• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Moisture Absorption and Desorption in an Ionomer-Based Encapsulant:A Type of Self-Breathing Encapsulant for CIGS Thin-Film PV Modules

    2020-05-11 01:19:44MiaoYangRaymundSchfflerTobiasRepmannKayOrgassa
    Engineering 2020年12期

    Miao Yang, Raymund Sch?ffler, Tobias Repmann, Kay Orgassa

    NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany

    Keywords:

    Ionomer

    Encapsulant

    Moisture absorption and desorption

    Cu(In,Ga)Se2 photovoltaic module

    ABSTRACT As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant, by which the application of additional edge sealing to prevent moisture penetration is not required. The spontaneous moisture absorption and desorption of this encapsulant and its raw materials, poly(ethylene-co-acrylic acid) and an ionomer, are analyzed under different climatic conditions in this work. The relative air humidity is thermodynamically the driving force for these inverse processes and determines the corresponding equilibrium moisture content (EMC). Higher air humidity results in a larger EMC. The homogenization of the absorbed water molecules is a diffusion-controlled process, in which temperature plays a dominant role. Nevertheless, the diffusion coefficient at a higher temperature is still relatively low.Hence, under normal climatic conditions for the application of PV modules, we believe that the investigated ionomer-based encapsulant can ‘‘breathe” the humidity: During the day, when there is higher relative humidity, it ‘‘inhales” (absorbs) moisture and restrains it within the outer edge of the module; then at night, when there is a lower relative humidity, it ‘‘exhales” (desorbs) the moisture. In this way, the encapsulant protects the cell from moisture ingress.

    1. Introduction

    Encapsulants, which are chemically stable, compatible with cells,and exhibit high resistance against atmospheric gases,pollutants, radiation, mechanical stress, and so forth, are of great interest for photovoltaic (PV) module manufacturing, especially in terms of reliability [1-5]. Polymer film based on ethylene-vinyl acetate copolymer (EVA) has hitherto been the most widely used encapsulant in single-glass/backsheet c-Si modules [6]. However,many results from research and applications indicate that EVA’s potential to release acetic acid under exposure to atmospheric water and/or ultraviolet radiation, along with related problems in reliability,restrict its application,especially for double-glass applications [7,8]. For building-integrated photovoltaic (BIPV) applications, the requirements for the mechanical stability and safety of PV modules are more essential. As a well-known thermoplastic interlayer for laminated safety glass, polyvinyl butyral (PVB),which has higher resistance against mechanical load,has been successfully implemented in BIPVs[9].The most critical disadvantage of PVB is its high sensitivity to hydrolysis,followed by a high water uptake, which results in a significant decrease of its adhesion to glass [10] and the formation of haze [11]. In recent years, there has been increasing demand for an advanced encapsulation solution based on polyolefin elastomers (POE) arising from PV module manufactures [12]—especially for double-glass c-Si modules and thin-film modules. Unfortunately, the water vapor transmission rate (WVTR) of POE, which is about a few grams per square meter per day according to technical data sheets, is not low enough. The edges of PV modules encapsulated with any of the abovementioned materials must therefore be additionally well sealed against moisture ingress[13,14].Through our elaborate investigations and perennial application experiences, we report an ionomer-based self-breathing encapsulant film with no edge sealing for our Cu(In,Ga)Se2(CIGS) thin-film PV modules.

    2. Material and methods

    The investigated encapsulation film, which has a multilayer structure consisting of poly(ethylene-co-acrylic acid) (EAA) and thermoplastic ionomer (metal-ion-neutralized EAA), is a commercial product provided by our partner company.It has a thickness of 0.7 mm, an EAA/ionomer volume ratio of 1:2, and a melting point of 98 °C.

    In order to investigate their moisture absorption, the encapsulant samples and their corresponding raw material pellet samples were respectively placed in glass bottles and dried in a vacuum dryer (Goldbrunn 450, GOLDBRUNN, Germany)under about 2 kPa at 80°C for one week.Although a certain amount of residual water should still exist,we define the samples after this treatment as dry samples in this paper.Subsequently,the samples were respectively stored in a climate chamber (VCL 4010, V?tsch Industrietechnik GmbH,Germany)for moisture absorption.Under every set of temperature and relative air humidity(details provided in Section 3.1),one encapsulant sample(~2 g),one EAA pellet sample(~10 g),and one ionomer pellet sample(~10 g) were kept in the chamber until their equilibrium moisture contents(EMCs)were achieved.In order to observe the moisture desorption, samples with saturated moisture contents were stored in a climate housing,where the temperature was kept at 22 °C and the relative air humidity was maintained between 8%and 10%,until a new EMC was reached.

