• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Moisture Absorption and Desorption in an Ionomer-Based Encapsulant:A Type of Self-Breathing Encapsulant for CIGS Thin-Film PV Modules

    2020-05-11 01:19:44MiaoYangRaymundSchfflerTobiasRepmannKayOrgassa
    Engineering 2020年12期

    Miao Yang, Raymund Sch?ffler, Tobias Repmann, Kay Orgassa

    NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany

    Keywords:

    Ionomer

    Encapsulant

    Moisture absorption and desorption

    Cu(In,Ga)Se2 photovoltaic module

    ABSTRACT As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant, by which the application of additional edge sealing to prevent moisture penetration is not required. The spontaneous moisture absorption and desorption of this encapsulant and its raw materials, poly(ethylene-co-acrylic acid) and an ionomer, are analyzed under different climatic conditions in this work. The relative air humidity is thermodynamically the driving force for these inverse processes and determines the corresponding equilibrium moisture content (EMC). Higher air humidity results in a larger EMC. The homogenization of the absorbed water molecules is a diffusion-controlled process, in which temperature plays a dominant role. Nevertheless, the diffusion coefficient at a higher temperature is still relatively low.Hence, under normal climatic conditions for the application of PV modules, we believe that the investigated ionomer-based encapsulant can ‘‘breathe” the humidity: During the day, when there is higher relative humidity, it ‘‘inhales” (absorbs) moisture and restrains it within the outer edge of the module; then at night, when there is a lower relative humidity, it ‘‘exhales” (desorbs) the moisture. In this way, the encapsulant protects the cell from moisture ingress.

    1. Introduction

    Encapsulants, which are chemically stable, compatible with cells,and exhibit high resistance against atmospheric gases,pollutants, radiation, mechanical stress, and so forth, are of great interest for photovoltaic (PV) module manufacturing, especially in terms of reliability [1-5]. Polymer film based on ethylene-vinyl acetate copolymer (EVA) has hitherto been the most widely used encapsulant in single-glass/backsheet c-Si modules [6]. However,many results from research and applications indicate that EVA’s potential to release acetic acid under exposure to atmospheric water and/or ultraviolet radiation, along with related problems in reliability,restrict its application,especially for double-glass applications [7,8]. For building-integrated photovoltaic (BIPV) applications, the requirements for the mechanical stability and safety of PV modules are more essential. As a well-known thermoplastic interlayer for laminated safety glass, polyvinyl butyral (PVB),which has higher resistance against mechanical load,has been successfully implemented in BIPVs[9].The most critical disadvantage of PVB is its high sensitivity to hydrolysis,followed by a high water uptake, which results in a significant decrease of its adhesion to glass [10] and the formation of haze [11]. In recent years, there has been increasing demand for an advanced encapsulation solution based on polyolefin elastomers (POE) arising from PV module manufactures [12]—especially for double-glass c-Si modules and thin-film modules. Unfortunately, the water vapor transmission rate (WVTR) of POE, which is about a few grams per square meter per day according to technical data sheets, is not low enough. The edges of PV modules encapsulated with any of the abovementioned materials must therefore be additionally well sealed against moisture ingress[13,14].Through our elaborate investigations and perennial application experiences, we report an ionomer-based self-breathing encapsulant film with no edge sealing for our Cu(In,Ga)Se2(CIGS) thin-film PV modules.

    2. Material and methods

    The investigated encapsulation film, which has a multilayer structure consisting of poly(ethylene-co-acrylic acid) (EAA) and thermoplastic ionomer (metal-ion-neutralized EAA), is a commercial product provided by our partner company.It has a thickness of 0.7 mm, an EAA/ionomer volume ratio of 1:2, and a melting point of 98 °C.

    In order to investigate their moisture absorption, the encapsulant samples and their corresponding raw material pellet samples were respectively placed in glass bottles and dried in a vacuum dryer (Goldbrunn 450, GOLDBRUNN, Germany)under about 2 kPa at 80°C for one week.Although a certain amount of residual water should still exist,we define the samples after this treatment as dry samples in this paper.Subsequently,the samples were respectively stored in a climate chamber (VCL 4010, V?tsch Industrietechnik GmbH,Germany)for moisture absorption.Under every set of temperature and relative air humidity(details provided in Section 3.1),one encapsulant sample(~2 g),one EAA pellet sample(~10 g),and one ionomer pellet sample(~10 g) were kept in the chamber until their equilibrium moisture contents(EMCs)were achieved.In order to observe the moisture desorption, samples with saturated moisture contents were stored in a climate housing,where the temperature was kept at 22 °C and the relative air humidity was maintained between 8%and 10%,until a new EMC was reached.

