | 亚洲无线观看免费| 国产精品1区2区在线观看.| 12—13女人毛片做爰片一| 婷婷精品国产亚洲av| 麻豆成人av在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲中文字幕日韩| 午夜影院日韩av| 少妇人妻一区二区三区视频| 亚洲国产精品sss在线观看| 日本 av在线| 国产老妇女一区| 99国产精品一区二区三区| 波野结衣二区三区在线 | 亚洲 国产 在线| www.色视频.com| 精品免费久久久久久久清纯| 淫秽高清视频在线观看| 精品久久久久久久毛片微露脸| 中文字幕熟女人妻在线| 91在线精品国自产拍蜜月 | 又黄又粗又硬又大视频| 成人av一区二区三区在线看| 亚洲美女黄片视频| 在线视频色国产色| 美女大奶头视频| 久久久久久久久大av| 国产一区二区激情短视频| 午夜福利视频1000在线观看| 99久久成人亚洲精品观看| 欧美绝顶高潮抽搐喷水| 无限看片的www在线观看| 国产精品亚洲一级av第二区| 人妻夜夜爽99麻豆av| 3wmmmm亚洲av在线观看| 丰满乱子伦码专区| 少妇人妻精品综合一区二区 | 亚洲精品乱码久久久v下载方式 | 亚洲精品亚洲一区二区| 欧美黄色片欧美黄色片| 夜夜爽天天搞| 亚洲欧美激情综合另类| 亚洲av不卡在线观看| 两个人看的免费小视频| a级一级毛片免费在线观看| 一个人看视频在线观看www免费 | 日韩欧美三级三区| 亚洲成人久久爱视频| 少妇的逼水好多| 久久久久久九九精品二区国产| 国产免费av片在线观看野外av| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲av香蕉五月| 热99在线观看视频| 精品久久久久久久毛片微露脸| 成人性生交大片免费视频hd| 中文字幕人妻熟人妻熟丝袜美 | 精品不卡国产一区二区三区| 亚洲精品日韩av片在线观看 | 欧美+日韩+精品| 国产私拍福利视频在线观看| 在线观看免费午夜福利视频| 18美女黄网站色大片免费观看| 欧美黄色片欧美黄色片| 国产一区二区在线av高清观看| av在线天堂中文字幕| 久久天躁狠狠躁夜夜2o2o| 三级毛片av免费| 观看免费一级毛片| 国产高清视频在线播放一区| 乱人视频在线观看| 少妇的丰满在线观看| 欧美日本视频| 好看av亚洲va欧美ⅴa在| 免费无遮挡裸体视频| 亚洲 欧美 日韩 在线 免费| 亚洲成人中文字幕在线播放| 亚洲狠狠婷婷综合久久图片| 亚洲最大成人手机在线| 天堂影院成人在线观看| 久久国产乱子伦精品免费另类| 欧美成人a在线观看| 国产av麻豆久久久久久久| 一区福利在线观看| 日本一二三区视频观看| 级片在线观看| 日日夜夜操网爽| 亚洲一区二区三区不卡视频| 国产精品98久久久久久宅男小说| 日韩欧美国产一区二区入口| 色吧在线观看| av视频在线观看入口| 九色国产91popny在线| av天堂在线播放| 日日干狠狠操夜夜爽| 亚洲av免费高清在线观看| 日本在线视频免费播放| 日韩大尺度精品在线看网址| 欧美精品啪啪一区二区三区| 午夜免费成人在线视频| 乱人视频在线观看| 国内精品久久久久久久电影| 中文字幕av在线有码专区| eeuss影院久久| 非洲黑人性xxxx精品又粗又长| 亚洲电影在线观看av| 亚洲七黄色美女视频| 国产色婷婷99| 久久精品夜夜夜夜夜久久蜜豆| 久久久久国内视频| 精品久久久久久久久久免费视频| 午夜日韩欧美国产| 在线观看舔阴道视频| 老熟妇仑乱视频hdxx| 欧美激情在线99| 日日夜夜操网爽| 日韩成人在线观看一区二区三区| 99国产精品一区二区蜜桃av| 欧美丝袜亚洲另类 | 波多野结衣巨乳人妻| 国产精品一区二区三区四区免费观看 | 精品国产三级普通话版| 一本久久中文字幕| 少妇的逼水好多| 精华霜和精华液先用哪个| АⅤ资源中文在线天堂| 欧美在线一区亚洲| 成年女人毛片免费观看观看9| 免费看光身美女| 午夜福利欧美成人| 免费搜索国产男女视频| 天堂影院成人在线观看| 在线视频色国产色| 日韩亚洲欧美综合| 国产亚洲精品一区二区www| eeuss影院久久| 一个人免费在线观看的高清视频| 久久天躁狠狠躁夜夜2o2o| 欧美丝袜亚洲另类 | 国内精品一区二区在线观看| 看免费av毛片| 不卡一级毛片| 午夜福利高清视频| 十八禁网站免费在线| 精品无人区乱码1区二区| 可以在线观看毛片的网站| 老汉色∧v一级毛片| 精品久久久久久,| 99国产精品一区二区蜜桃av| 日本一二三区视频观看| 精品一区二区三区视频在线 | 最近最新中文字幕大全电影3| 国产一级毛片七仙女欲春2| 亚洲真实伦在线观看| 极品教师在线免费播放| 舔av片在线| 美女cb高潮喷水在线观看| av黄色大香蕉| 一本综合久久免费| 成人国产综合亚洲| 亚洲,欧美精品.