• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of different parameters on numerical simulation of vertical-axis marine current turbine based on OpenFOAM

    2020-05-13 10:27:38,*,,,,

    , *, , , ,

    (1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China; 2. Institute of Ocean Renewable Energy System, Harbin Engineering University, Harbin, Heilongjiang 150001, China; 3. College of Energy and Electrical Engineering, Hohai University, Nanjing, Jiangsu 211100, China)

    Abstract: Using the PimpleDyMFoam solver in open-source computing software OpenFOAM, based on the SST k-ω turbulence model and PIMPLE algorithm, a numerical simulation method of vertical-axis marine current turbines(VMCTs) is proposed, and the calculated results are compared with the experimental results. The results show that the numerical simulation method is feasible. Compared with other commercial softwares, this method has the advantages of higher solution efficiency and greater flexibility. According to the needs of users, the solver can be built on the basis of original code, and the corresponding discrete method can be optimized. This method can achieve optimization algorithms, save time and cost, etc. Secondly, the effects of different parameters (mesh density, time step, the selection of sidewall boundary conditions and inlet turbulence intensity) on numerical simulation of the VMCT are studied in detail. The findings summarize an effective CFD simulation strategy based on OpenFOAM and provide a valuable reference for future CFD simulations of VMCTs.

    Key words: numerical simulation;hydrodynamic characteristics;vertical-axis marine current turbine;OpenFOAM

    With the continuous exploitation of fossil fuels, environmental problems have become increasingly prominent. Renewable energy has become the focus of attention in the world. As a marine renewable energy source, tidal current energy is characterized by high energy density, strong predictability and stable load[1-2]. Therefore, scholars at home and abroad have paid much attention to it.

    With the rapid development of computer technology, CFD numerical simulation method has become an efficient and convenient research method. So far, the CFD method has helped to achieve more and more results in the study of marine current turbines(MCTs). NABAVI[3]used Fluent software to simulate the vertical-axis turbine and compared the results with experimental values; GEBRESLASSIE, et al[4]simulated a series of vertical-axis turbines by CFD method, and concluded that smaller longitudinal distance would cause a large loss of downstream turbine power; LI, et al[5]used CFX to study the effects of different influencing factors on the hydrodynamic performance of vertical-axis turbines; XU, et al[6]used CFX software to explore the hydrodynamic performance of horizontal-axis marine current turbines(HMCTs) under forced oscillation. MA, et al[7]studied the hydrodynamic performance of vertical-axis twin-rotor marine current turbine based on CFX. SUN, et al[8]explored the performance of vertical-axis marine current turbine(VMCT) considering the influence of angular velocity fluctuation.

    Firstly, a numerical simulation method of the VMCT based on OpenFOAM is proposed and verified. Secondly, the influence of different parameters (mesh density, time step, wall boundary condition selection and inlet turbulence intensity) on the accuracy of VMCTs numerical simulation is studied, which provides a reference and guidance for the future CFD simulation and research on VMCTs.

    1 Numerical simulation

    1.1 Coordinate system and parameter definition

    Double-blade VMCT is taken as the research object. Taking into account the similar characteristics of each section of the vertical-axis turbine blades in the extension direction, the three-dimensional problem of blade rotation around the spindle can be simplified into a two-dimensional problem[9].

    Fig.1 shows the global coordinate system of a double-blade VMCT. The angle between the vector dia-meter from the origin to the blade installation position and the positive direction of thex-axis isθ(position angle of the blade), and the counterclockwise direction is positive.

    Fig.1 Coordinate system of vertical-axis marine current turbine

    1.2 Computational domains and boundary conditions

    The calculation domain of a two-dimensional marine current turbine is shown in Fig.2. The whole calculation model is divided into two sub-domains, namely, the rectangular outer domain and the circular rotation domain containing the blades of the VMCT.

    Fig.2 Calculation domains of vertical-axis marine current turbine

    In the calculation example, the left-side boundary is set as the velocity inlet, and the velocity is constant. The right-side boundary is set as the pressure outlet and the relative pressure is 0. The upper and lower boundaries are set as the slip wall. The rotation domain and the rectangular domain are connected by a cyclic arbitrary mesh interface (AMI) boundary.

    1.3 Solvers and turbulence models

    The software used in this paper is OpenFOAM, an open-source CFD calculation software. The discrete method used is the finite volume method (FVM). On the basis of PISO-SIMPLE (PIMPLE) algorithm, the PimpleDyMFoam solver is selected to solve the transient solution of incompressible fluid Navier-Stokes equations[10].