    Moisture absorption and desorption in the ionomer encapsulant samples were monitored by an analytical scale (ABT120-5DM,KERN GmbH, Germany). During moisture absorption under given conditions in the climate chamber, the samples were taken out of the chamber after a certain time interval and weighed using a scale as quickly as possible. After that, the samples were placed back into the climate chamber for further absorption.During moisture desorption, the encapsulant samples were weighed in situ in the climate housing. The moisture content M is therefore a function of the storage duration t and is proportional to the increase in sample weight ΔW t( ):

    where W 0( ) and W t( ) represent the weight of the dry sample and its value at t, respectively.

    3. Results and discussion

    3.1. Moisture absorption

    Fig. 1 illustrates the time-dependent moisture absorptions of the ionomer-based encapsulant samples and their pellet raw materials under three climatic conditions: 30 °C and 70% relative humidity (RH; corresponding to an absolute humidity of 21.2 g?m-3); 50 °C and 26% RH (21.5 g?m-3); and 50 °C and 70%RH (57.9 g?m-3). These can be well described using a simplified solution of the second Fick equation[15]with the following form:

    where M∞is the EMC and K is a constant that contains the diffusion coefficient and a geometric factor.

    Since the scale of the encapsulant film thickness h is much smaller than its area, we may consider the film as an infinitely large plate; thus, the moisture only diffuses perpendicularly through the film surface into the film.The constant K is therefore a quotient of the diffusion coefficient D against 4h2[15].Due to the multilayer structure,we further developed Eq.(2)for our case as follows:

    Fig. 1. Moisture absorption by EAA pellets, ionomer pellets, and ionomer-based encapsulant at (a) 30 °C and 70% RH (21.2 g?m-3); (b) 50 °C and 26% RH(21.5 g?m-3);and(c)50°C and 70%RH(57.9 g?m-3).The blue and red dashed lines are fitting curves according to Eq. (2), and the black dashed line is a curve-fit according to Eq. (3).

    where xEAAand xionomer=1-xEAArepresent the content of the EAA and the ionomer,respectively.Using Eqs.(1)and(2),we graphically determined the key parameters to describe the moisture absorption process in both the raw materials and the encapsulant, as listed in Tables 1 and 2, respectively.

    The moisture absorption in the investigated encapsulant is due to the fact that the COO-Me+groups in the ionomer are highly polar, with a strong hydrophilic character. Kutsumizu et al. [16]concluded by analyzing sodium-neutralized EAA that each COO-Na+ion pair is able to absorb three water molecules in its vicinity to build a tightly bonded primary hydration shell. As absorption proceeds, the excess water molecules locate around the primary hydration shell.Based on our results,shown in Table 1,we confirm that the polar ionomer is able to absorb more water molecules than the less polar EAA. For the same reason, themobility of the water molecules trapped by the COO-Me+ion pair in the ionomer is significantly suppressed, resulting in a much smaller diffusion coefficient (corresponding to a lower WVTR). In 2010,Kempe et al.[14]experimentally characterized the moisture permeation in laminated glasses with different encapsulants.Considering the moisture permeation as a one-dimensional diffusion-controlled process, they determined the diffusion coefficient of water in their investigated ionomer at 85 °C and 85%RH to be 1.25×10-4mm2?s-1(this result is calculated according to the data in Ref. [14]), which is more than one magnitude smaller than the values in EVA (4.01 × 10-3mm2?s-1) and PVB(1.74 × 10-3mm2?s-1), and is in reasonable agreement with our results in Table 2.

    Table 1 EMC M∞and constant K of EAA and ionomer pellets, and the adjusted R2 obtained by fitting the experimental results illustrated in Figs. 1(a)-(c).

    Table 2 EMC of each of the components, MEAA,∞and Mionomer,∞, in the encapsulation film; diffusion coefficient of the water molecules DEAA and Dionomer; and the adjusted R2 obtained by fitting the experimental results illustrated in Figs. 1(a)-(c).