| 欧美在线一区亚洲| 国产av一区在线观看免费| 特级一级黄色大片| 两个人的视频大全免费| 露出奶头的视频| 成人性生交大片免费视频hd| 9191精品国产免费久久| 日本免费a在线| 69av精品久久久久久| 成年人黄色毛片网站| 99热精品在线国产| 亚洲va日本ⅴa欧美va伊人久久| 成人三级黄色视频| 欧美一区二区国产精品久久精品| 国产精品爽爽va在线观看网站| 亚洲avbb在线观看| 欧美不卡视频在线免费观看| 十八禁网站免费在线| 成年人黄色毛片网站| 人妻丰满熟妇av一区二区三区| 中文字幕久久专区| 亚洲va日本ⅴa欧美va伊人久久| 无限看片的www在线观看| 精品电影一区二区在线| 97超视频在线观看视频| 亚洲欧美日韩高清专用| 精品久久久久久久久久免费视频| 亚洲中文字幕一区二区三区有码在线看| 久久久久九九精品影院| 中文字幕高清在线视频| 国产三级在线视频| 偷拍熟女少妇极品色| 特大巨黑吊av在线直播| 亚洲人成网站高清观看| 看黄色毛片网站| 国产高潮美女av| 色噜噜av男人的天堂激情| 国产精品av视频在线免费观看| 黄色片一级片一级黄色片| 欧美乱色亚洲激情| 国产蜜桃级精品一区二区三区| 亚洲av电影在线进入| 亚洲欧美一区二区三区黑人| 成年女人毛片免费观看观看9| 黑人欧美特级aaaaaa片| 日韩精品中文字幕看吧| 一进一出好大好爽视频| 91久久精品国产一区二区成人 | 久久久国产精品麻豆| 校园春色视频在线观看| 国产精品综合久久久久久久免费| 日本 av在线| 免费人成视频x8x8入口观看| 少妇的丰满在线观看| 国产精品亚洲一级av第二区| 国产成人系列免费观看| 国产私拍福利视频在线观看| 亚洲欧美日韩高清专用| 日本一本二区三区精品| 久久精品人妻少妇| 97人妻精品一区二区三区麻豆| 久久精品人妻少妇| 国产高清有码在线观看视频| 真人做人爱边吃奶动态| 亚洲av成人av| 精品久久久久久久末码| 午夜精品久久久久久毛片777| 很黄的视频免费| 18禁黄网站禁片午夜丰满| www.熟女人妻精品国产| 每晚都被弄得嗷嗷叫到高潮| 精品乱码久久久久久99久播| 免费搜索国产男女视频| 成人一区二区视频在线观看| 神马国产精品三级电影在线观看| 三级毛片av免费| 国产精品久久久久久久电影 | 午夜久久久久精精品| 亚洲精品日韩av片在线观看 | 国产精品98久久久久久宅男小说| 男人舔女人下体高潮全视频| 黄色视频,在线免费观看| 无人区码免费观看不卡| 欧美大码av| 免费观看精品视频网站| 国产高清视频在线观看网站| 最新在线观看一区二区三区| eeuss影院久久| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 国产精品 欧美亚洲| 三级国产精品欧美在线观看| 欧美在线一区亚洲| 蜜桃久久精品国产亚洲av| 一区二区三区国产精品乱码| 亚洲 欧美 日韩 在线 免费| 国产伦精品一区二区三区视频9 | 国产一区二区三区视频了| 欧美日韩乱码在线| a级一级毛片免费在线观看| 九九热线精品视视频播放| 久久精品影院6| 黄色丝袜av网址大全| 97碰自拍视频| 欧美一级毛片孕妇| 久久99热这里只有精品18| 老司机午夜十八禁免费视频| 免费在线观看影片大全网站| 亚洲av电影在线进入| www.熟女人妻精品国产| 麻豆久久精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 叶爱在线成人免费视频播放| 亚洲av免费高清在线观看| 久久精品国产综合久久久| 精品人妻偷拍中文字幕| 舔av片在线| www.