    The SSTk-ωmodel is selected as the turbulence model in this numerical simulation. The two-equation model combines the characteristics of thek-εandk-ωmodels to accurately simulate the sudden stall pheno-menon, and the calculation time is relatively small, which has been widely used in the research of MCTs[11-13].

    2 Verification of numerical simula-tion methods

    Tab.1 Related parameters of Strickland′s vertical-axis marine current turbine model

    ParameterValueD/m1.22Z2C/m0.091 4H/m0.6φ/(°)0vA/(m·s-1)0.091C10.5

    The experiment was carried out in a towing tank with a width of 5 m and a depth of 1.25 m. The curve of the tangential force coefficient and the normal force coefficient of a single blade at the tip speed ratio of 5.0 are given in reference [14].

    The selected VMCT model is meshed, and the grid and time step are selected according to the nume-rical simulation of the vertical-axis turbine[14]. Structured grids with relatively good grid quality are selected and refined at each blade to improve the calculation accuracy. The model grids are shown in Fig. 3.

    Fig.3 Mesh configuration

    Fig.4 shows the comparison of the normal force coefficientCfnand the tangential force coefficientCftfor a single blade in the Strickland′s VMCT model at a tip speed ratio of 5.0. The trend of the curve between si-mulated and experimental values is approximately the same. The simulated value of normal force coefficient of the blade is in good agreement with the experimental value. The error mainly occurs between 180° and 360°, and the error of the blade tangential force coefficient mainly occurs near the 360° position angle. The simulation calculation method estimates the tangential force of the blade at a low level. Since this simulation method is a two-dimensional simulation without consi-dering the factors such as three-dimensional effects, experimental spokes, etc., there will inevitably be some errors between numerical simulation values and experimental values.

    Fig.4 Comparison between simulation and experiment results

    In summary, the difference between the simula-tion results and the experimental results is acceptable. It has been proved that the OpenFOAM software is feasible in predicting the hydrodynamic performances of VMCTs.

    3 Influence of different parameters on vertical-axis marine current turbines

    3.1 Influence analysis of the mesh

    The mesh quality of the numerical model directly determines the accuracy of calculation and the length of simulation time. The fine mesh performs better in describing physical characteristics of the model, but the simulation time will also increase. Therefore, when selecting a mesh scheme, both time consumption and simulation accuracy should be considered. Taking a stand-alone VMCT as an example, three different levels of mesh models are analyzed and compared. The mesh specific information is given in Tab.2, whereZ1is the total mesh number;Z2is the rotation domain mesh number;tis the simulation time; Δhis the thickness of the first layer.

    Tab.2 Detailed mesh information

    In Tab.2, the bladey+is the dimensionless coefficient of the first layer of the grid scale measured in the numerical simulation. The thickness of the first layer of grid on the wall is usually within a suitable range (5

    (1)

    (2)

    (3)

    (4)

    whereρis fluid density;Lis a characteristic length;μis viscosity coefficient;Reis the Reynolds number;Cfis the friction coefficient;τwallis the wall tangential stress and Δhis the thickness of the first layer of grid on the wall.

    Fig.5 shows the variation trend of torque coeffi-cient of a stand-alone VMCT when the turbine rotates steadily under three different mesh schemes. It can be seen that the rough grid′sCqcurve differs greatly from the other two curves when it is between 150° and 210°; the difference between the medium and fine gridCqcurves is small, and the two curves are nearly completely coincident. Therefore, it can be judged that the medium-level grid basically meets the grid indepen-dence requirements while the simulation time of the fine-level grid is about 2.2 times of that of the medium-level grid. In order to save computing time, the medium-level grid is selected in the following nume-rical simulation.

    Fig.5 Variation trend of torque coefficient of stand-alone vertical-axis marine current turbine with phase angle for three different meshes

    3.2 Influence analysis of the time step

    In the transient simulation, 0.005 0 s, 0.001 0 s and 0.000 5 s are separately selected as time steps to study their influences on numerical simulation results. Fig.6 shows the torque coefficient of a single blade when the turbine rotates for one circle in three time steps. It implies that when the time steps are 0.001 0 s and 0.000 5 s, the torque curves almost completely coincide. In the calculation example of 0.005 0 s time step, the blade torque coefficient curve is generally higher than that of the other two curves. Therefore, it can be inferred that the time step is 0.001 0 s, which basically meets the independence requirement. At the same time, the simulation time step is smaller while the simulation time is longer. The running time step of the 0.000 5 s in this verification example is about twice that of the 0.001 0 s example. Therefore, consi-dering the finiteness and time consumption of calcula-tion resources, it is suggested that 0.001 0 s is selected as the time step for the example in the future.