    The establishment of thermodynamic equilibrium is preceded by the homogenization of the absorbed water molecules in the material, which is a diffusion-controlled process. Under constant relative humidity, a higher temperature increases the diffusion coefficient of the water molecules, causing the absorption or desorption to reach its equilibrium faster (results shown in Figs. 1(a)-(c)).

    3.2. Moisture desorption

    As mentioned above, an encapsulant with saturated moisture content can release the absorbed water molecules if the air humidity of its surroundings decreases.This phenomenon is clearly indicated by the results shown in Fig. 2. As can be seen, although the EMC in the samples is initially unequal, the temporal developments of the moisture content are similar. This means that the kinetics of moisture desorption, and therefore the rate constant of desorption kdes, are independent of the amount of adsorbed water molecules.Hence,we describe this kind of water desorption by using the Kissinger analysis for the first-order homogeneous reaction [17] with the following form:

    3.3. Absorption isotherm

    Fig. 3 schematically describes the influence of RH on the moisture content at equilibrium M∞in the ionomer pellet samples according to our current experimental results.The red dashed line is a guideline for the eye, based on the Hailwood-Horrobin equation [18]:

    Fig. 2. Moisture desorption of the ionomer-based encapsulant, whose moisture content was saturated at room temperature under two different air humidities.Moisture desorption was realized by storing these samples at room temperature with significantly lower air humidity.The normalized moisture contents,according to the saturated value, are plotted against the storage duration and fitted with a black dashed curve using Eq. (4).

    Fig. 3. Sorption isotherm of water molecules for ionomer pellets at 50 °C. The results at 26%RH and 70%RH are graphically determined and listed in Table 1.The result at 7.5%RH was calculated through our previous work(not published).Results are fitted with a red dashed curve using Eq. (5).

    A, B, and C represent the temperature-related constants,respectively.

    Although a more accurate fitting is lacking, the red dashed line in Fig. 3, with A = 0.5278, B = 2.6516, and C = 4.0345, indicates a significant increase of EMC in the ionomer if the relative air humidity is greater than 60%.The line further serves as a guideline for the manufacture of both the encapsulant and the module, in order to control air humidity during production.

    3.4. Self-breathing encapsulant

    In regard to the spontaneous moisture absorption and desorption, as discussed above, it is reasonable to consider the investigated ionomer-based encapsulant as a self-breathing material that depends on air humidity: During the daytime, when there is comparative higher relative air humidity, the encapsulant absorbs moisture. Thanks to the low diffusion coefficient, as listed in Table 2, most of the absorbed water molecules are concentrated on the very outer edge of the PV module. During the night, the lower air humidity reverses the direction of the thermodynamic process;thus,the encapsulant releases moisture.Therefore,as long as the edge area is wide enough(which is also essential for insulation distance),moisture can scarcely reach the cells under conventional application conditions, and no edge sealing is required.

    Compared with other conventional moisture-absorbing encapsulants such as EVA and PVB, we emphasize that the selfbreathing function of the ionomer-based encapsulant exhibits two practical and essential advantages: ①No hydrolysis reaction exists, and moisture absorption and desorption in the ionomerbased encapsutant are completely reversible; and ②the diffusion coefficient of water in the ionomer is significantly lower than that in EVA and PVB, as discussed in Section 3.1. Although water diffusion in EAA is comparatively faster,the EMC of EAA,which is about 0.02%, is negligible.Hence, as the presented encapsulant is a combination of these two components,the water penetration depth in it will be much smaller than that in EVA and PVB under the same conditions. According to the results in Ref. [14], 10 h is roughly sufficient for water molecules to penetrate a distance of 10 mm in EVA and PVB at 85°C and 85%RH.As certificated by TüV Rheinland, we report that, after a standard 1000 h of damp heat treatment, the power degradation of our CIGS modules, which have an edge width of 8.4 mm and use the ionomer-based encapsulant,is less than 5%, which fulfills the regulation of the international electrotechnical commission standards (IEC 61730).

    4. Conclusions

    In the present work, we have introduced a promising ionomerbased encapsulant, which is able to spontaneously absorb and/or desorb moisture. This process is thermodynamically driven by the RH of the environment. Furthermore, since the temperaturedepended diffusion coefficient of water molecules is relatively low due to the polar nature of the COO-Me+groups in the ionomer,the encapsulant is able to‘‘inhale”moisture when the air humidity is high, and ‘‘exhale” it when the air humidity decreases, without letting the moisture ingress into the cells.