熟女人妻精品国产| 女同久久另类99精品国产91| www.999成人在线观看| 欧美日韩亚洲国产一区二区在线观看| 51国产日韩欧美| 久久久久久久久中文| 国产精品久久久久久精品电影| 久久久久久久午夜电影| xxxwww97欧美| 老熟妇乱子伦视频在线观看| 男女午夜视频在线观看| 天美传媒精品一区二区| 国产 一区 欧美 日韩| 成年女人看的毛片在线观看| 免费高清视频大片| 欧美中文综合在线视频| 国产精品综合久久久久久久免费| 香蕉丝袜av| 欧美一级毛片孕妇| 在线国产一区二区在线| av国产免费在线观看| 丝袜美腿在线中文| 中文字幕久久专区| 亚洲专区中文字幕在线| av视频在线观看入口| 天天一区二区日本电影三级| 久久国产乱子伦精品免费另类| а√天堂www在线а√下载| 欧美一级毛片孕妇| 91九色精品人成在线观看| 他把我摸到了高潮在线观看| 色综合亚洲欧美另类图片| 欧美激情在线99| 天天躁日日操中文字幕| 日日夜夜操网爽| 99国产极品粉嫩在线观看| 黄片大片在线免费观看| 99热精品在线国产| 国产成人系列免费观看| а√天堂www在线а√下载| 精品久久久久久成人av| 搞女人的毛片| 一区福利在线观看| 国产中年淑女户外野战色| 日韩欧美在线乱码| 90打野战视频偷拍视频| 色老头精品视频在线观看| 亚洲五月天丁香| 免费av观看视频| 日本免费一区二区三区高清不卡| 天天添夜夜摸| 18禁黄网站禁片午夜丰满| 日本熟妇午夜| 亚洲乱码一区二区免费版| 变态另类丝袜制服| 亚洲久久久久久中文字幕| 精品一区二区三区视频在线观看免费| 日本一二三区视频观看| 757午夜福利合集在线观看| 欧美性猛交╳xxx乱大交人| 人妻久久中文字幕网| 波野结衣二区三区在线 | 亚洲国产精品999在线| 91久久精品国产一区二区成人 | 国产成+人综合+亚洲专区| 搡老岳熟女国产| 欧美乱妇无乱码| 男女午夜视频在线观看| 天堂影院成人在线观看| 国产高清激情床上av| 蜜桃久久精品国产亚洲av| 国产伦精品一区二区三区视频9 | 精品久久久久久久久久免费视频| 午夜影院日韩av| 亚洲国产中文字幕在线视频| 男女做爰动态图高潮gif福利片| 天堂av国产一区二区熟女人妻| 岛国在线免费视频观看| 精品不卡国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 欧美+亚洲+日韩+国产| 国产精品 欧美亚洲| 丰满乱子伦码专区| 免费av观看视频| 最后的刺客免费高清国语| 国语自产精品视频在线第100页| 熟女人妻精品中文字幕| 国产真人三级小视频在线观看| 午夜福利成人在线免费观看| 国产一区二区激情短视频| 中文在线观看免费www的网站| 乱人视频在线观看| 婷婷精品国产亚洲av| 超碰av人人做人人爽久久 | 免费av观看视频| 久久精品国产自在天天线| 性欧美人与动物交配| 日本黄色视频三级网站网址| 久久中文看片网| 国产单亲对白刺激| 久久精品91蜜桃| 十八禁人妻一区二区| 中文字幕高清在线视频| 久久久久久久久久黄片| 天天一区二区日本电影三级| 亚洲国产色片| 亚洲专区国产一区二区| 午夜福利视频1000在线观看| 熟妇人妻久久中文字幕3abv| 噜噜噜噜噜久久久久久91| 日本三级黄在线观看| 欧美日韩国产亚洲二区| 在线观看一区二区三区| 黄色片一级片一级黄色片| 每晚都被弄得嗷嗷叫到高潮| 亚洲狠狠婷婷综合久久图片| 女人被狂操c到高潮| 免费av毛片视频| 精品午夜福利视频在线观看一区| www日本黄色视频网| 亚洲成人久久爱视频| 嫩草影视91久久| 国产精品 国内视频| 国产乱人伦免费视频| 19禁男女啪啪无遮挡网站| 免费观看精品视频网站| 午夜福利欧美成人| 特大巨黑吊av在线直播| 免费在线观看影片大全网站| 亚洲欧美日韩卡通动漫| 婷婷精品国产亚洲av| 免费大片18禁| 亚洲国产精品合色在线| 国产高清有码在线观看视频| 中文字幕av在线有码专区| 淫秽高清视频在线观看| 中文字幕人妻熟人妻熟丝袜美 | h日本视频在线播放| 亚洲av熟女| 看免费av毛片| 国产野战对白在线观看| 18禁黄网站禁片午夜丰满| 亚洲精品在线美女| 亚洲国产色片| 色哟哟哟哟哟哟| 桃红色精品国产亚洲av| 网址你懂的国产日韩在线| 欧美黑人巨大hd| 久久久久免费精品人妻一区二区| 中文字幕熟女人妻在线| 成人欧美大片| 天天添夜夜摸| 一区二区三区国产精品乱码| 日韩欧美免费精品| 中文字幕av在线有码专区| 久久精品综合一区二区三区| 亚洲人成网站在线播| 久久99热这里只有精品18|