    Fig.6 Torque coefficient variation tendency under different time steps

    3.3 Influence analysis of the wall type

    At present, in the CFD study of VMCTs, there is neither uniform conclusion about the selection of wall types (slip wall, non-slip wall) nor reference distanceDwfrom the wall to the spindle center of the turbine in a two-dimensional simulation. Different standards are often recorded in different references. Therefore, in order to obtain a unified conclusion with reference value, the influence of wall type andDwvalue range on the hydrodynamic performances of VMCTs will be specifi-cally studied.

    Based on the above Strickland′s VMCT examples, the values ofDware 0.75D, 1.00D, 2.00D, 4.00D, 6.00D, and 8.00D, respectively (Dis the diameter of the turbine), and the wall types are slip wall and non-slip wall. The other parameters are unchanged (tip speed ratioλis 5.0), and the variation law of the torque coefficientCqand the turbine energy utilization coefficientCpof the turbine is compared and analyzed. The curve is shown in Fig.7. In the figure, it can be found that the turbine blades reach the maximum torque coefficient near the 180° position angle in each set of examples; the peak torque coefficient is significant and decreases with increasingDw. In addition, whenDwis less than 6.00D, the difference among the blade torque curves is larger and the blade torque coefficient increases as theDwvalue decreases; and whenDwis 6.00Dand 8.00D, the torque curve of the turbine blade almost completely coincides, which indicates that whenDwis not less than 6.00D, the sidewall boundary is far enough away from the turbine, that is, the effect of the sidewall on the hydrodynamic performance of the VMCT is negligible.

    Fig.7 Variation trend of torque coefficient of stand-alone vertical-axis marine current turbine

    Fig.8 Variation trend of the average energy efficiency coefficient of stand-alone vertical-axis marine current turbine

    From the perspective of the sidewall type, it can be seen that the core difference between the two types of sidewall surfaces (slip wall and non-slip wall) is that the slip wall surface only limits the normal velocity of the fluid to zero and has no limitation on the tangential velocity. The non-slip wall surface simultaneously limits the normal and tangential velocity of the fluid at the wall surface, that is, the flow velocity at the control wall surface is zero. The non-slipping wall surface is due to the presence of a viscous boundary layer at the wall surface, and there is no boundary layer in the slip wall example. It is worth noting that the thickness of the viscous boundary layer in this case is 0.1 m, which is negligible if compared with the calculation domain and the VMCT scale. It is relatively small, so the boundary layer has a small influence on the hydrodynamic performances of the VMCT. From the variation trend of average energy efficiency coefficient of the VMCT, it can also be found that the type of sidewall surface has almost no effect on the power characte-ristics of the VMCT.

    Therefore, in the transient numerical simulation of two-dimensional VMCTs, the sidewall surface can be arbitrarily selected from slip and non-slip types. Thus, the slip wall is selected as the sidewall surface type in the subsequent calculation examples.

    3.4 Influence analysis of the turbulence intensity

    The definition of turbulence intensityIis shown in Equation (5). Equation (6) can be used to estimate the inlet turbulence intensityIin a fully developed pipeline flow. In the CFD simulation, it is usually ne-cessary to pre-estimateIat the inlet, that is,

    (5)

    I=0.16Re-1/8,

    (6)

    whereux(uy,uz) is the component of the inlet flow velocity in thex(y,z) direction.

    Tab.3 The average energy utilization coefficient varying with different turbulence intensities

    I/%0.10.51.05.010.0Cp0.4660.4640.4630.4620.460

    Tab.3 implies that when the inlet turbulence intensity fluctuates in the range of 0.1%-10.0%, it has little effect on the average energy utilization coefficient of the VMCT. It is recommended that the inlet turbulence intensity be selected as 5.0% in the future numerical simu-lation of VMCTs.

    4 Conclusions

    Based on open-source CFD computing software OpenFOAM, a numerical simula-tion method for vertical-axis marine current turbines is proposed and verified, which lays the foundation for subsequent optimization of algorithms based on open-source codes and more efficient calculations. Finally, the influence of different mesh schemes, time steps, sidewall type and inlet turbulence intensity of CFD numerical simulation is analyzed, and some empirical conclusions are drawn as follows:

    1) Three different quality meshing schemes are proposed, and the optimal one is successfully obtained by comparison.