    Acknowledgements

    The support from our partner company in providing the ionomer-based encapsulant samples and the corresponding raw materials as well as the permission for material analysis is fruitfully acknowledged. Special thanks are due to Dr. Gernot Oreski from Polymer Competence Center Leoben GmbH (Austra)for the helpful discussions.

    Compliance with ethics guidelines

    Miao Yang, Raymund Sch?ffler, Tobias Repmann, and Kay Orgassa declare that they have no conflict of interest or financial conflicts to disclose.

    在线观看一区二区三区| 免费人成视频x8x8入口观看| 久9热在线精品视频| 国产单亲对白刺激| 国内精品一区二区在线观看| 少妇人妻一区二区三区视频| a级毛片a级免费在线| 国产国拍精品亚洲av在线观看 | 一本一本综合久久| 久久久久久久久久黄片| 久久精品夜夜夜夜夜久久蜜豆| 一a级毛片在线观看| 久久这里只有精品中国| 久久这里只有精品中国| 亚洲18禁久久av| 国产伦人伦偷精品视频| 免费在线观看成人毛片| 成人永久免费在线观看视频| 少妇人妻一区二区三区视频| 亚洲国产精品成人综合色| 亚洲一区高清亚洲精品| 午夜免费男女啪啪视频观看 | 真人一进一出gif抽搐免费| 精品久久久久久久久久久久久| 亚洲国产精品合色在线| 久久这里只有精品中国| 久久久久国内视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美最黄视频在线播放免费| www日本在线高清视频| 国产探花极品一区二区| 精品国内亚洲2022精品成人| 真实男女啪啪啪动态图| 亚洲第一欧美日韩一区二区三区| 精品一区二区三区视频在线 | 变态另类成人亚洲欧美熟女| 精品国产亚洲在线| 国产三级在线视频| 免费av毛片视频| 两个人视频免费观看高清| 夜夜夜夜夜久久久久| 成人精品一区二区免费| 午夜免费成人在线视频| 深爱激情五月婷婷| xxxwww97欧美| 国产精品乱码一区二三区的特点| 国产精品香港三级国产av潘金莲| 国模一区二区三区四区视频| 香蕉丝袜av| 女警被强在线播放| 好看av亚洲va欧美ⅴa在| 国产乱人视频| 免费大片18禁| 欧洲精品卡2卡3卡4卡5卡区| 精品国产亚洲在线| 久久久久久国产a免费观看| 久久午夜亚洲精品久久| 免费一级毛片在线播放高清视频| 村上凉子中文字幕在线| 亚洲欧美日韩卡通动漫| 亚洲精品乱码久久久v下载方式 | 国产欧美日韩精品亚洲av| 国产精品,欧美在线| 成人三级黄色视频| 国产真人三级小视频在线观看| 久久亚洲精品不卡| 国产高清激情床上av| 免费电影在线观看免费观看| 丰满乱子伦码专区| 天美传媒精品一区二区| 久久久久国内视频| 国内毛片毛片毛片毛片毛片| 亚洲中文字幕日韩| 身体一侧抽搐| 每晚都被弄得嗷嗷叫到高潮| 亚洲成人精品中文字幕电影| 免费电影在线观看免费观看| 综合色av麻豆| 18美女黄网站色大片免费观看| 美女 人体艺术 gogo| bbb黄色大片| 啪啪无遮挡十八禁网站| 夜夜爽天天搞| 很黄的视频免费| 国产精品永久免费网站| 免费av不卡在线播放| 久久婷婷人人爽人人干人人爱| 99久久无色码亚洲精品果冻| 国产精品一区二区免费欧美| 99视频精品全部免费 在线| 久久精品国产清高在天天线| 1024手机看黄色片| 一本综合久久免费| 黄色女人牲交| 久久久国产成人免费| 看免费av毛片| 免费看a级黄色片| 日韩欧美免费精品| 内地一区二区视频在线| 精品一区二区三区视频在线观看免费| 90打野战视频偷拍视频| 精品午夜福利视频在线观看一区| 网址你懂的国产日韩在线| 久久精品国产亚洲av香蕉五月| 成人午夜高清在线视频| 最新美女视频免费是黄的| 亚洲电影在线观看av| 美女高潮喷水抽搐中文字幕| 热99re8久久精品国产| 欧美日本视频| 国产真实伦视频高清在线观看 | 精品国产亚洲在线| 亚洲狠狠婷婷综合久久图片| 内地一区二区视频在线| 不卡一级毛片| 欧美一区二区亚洲| 精品久久久久久成人av| 日本黄大片高清| 国产一区二区在线av高清观看| 99热6这里只有精品| 国产亚洲精品一区二区www| av国产免费在线观看| 一个人观看的视频www高清免费观看| 国内久久婷婷六月综合欲色啪| 18+在线观看网站| 内射极品少妇av片p| 99久久综合精品五月天人人| 制服人妻中文乱码| 成人精品一区二区免费| 精品不卡国产一区二区三区| 婷婷精品国产亚洲av在线| 午夜免费观看网址| 亚洲av第一区精品v没综合| 无人区码免费观看不卡| 真实男女啪啪啪动态图| av天堂中文字幕网| 2021天堂中文幕一二区在线观| 国产国拍精品亚洲av在线观看 | tocl精华| 成年免费大片在线观看| 国产高清videossex| 岛国在线观看网站| ponron亚洲| 一级黄片播放器| 美女高潮的动态| 99国产综合亚洲精品| 久久久国产成人免费| xxx96com| 一级毛片女人18水好多| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品成人久久久久久| 99精品欧美一区二区三区四区| 国产精品女同一区二区软件 | 亚洲第一电影网av| 99热精品在线国产| 国产精品亚洲一级av第二区| 欧美在线黄色| 叶爱在线成人免费视频播放| 国产欧美日韩一区二区精品| 欧美另类亚洲清纯唯美| 国产精品久久电影中文字幕| 俺也久久电影网| 国产亚洲欧美98| 免费人成在线观看视频色| 麻豆成人av在线观看| 99国产极品粉嫩在线观看| 男女做爰动态图高潮gif福利片| 国产精品精品国产色婷婷| 午夜精品在线福利| 精品久久久久久久久久久久久| 色老头精品视频在线观看| 日韩成人在线观看一区二区三区| 男人和女人高潮做爰伦理| 国产探花在线观看一区二区| 男女午夜视频在线观看| 黄片大片在线免费观看| 久久精品亚洲精品国产色婷小说| 亚洲18禁久久av| 黄色片一级片一级黄色片| 99国产精品一区二区三区| 国产精品久久久久久精品电影| 国产美女午夜福利| 三级男女做爰猛烈吃奶摸视频| 哪里可以看免费的av片| 精品午夜福利视频在线观看一区| 精品一区二区三区视频在线观看免费| 国内毛片毛片毛片毛片毛片| 一级毛片女人18水好多| 美女大奶头视频| 18禁裸乳无遮挡免费网站照片| 亚洲中文日韩欧美视频| 国产欧美日韩一区二区三| 黄色片一级片一级黄色片| 欧美精品啪啪一区二区三区| 亚洲国产欧洲综合997久久,| 亚洲国产中文字幕在线视频| 日韩精品青青久久久久久| 91在线精品国自产拍蜜月 | av欧美777| 男人和女人高潮做爰伦理| 搡老熟女国产l中国老女人| 精品国产美女av久久久久小说| 99在线视频只有这里精品首页| 搡老熟女国产l中国老女人| 久久久成人免费电影| 51国产日韩欧美| 757午夜福利合集在线观看| 国产高清视频在线观看网站| 国产精品久久电影中文字幕| 人人妻,人人澡人人爽秒播| 母亲3免费完整高清在线观看| 国产激情欧美一区二区| 