    2) By comparing the calculation results of different time steps, the optimal one for the calculation of the double-blade vertical-axis marine current turbine is obtained.

    3) Exploring the influence of the sidewall type on the hydrodynamic performance during the numerical simulation of the vertical-axis marine current turbines, it is concluded that the slip type and the non-slip type have less influence on the hydrodynamic performance of the two-dimensional case.

    4) The influence of inlet turbulence intensity on the hydrodynamic performance of the turbine is small, and it is recommended that the turbulence intensity at the entrance is taken as 5.0%.

    The above conclusions will serve as a very valua-ble reference for the future two- and three-dimensional CFD numerical simulations of VMCTs.

    5 Acknowledgement

    The authors would like to acknowledge the support of National Natural Science Foundation of China (Projects No. 11572094, No. 5171101175 and No. 51809083). In addition, the first author wants to acknowledge the CFD-China community for the fruitful OpenFOAM-related discussions. He also wants to thank his wife (Mrs. APP) for supporting his PhD work.

    国产成人a∨麻豆精品| videos熟女内射| 人人妻人人看人人澡| 夜夜看夜夜爽夜夜摸| 欧美日韩视频精品一区| 成人毛片a级毛片在线播放| 99热6这里只有精品| 熟女人妻精品中文字幕| 久久韩国三级中文字幕| 美女内射精品一级片tv| 成人无遮挡网站| 美女cb高潮喷水在线观看| 国模一区二区三区四区视频| 国语对白做爰xxxⅹ性视频网站| 97热精品久久久久久| 一本久久精品| 熟女人妻精品中文字幕| 99热这里只有是精品在线观看| 少妇 在线观看| 欧美丝袜亚洲另类| 久久精品国产亚洲网站| 超碰97精品在线观看| 国产精品国产三级国产专区5o| 又爽又黄a免费视频| 亚洲无线观看免费| 人妻夜夜爽99麻豆av| 美女国产视频在线观看| 亚洲四区av| 精品亚洲成a人片在线观看 | 91在线精品国自产拍蜜月| 天堂俺去俺来也www色官网| 日韩一区二区视频免费看| 国产熟女欧美一区二区| 最近最新中文字幕免费大全7| 少妇猛男粗大的猛烈进出视频| 男人狂女人下面高潮的视频| 亚洲在久久综合| 一区二区三区精品91| 激情五月婷婷亚洲| 免费看av在线观看网站| 少妇高潮的动态图| 亚洲怡红院男人天堂| 女人十人毛片免费观看3o分钟| 麻豆精品久久久久久蜜桃| 国产午夜精品一二区理论片| 1000部很黄的大片| 国产精品一及| 五月天丁香电影| 一级爰片在线观看| 国产乱人视频| 视频中文字幕在线观看| 内地一区二区视频在线| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美在线一区| 51国产日韩欧美| 久久婷婷青草| 午夜老司机福利剧场| 欧美极品一区二区三区四区| 黑丝袜美女国产一区| 亚洲欧洲国产日韩| 热99国产精品久久久久久7| 观看免费一级毛片| 99视频精品全部免费 在线| 一区二区av电影网| 高清欧美精品videossex| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 一边亲一边摸免费视频| 水蜜桃什么品种好| 亚洲性久久影院| 精品人妻视频免费看| 欧美一区二区亚洲| 内地一区二区视频在线| 全区人妻精品视频| 爱豆传媒免费全集在线观看| 在线免费观看不下载黄p国产| 80岁老熟妇乱子伦牲交| 两个人的视频大全免费| 在线观看国产h片| 国产精品国产三级国产专区5o| 欧美日本视频| 久久国产乱子免费精品| 亚洲婷婷狠狠爱综合网| 国产成人精品一,二区| 身体一侧抽搐| 我要看日韩黄色一级片| 久久久久久久大尺度免费视频| 成人高潮视频无遮挡免费网站| 日本午夜av视频| 久久6这里有精品| 中文字幕免费在线视频6| 国产成人精品福利久久| 亚州av有码| av女优亚洲男人天堂| h视频一区二区三区| 久久精品人妻少妇| 久久青草综合色| 中文字幕免费在线视频6| 国产精品一区二区在线观看99| 精品久久久久久电影网| 精品一区二区三区视频在线| 熟女av电影| 欧美日韩在线观看h| 最近中文字幕高清免费大全6| 特大巨黑吊av在线直播| 插逼视频在线观看| 夫妻午夜视频| av在线蜜桃| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 国产精品.久久久| 日本wwww免费看| 亚洲综合精品二区| 久久毛片免费看一区二区三区| 日日啪夜夜撸| 精品久久久久久久末码| av专区在线播放| 免费人妻精品一区二区三区视频| 91在线精品国自产拍蜜月| 亚洲精品乱码久久久v下载方式| 国产av精品麻豆| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美中文字幕日韩二区| 亚洲在久久综合| 国产精品av视频在线免费观看| 国产成人免费无遮挡视频| 精品亚洲成a人片在线观看 | 欧美 日韩 精品 国产| 国产精品.久久久| 十分钟在线观看高清视频www | 亚洲欧美一区二区三区国产| 大香蕉久久网| 2018国产大陆天天弄谢| 人妻系列 视频| 欧美人与善性xxx| 在线观看一区二区三区| 下体分泌物呈黄色| 日韩,欧美,国产一区二区三区| 国内揄拍国产精品人妻在线| 国产片特级美女逼逼视频| 18+在线观看网站| 婷婷色综合大香蕉| 亚洲欧美清纯卡通| 国产日韩欧美在线精品| 夜夜看夜夜爽夜夜摸| 两个人的视频大全免费| 麻豆精品久久久久久蜜桃| 久热久热在线精品观看| 国产午夜精品一二区理论片| 一级毛片黄色毛片免费观看视频| 在线观看一区二区三区| 最近中文字幕高清免费大全6| 熟女人妻精品中文字幕| 亚洲不卡免费看| 久久毛片免费看一区二区三区| 九九在线视频观看精品| 国产午夜精品久久久久久一区二区三区| 国产亚洲91精品色在线| av在线播放精品| 在线免费观看不下载黄p国产| 老师上课跳d突然被开到最大视频| 午夜视频国产福利| av.在线天堂| 少妇人妻一区二区三区视频| 男女边吃奶边做爰视频| 老熟女久久久| 国产黄色免费在线视频| 一级毛片我不卡| 欧美变态另类bdsm刘玥| 日本wwww免费看| 男人爽女人下面视频在线观看| 日日摸夜夜添夜夜添av毛片| 黑人高潮一二区| 免费在线观看成人毛片| 熟女电影av网| 青青草视频在线视频观看| 国产在线一区二区三区精| 欧美精品一区二区大全| 91久久精品国产一区二区成人| 最近最新中文字幕大全电影3| 午夜日本视频在线| 18禁裸乳无遮挡免费网站照片| 成人午夜精彩视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久精品久久久| av在线app专区| 