久久中文看片网| 99久久精品国产亚洲精品| 免费av不卡在线播放| 露出奶头的视频| 丰满人妻熟妇乱又伦精品不卡| 日本免费一区二区三区高清不卡| 一夜夜www| 亚洲欧美日韩高清在线视频| 日韩欧美精品v在线| 日本一二三区视频观看| 小蜜桃在线观看免费完整版高清| avwww免费| 欧美日韩一级在线毛片| 婷婷亚洲欧美| 麻豆国产97在线/欧美| 免费看日本二区| 精品一区二区三区视频在线观看免费| 性色av乱码一区二区三区2| 99久久成人亚洲精品观看| 日韩精品青青久久久久久| 色精品久久人妻99蜜桃| 看片在线看免费视频| 日韩欧美一区二区三区在线观看| 51国产日韩欧美| 小说图片视频综合网站| or卡值多少钱| 国产综合懂色| 波多野结衣高清无吗| a在线观看视频网站| 国产午夜精品论理片| www.999成人在线观看| 99热6这里只有精品| xxx96com| 欧美日韩黄片免| 国产精品美女特级片免费视频播放器| 淫妇啪啪啪对白视频| 亚洲精品亚洲一区二区| 亚洲av成人av| 三级毛片av免费| 成人精品一区二区免费| 午夜福利在线在线| 女人十人毛片免费观看3o分钟| 欧美另类亚洲清纯唯美| 日本熟妇午夜| 国产精品久久久久久亚洲av鲁大| 国产一区二区亚洲精品在线观看| 一级作爱视频免费观看| a级一级毛片免费在线观看| 欧美+亚洲+日韩+国产| 亚洲性夜色夜夜综合| 91麻豆av在线| 成人av一区二区三区在线看| 日本 欧美在线| netflix在线观看网站| 88av欧美| 法律面前人人平等表现在哪些方面| 91久久精品电影网| 亚洲七黄色美女视频| 丁香六月欧美| 一进一出好大好爽视频| 又爽又黄无遮挡网站| av在线蜜桃| 久久精品91无色码中文字幕| 日韩欧美在线乱码| 精品乱码久久久久久99久播| 国产v大片淫在线免费观看| 好男人电影高清在线观看| 黄片大片在线免费观看| 国产精品国产高清国产av| 中文字幕熟女人妻在线| 人妻丰满熟妇av一区二区三区| 日本 av在线| 美女高潮的动态| 91久久精品电影网| 成人无遮挡网站| 又黄又粗又硬又大视频| 成年女人永久免费观看视频| 级片在线观看| 久久精品国产自在天天线| 国产日本99.免费观看| 两个人的视频大全免费| 一区二区三区免费毛片| 特级一级黄色大片| 午夜福利免费观看在线| 国产成人a区在线观看| 精品国产三级普通话版| 国产97色在线日韩免费| 国产高清视频在线播放一区| 午夜免费激情av| 激情在线观看视频在线高清| 国产成人av激情在线播放| 午夜福利欧美成人| xxxwww97欧美| 精品人妻偷拍中文字幕| 国产成人影院久久av| 成人国产综合亚洲| 国产精品爽爽va在线观看网站| 夜夜躁狠狠躁天天躁| 久久精品国产亚洲av香蕉五月| 免费在线观看成人毛片| 婷婷精品国产亚洲av| 88av欧美| aaaaa片日本免费| 在线国产一区二区在线| 色在线成人网| 亚洲五月天丁香| 亚洲成a人片在线一区二区| 手机成人av网站| 国产高清视频在线观看网站| 99久国产av精品| 精品福利观看| 叶爱在线成人免费视频播放| 欧美大码av| 午夜影院日韩av| 国产欧美日韩一区二区精品| 亚洲国产精品合色在线| 最新中文字幕久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产色爽女视频免费观看| 99久久九九国产精品国产免费| 少妇的逼好多水| 精品日产1卡2卡| 久久精品人妻少妇| 欧美成人性av电影在线观看| 免费一级毛片在线播放高清视频| 婷婷六月久久综合丁香| 免费在线观看亚洲国产| 波野结衣二区三区在线 | 久久午夜亚洲精品久久| av黄色大香蕉| 全区人妻精品视频| 国产三级黄色录像| 1024手机看黄色片| 国产精品国产高清国产av| 88av欧美| 午夜福利成人在线免费观看| 国产三级中文精品| 日韩高清综合在线| 熟妇人妻久久中文字幕3abv| 亚洲激情在线av| 久99久视频精品免费| 国产成+人综合+亚洲专区| 宅男免费午夜| 欧美色欧美亚洲另类二区| 国产乱人伦免费视频| 十八禁网站免费在线| 两人在一起打扑克的视频| 一区二区三区激情视频| 免费观看人在逋| 久久久久久久亚洲中文字幕 | 国产一区二区在线观看日韩 | 国产激情偷乱视频一区二区| 久久这里只有精品中国| 在线看三级毛片| 99视频精品全部免费 在线| 欧美性猛交黑人性爽| 最新美女视频免费是黄的| 久久人人精品亚洲av| 桃红色精品国产亚洲av| 日日摸夜夜添夜夜添小说| 91av网一区二区| 欧美成人a在线观看| 人妻丰满熟妇av一区二区三区| 在线视频色国产色| 好男人在线观看高清免费视频| 99国产精品一区二区三区| 波多野结衣高清作品| 99久国产av精品| 一进一出抽搐gif免费好疼| 丝袜美腿在线中文| 免费观看精品视频网站| 无遮挡黄片免费观看| 免费搜索国产男女视频| 亚洲国产精品久久男人天堂| 97碰自拍视频| 亚洲精品影视一区二区三区av| 高潮久久久久久久久久久不卡| 女人高潮潮喷娇喘18禁视频| a在线观看视频网站| 一级毛片高清免费大全| 国产主播在线观看一区二区| 在线观看免费午夜福利视频| 欧美最新免费一区二区三区 | 老熟妇仑乱视频hdxx| 国产精品久久久久久人妻精品电影| 精品久久久久久久久久免费视频| 97碰自拍视频| 啪啪无遮挡十八禁网站| 啦啦啦观看免费观看视频高清| 成人三级黄色视频| av女优亚洲男人天堂| 免费无遮挡裸体视频| 天天添夜夜摸| 日本一本二区三区精品| 国产成年人精品一区二区| 一级毛片女人18水好多| 国产精品三级大全| 在线国产一区二区在线| 欧美一区二区亚洲| 国产成+人综合+亚洲专区| 91在线精品国自产拍蜜月 | 毛片女人毛片| 国产一区二区三区视频了| 一级作爱视频免费观看| 国产精品久久久久久久电影 | 免费av观看视频| 18禁国产床啪视频网站| 国产日本99.免费观看| 老熟妇仑乱视频hdxx| 欧美激情在线99| 精品国内亚洲2022精品成人| 日韩 欧美 亚洲 中文字幕| 美女 人体艺术 gogo| 亚洲精品在线美女| 一夜夜www| 国产av麻豆久久久久久久| 国产免费av片在线观看野外av| 两人在一起打扑克的视频| 欧美区成人在线视频| 观看美女的网站| 久久久精品大字幕| 国产精品久久久久久精品电影| 精品日产1卡2卡| 日韩欧美精品v在线| 欧美日韩一级在线毛片| 全区人妻精品视频| 夜夜爽天天搞| 看黄色毛片网站| 亚洲熟妇中文字幕五十中出| 亚洲avbb在线观看| 91久久精品电影网| а√天堂www在线а√下载| 美女被艹到高潮喷水动态| 热99在线观看视频| 亚洲一区高清亚洲精品| 大型黄色视频在线免费观看| 桃红色精品国产亚洲av| 网址你懂的国产日韩在线| 天美传媒精品一区二区| 美女被艹到高潮喷水动态| 亚洲精品色激情综合| 日日夜夜操网爽| 乱人视频在线观看| 欧美日韩瑟瑟在线播放| 一边摸一边抽搐一进一小说| 三级国产精品欧美在线观看| 99在线视频只有这里精品首页| 午夜免费成人在线视频| 成熟少妇高潮喷水视频| 色吧在线观看| 啦啦啦观看免费观看视频高清| 老汉色av国产亚洲站长工具| 国产精品永久免费网站| 在线观看一区二区三区| 亚洲欧美精品综合久久99| 别揉我奶头~嗯~啊~动态视频| 久久伊人香网站| 亚洲国产精品999在线| 久9热在线精品视频| 亚洲国产高清在线一区二区三| 成人午夜高清在线视频| 国产伦在线观看视频一区| 欧美性猛交黑人性爽| 啦啦啦观看免费观看视频高清| 免费av观看视频| 国产蜜桃级精品一区二区三区| 99久国产av精品| 国产午夜精品久久久久久一区二区三区 | 