国产伦在线观看视频一区| 欧美 日韩 精品 国产| 人人妻人人爽人人添夜夜欢视频 | 久久精品夜色国产| 欧美日韩国产mv在线观看视频 | 日韩不卡一区二区三区视频在线| 免费观看无遮挡的男女| 欧美极品一区二区三区四区| 国产在线免费精品| 一区二区av电影网| 国产老妇伦熟女老妇高清| 国产又色又爽无遮挡免| 国产极品天堂在线| 久久人人爽av亚洲精品天堂 | 久久国产乱子免费精品| 嫩草影院新地址| 亚洲av在线观看美女高潮| 色网站视频免费| 美女国产视频在线观看| 亚洲国产色片| 日韩欧美一区视频在线观看 | 欧美三级亚洲精品| xxx大片免费视频| 下体分泌物呈黄色| 久久久久久久亚洲中文字幕| 一个人看的www免费观看视频| 亚洲经典国产精华液单| 永久网站在线| 少妇人妻久久综合中文| 成人漫画全彩无遮挡| av在线播放精品| 成年免费大片在线观看| 亚洲丝袜综合中文字幕| 五月开心婷婷网| 亚洲av日韩在线播放| 十分钟在线观看高清视频www | 一边亲一边摸免费视频| 黄色视频在线播放观看不卡| 国产精品人妻久久久久久| 国产成人91sexporn| 99热这里只有是精品在线观看| 精品国产露脸久久av麻豆| 亚洲精品国产色婷婷电影| 国产在线一区二区三区精| 2022亚洲国产成人精品| 久久国内精品自在自线图片| 成人免费观看视频高清| 深爱激情五月婷婷| 青春草视频在线免费观看| 日韩中字成人| 在线免费观看不下载黄p国产| 欧美日韩综合久久久久久| 丰满迷人的少妇在线观看| 精品人妻一区二区三区麻豆| av免费观看日本| 熟女人妻精品中文字幕| 人体艺术视频欧美日本| 午夜免费鲁丝| 亚洲精品一二三| 一本色道久久久久久精品综合| 热re99久久精品国产66热6| 天堂中文最新版在线下载| 校园人妻丝袜中文字幕| 成年女人在线观看亚洲视频| 久久久久久伊人网av| 国产精品国产三级国产专区5o| 精品国产一区二区三区久久久樱花 | 亚洲怡红院男人天堂| 日韩一区二区三区影片| 大话2 男鬼变身卡| 国产免费一区二区三区四区乱码| 欧美一级a爱片免费观看看| 久久久久久九九精品二区国产| 久久久久久久久久人人人人人人| 日韩在线高清观看一区二区三区| av在线蜜桃| 哪个播放器可以免费观看大片| av免费在线看不卡| 亚洲国产欧美人成| 王馨瑶露胸无遮挡在线观看| 特大巨黑吊av在线直播| 人妻一区二区av| 亚洲真实伦在线观看| a级毛片免费高清观看在线播放| 久久午夜福利片| 精品99又大又爽又粗少妇毛片| 少妇的逼水好多| 欧美亚洲 丝袜 人妻 在线| 欧美另类一区| 久久久久国产精品人妻一区二区| 国产av一区二区精品久久 | 身体一侧抽搐| freevideosex欧美| 亚洲精品乱久久久久久| 成人无遮挡网站| 最近最新中文字幕大全电影3| 夜夜看夜夜爽夜夜摸| 99久久精品热视频| 日韩亚洲欧美综合| 少妇的逼水好多| 国产永久视频网站| 丰满人妻一区二区三区视频av| 国产成人免费无遮挡视频| 亚洲成人一二三区av| 人妻 亚洲 视频| 午夜福利网站1000一区二区三区| 搡老乐熟女国产| av在线app专区| 欧美bdsm另类| 干丝袜人妻中文字幕| 欧美精品一区二区大全| 中文乱码字字幕精品一区二区三区| av天堂中文字幕网| 好男人视频免费观看在线| 亚洲久久久国产精品| 国产成人精品婷婷| 亚洲三级黄色毛片| 国产精品人妻久久久影院| 九九爱精品视频在线观看| 日本av免费视频播放| 日韩 亚洲 欧美在线| 天堂中文最新版在线下载| 欧美成人a在线观看| 亚洲国产精品999| 男女边吃奶边做爰视频| 在线观看免费视频网站a站| 99久久中文字幕三级久久日本| 91精品国产九色| 免费高清在线观看视频在线观看| 99热6这里只有精品| 成人毛片a级毛片在线播放| 中文字幕精品免费在线观看视频 | 国语对白做爰xxxⅹ性视频网站| 少妇高潮的动态图| 国产免费视频播放在线视频| 看十八女毛片水多多多| 91精品国产国语对白视频| 在线播放无遮挡| xxx大片免费视频| 国产精品福利在线免费观看| 三级国产精品片| 91午夜精品亚洲一区二区三区| 五月天丁香电影| 夜夜看夜夜爽夜夜摸| 精品久久久久久久末码| 国产男女超爽视频在线观看| 日本av手机在线免费观看| 18+在线观看网站| xxx大片免费视频| 最近最新中文字幕大全电影3| 在线观看一区二区三区| 久久久久久久国产电影| 亚洲欧洲国产日韩| 99久久人妻综合| 日本色播在线视频| 99热这里只有是精品在线观看| 中文天堂在线官网| 性色avwww在线观看| 三级经典国产精品| 99久久综合免费| 亚洲色图av天堂| 久久青草综合色| 99国产精品免费福利视频| 欧美少妇被猛烈插入视频| 国产免费又黄又爽又色| 久久久国产一区二区| 又黄又爽又刺激的免费视频.| 精品国产乱码久久久久久小说| 国产精品99久久99久久久不卡 | 国产又色又爽无遮挡免| 久久精品国产自在天天线| 亚洲国产最新在线播放| 亚洲av成人精品一区久久| freevideosex欧美| 久久韩国三级中文字幕| 青春草视频在线免费观看| 成人黄色视频免费在线看| 91在线精品国自产拍蜜月| 欧美一级a爱片免费观看看| 欧美精品一区二区免费开放| 一区二区三区乱码不卡18| 精品一品国产午夜福利视频| 国内少妇人妻偷人精品xxx网站| 亚洲,一卡二卡三卡| 色5月婷婷丁香| 18禁在线播放成人免费| 国产在线视频一区二区| 高清不卡的av网站| 欧美最新免费一区二区三区| 日韩欧美精品免费久久| 日本免费在线观看一区| 色婷婷久久久亚洲欧美| 91午夜精品亚洲一区二区三区| 国产黄色视频一区二区在线观看| 日日啪夜夜撸| 国产精品伦人一区二区| 最新中文字幕久久久久| 日日啪夜夜爽| 亚洲精品色激情综合| 在线观看一区二区三区激情| 一边亲一边摸免费视频| 免费看不卡的av| 久久ye,这里只有精品| 少妇的逼水好多| 国产高清国产精品国产三级 | 日日摸夜夜添夜夜爱| 成人高潮视频无遮挡免费网站| 高清不卡的av网站| 大陆偷拍与自拍| av国产久精品久网站免费入址| 免费av不卡在线播放| videossex国产| 亚洲成人av在线免费| 能在线免费看毛片的网站| 精品国产一区二区三区久久久樱花 | 亚洲成人一二三区av| 一区在线观看完整版| 狠狠精品人妻久久久久久综合| 国产精品av视频在线免费观看| 国产乱人偷精品视频| 一本色道久久久久久精品综合| 亚洲第一av免费看| av一本久久久久| 在线播放无遮挡| 少妇裸体淫交视频免费看高清| 国产成人freesex在线| av国产精品久久久久影院| 国产精品一区二区三区四区免费观看| 嫩草影院入口| 制服丝袜香蕉在线| 狂野欧美白嫩少妇大欣赏| 欧美亚洲 丝袜 人妻 在线| 国产无遮挡羞羞视频在线观看| 亚洲成人中文字幕在线播放| 国产乱人偷精品视频| 日韩三级伦理在线观看| 少妇的逼水好多| 青青草视频在线视频观看| 黄色配什么色好看| 丰满少妇做爰视频| 亚洲av日韩在线播放| 狂野欧美激情性bbbbbb| 黄片无遮挡物在线观看| 在线亚洲精品国产二区图片欧美 | 永久免费av网站大全| 少妇 在线观看| 欧美精品一区二区免费开放| 丝瓜视频免费看黄片| 国产精品国产三级国产av玫瑰| 中文字幕久久专区| 99九九线精品视频在线观看视频| 成人高潮视频无遮挡免费网站| 好男人视频免费观看在线| 欧美三级亚洲精品| 少妇人妻精品综合一区二区| 国产精品无大码| 欧美极品一区二区三区四区| 一本—道久久a久久精品蜜桃钙片| 日韩视频在线欧美| 欧美性感艳星| 国产白丝娇喘喷水9色精品| 国产在视频线精品| 久久久久久九九精品二区国产| 国产精品一及| 国产在线一区二区三区精| 亚洲精品色激情综合| 精品一品国产午夜福利视频| 观看美女的网站| 亚洲色图av天堂| 国产亚洲精品久久久com| 欧美精品人与动牲交sv欧美| 美女高潮的动态| 精品国产三级普通话版| 国产一区有黄有色的免费视频| 国产男女内射视频| 欧美+日韩+精品| 亚洲高清免费不卡视频| 我的老师免费观看完整版| 狂野欧美白嫩少妇大欣赏| 少妇人妻一区二区三区视频| 新久久久久国产一级毛片| 日本猛色少妇xxxxx猛交久久| 熟女av电影| 国产成人a∨麻豆精品| 成年美女黄网站色视频大全免费 | 美女福利国产在线 | 国产免费视频播放在线视频| 制服丝袜香蕉在线| 天堂俺去俺来也www色官网| 国内揄拍国产精品人妻在线| 精品一区二区三卡| 深爱激情五月婷婷| 精品国产一区二区三区久久久樱花 | 又黄又爽又刺激的免费视频.