亚洲熟妇中文字幕五十中出| 首页视频小说图片口味搜索| 在线视频色国产色| 国产v大片淫在线免费观看| 五月伊人婷婷丁香| 成人亚洲精品av一区二区| 亚洲成人中文字幕在线播放| 桃色一区二区三区在线观看| 人人妻,人人澡人人爽秒播| 国产成人av教育| 精品一区二区三区人妻视频| 久久性视频一级片| 日本黄色视频三级网站网址| 亚洲精品影视一区二区三区av| 欧美日韩瑟瑟在线播放| 香蕉丝袜av| 国产亚洲精品av在线| 高清日韩中文字幕在线| 综合色av麻豆| 国产av麻豆久久久久久久| 国产精品三级大全| 99精品在免费线老司机午夜| 天堂动漫精品| 欧美一级a爱片免费观看看| 欧美黄色片欧美黄色片| 亚洲天堂国产精品一区在线| 黄片小视频在线播放| 两个人看的免费小视频| 88av欧美| 国产探花在线观看一区二区| 国产三级黄色录像| 在线国产一区二区在线| 精品久久久久久久毛片微露脸| 人人妻人人看人人澡| 偷拍熟女少妇极品色| 亚洲无线观看免费| 深爱激情五月婷婷| www日本在线高清视频| 日本 欧美在线| 熟女电影av网| 久久午夜亚洲精品久久| 国产精品综合久久久久久久免费| 国产成人av教育| 色在线成人网| www国产在线视频色| 男女午夜视频在线观看| 老司机福利观看| 久久久久久久久大av| 国产综合懂色| 在线免费观看的www视频| 亚洲欧美日韩高清在线视频| АⅤ资源中文在线天堂| 国产精品野战在线观看| 黄片小视频在线播放| 久久人妻av系列| 天堂动漫精品| 中文字幕av在线有码专区| 久久久国产精品麻豆| 国产熟女xx| 51午夜福利影视在线观看| 白带黄色成豆腐渣| 欧美xxxx黑人xx丫x性爽| 久久久久国产精品人妻aⅴ院| 久久久久久久精品吃奶| 一个人看的www免费观看视频| 最后的刺客免费高清国语| 午夜两性在线视频| 国产淫片久久久久久久久 | 男人和女人高潮做爰伦理| av在线蜜桃| 国产精品美女特级片免费视频播放器| 国产精品综合久久久久久久免费| 黄色片一级片一级黄色片| 亚洲乱码一区二区免费版| 成年女人毛片免费观看观看9| 少妇人妻一区二区三区视频| 蜜桃亚洲精品一区二区三区| 美女免费视频网站| 国产久久久一区二区三区| 日韩欧美三级三区| 免费在线观看日本一区| 亚洲国产欧美人成| 特级一级黄色大片| 亚洲五月天丁香| 身体一侧抽搐| 男插女下体视频免费在线播放| 我的老师免费观看完整版| 无人区码免费观看不卡| 午夜免费成人在线视频| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久精品电影| 久久久精品大字幕| 色综合站精品国产| 国产亚洲精品av在线| 精品免费久久久久久久清纯| 99久久九九国产精品国产免费| 午夜福利在线观看吧| 夜夜看夜夜爽夜夜摸| 午夜精品久久久久久毛片777| 日韩精品青青久久久久久| 日韩成人在线观看一区二区三区| 久99久视频精品免费| 国产精品久久久久久亚洲av鲁大| 女人被狂操c到高潮| 欧美bdsm另类| 观看免费一级毛片| 国产黄a三级三级三级人| 看黄色毛片网站| 18禁美女被吸乳视频| 亚洲av二区三区四区| 俺也久久电影网| 人妻夜夜爽99麻豆av| 真人一进一出gif抽搐免费| 两个人的视频大全免费| 国产美女午夜福利| 亚洲美女黄片视频| 亚洲av不卡在线观看| 免费电影在线观看免费观看| 免费一级毛片在线播放高清视频| 深爱激情五月婷婷| 波野结衣二区三区在线 | 性欧美人与动物交配| 国产一区在线观看成人免费| 成人18禁在线播放| www.999成人在线观看| 在线国产一区二区在线| 男女之事视频高清在线观看| 又紧又爽又黄一区二区| 真人一进一出gif抽搐免费| 亚洲真实伦在线观看| 国产精品 欧美亚洲| 99热只有精品国产| 看黄色毛片网站| 欧美性感艳星| 免费看光身美女|