| 欧美少妇被猛烈插入视频| 国产一区二区三区综合在线观看 | 国产高潮美女av| 建设人人有责人人尽责人人享有的 | 最近中文字幕高清免费大全6| 大陆偷拍与自拍| 日韩 亚洲 欧美在线| 一区在线观看完整版| 国产亚洲av片在线观看秒播厂| 午夜激情久久久久久久| 国产探花极品一区二区| 最后的刺客免费高清国语| 成人毛片a级毛片在线播放| 国产成人freesex在线| 国语对白做爰xxxⅹ性视频网站| 精品人妻偷拍中文字幕| 亚洲精品国产av蜜桃| 日本vs欧美在线观看视频 | 国产精品一区二区性色av| 日韩一区二区三区影片| 久久久成人免费电影| 日韩欧美一区视频在线观看 | 中文字幕亚洲精品专区| 自拍欧美九色日韩亚洲蝌蚪91 | 自拍偷自拍亚洲精品老妇| 青春草国产在线视频| 亚洲伊人久久精品综合| 国产精品国产av在线观看| 卡戴珊不雅视频在线播放| 高清黄色对白视频在线免费看 | 国产成人freesex在线| 高清欧美精品videossex| 欧美亚洲 丝袜 人妻 在线| 久久精品国产a三级三级三级| 麻豆国产97在线/欧美| 不卡视频在线观看欧美| 夜夜骑夜夜射夜夜干| 免费高清在线观看视频在线观看| 高清毛片免费看| 大片电影免费在线观看免费| 亚洲在久久综合| 欧美日韩国产mv在线观看视频 | 成人二区视频| 国产一区亚洲一区在线观看| 人妻一区二区av| 亚洲欧美清纯卡通| 欧美精品一区二区免费开放| tube8黄色片| 免费大片18禁| 日本-黄色视频高清免费观看| 久久精品久久久久久久性| 中国三级夫妇交换| 亚洲人成网站在线观看播放| 91久久精品国产一区二区成人| 交换朋友夫妻互换小说| 免费看日本二区| 在线观看三级黄色| 亚洲性久久影院| 一区二区三区乱码不卡18| 国产亚洲5aaaaa淫片| 中文字幕人妻熟人妻熟丝袜美| 中国国产av一级| 国产av码专区亚洲av| 日本黄色片子视频| 日韩中文字幕视频在线看片 | 亚洲aⅴ乱码一区二区在线播放| 亚洲电影在线观看av| 国产亚洲一区二区精品| 各种免费的搞黄视频| 99re6热这里在线精品视频| 99久国产av精品国产电影| 亚洲天堂av无毛| 美女中出高潮动态图| 啦啦啦视频在线资源免费观看| 午夜福利网站1000一区二区三区| 国产欧美日韩一区二区三区在线 | 3wmmmm亚洲av在线观看| h视频一区二区三区| 91精品伊人久久大香线蕉| 亚洲精品乱码久久久久久按摩| 高清毛片免费看| 国产精品爽爽va在线观看网站| 色综合色国产| 中文乱码字字幕精品一区二区三区| 黄片wwwwww| 成人一区二区视频在线观看| av在线播放精品| 久久热精品热| 97在线人人人人妻| 超碰av人人做人人爽久久| 日本黄大片高清| 国产欧美日韩一区二区三区在线 | 免费观看a级毛片全部| 联通29元200g的流量卡| 国产高清有码在线观看视频| 成人毛片a级毛片在线播放| 久久久久久久国产电影| 国产亚洲欧美精品永久| 三级经典国产精品| 国产精品国产三级国产专区5o| 久久久久视频综合| 黄色一级大片看看| 免费黄色在线免费观看| www.色视频.com| 欧美+日韩+精品| 下体分泌物呈黄色| 亚洲欧美成人综合另类久久久| 亚洲精华国产精华液的使用体验| 日韩免费高清中文字幕av| 欧美精品一区二区免费开放| 美女中出高潮动态图| 99久久综合免费| 久久99蜜桃精品久久| 国产成人a区在线观看| 一二三四中文在线观看免费高清| 午夜日本视频在线| 亚洲国产毛片av蜜桃av| 亚洲欧美日韩卡通动漫| 日日啪夜夜撸| 国产日韩欧美在线精品| 国产成人a∨麻豆精品| 免费人妻精品一区二区三区视频| 精品久久久噜噜| 亚洲成人手机| 蜜臀久久99精品久久宅男| 国产免费又黄又爽又色| 嫩草影院入口| 国产一区二区三区av在线| 久久这里有精品视频免费| 亚洲综合精品二区| 最黄视频免费看| 亚洲人成网站在线观看播放| 免费观看的影片在线观看| 免费播放大片免费观看视频在线观看| 国产精品不卡视频一区二区|