    Moisture absorption and desorption in the ionomer encapsulant samples were monitored by an analytical scale (ABT120-5DM,KERN GmbH, Germany). During moisture absorption under given conditions in the climate chamber, the samples were taken out of the chamber after a certain time interval and weighed using a scale as quickly as possible. After that, the samples were placed back into the climate chamber for further absorption.During moisture desorption, the encapsulant samples were weighed in situ in the climate housing. The moisture content M is therefore a function of the storage duration t and is proportional to the increase in sample weight ΔW t( ):

    where W 0( ) and W t( ) represent the weight of the dry sample and its value at t, respectively.

    3. Results and discussion

    3.1. Moisture absorption

    Fig. 1 illustrates the time-dependent moisture absorptions of the ionomer-based encapsulant samples and their pellet raw materials under three climatic conditions: 30 °C and 70% relative humidity (RH; corresponding to an absolute humidity of 21.2 g?m-3); 50 °C and 26% RH (21.5 g?m-3); and 50 °C and 70%RH (57.9 g?m-3). These can be well described using a simplified solution of the second Fick equation[15]with the following form:

    where M∞is the EMC and K is a constant that contains the diffusion coefficient and a geometric factor.

    Since the scale of the encapsulant film thickness h is much smaller than its area, we may consider the film as an infinitely large plate; thus, the moisture only diffuses perpendicularly through the film surface into the film.The constant K is therefore a quotient of the diffusion coefficient D against 4h2[15].Due to the multilayer structure,we further developed Eq.(2)for our case as follows:

    Fig. 1. Moisture absorption by EAA pellets, ionomer pellets, and ionomer-based encapsulant at (a) 30 °C and 70% RH (21.2 g?m-3); (b) 50 °C and 26% RH(21.5 g?m-3);and(c)50°C and 70%RH(57.9 g?m-3).The blue and red dashed lines are fitting curves according to Eq. (2), and the black dashed line is a curve-fit according to Eq. (3).

    where xEAAand xionomer=1-xEAArepresent the content of the EAA and the ionomer,respectively.Using Eqs.(1)and(2),we graphically determined the key parameters to describe the moisture absorption process in both the raw materials and the encapsulant, as listed in Tables 1 and 2, respectively.

    The moisture absorption in the investigated encapsulant is due to the fact that the COO-Me+groups in the ionomer are highly polar, with a strong hydrophilic character. Kutsumizu et al. [16]concluded by analyzing sodium-neutralized EAA that each COO-Na+ion pair is able to absorb three water molecules in its vicinity to build a tightly bonded primary hydration shell. As absorption proceeds, the excess water molecules locate around the primary hydration shell.Based on our results,shown in Table 1,we confirm that the polar ionomer is able to absorb more water molecules than the less polar EAA. For the same reason, themobility of the water molecules trapped by the COO-Me+ion pair in the ionomer is significantly suppressed, resulting in a much smaller diffusion coefficient (corresponding to a lower WVTR). In 2010,Kempe et al.[14]experimentally characterized the moisture permeation in laminated glasses with different encapsulants.Considering the moisture permeation as a one-dimensional diffusion-controlled process, they determined the diffusion coefficient of water in their investigated ionomer at 85 °C and 85%RH to be 1.25×10-4mm2?s-1(this result is calculated according to the data in Ref. [14]), which is more than one magnitude smaller than the values in EVA (4.01 × 10-3mm2?s-1) and PVB(1.74 × 10-3mm2?s-1), and is in reasonable agreement with our results in Table 2.

    Table 1 EMC M∞and constant K of EAA and ionomer pellets, and the adjusted R2 obtained by fitting the experimental results illustrated in Figs. 1(a)-(c).

    Table 2 EMC of each of the components, MEAA,∞and Mionomer,∞, in the encapsulation film; diffusion coefficient of the water molecules DEAA and Dionomer; and the adjusted R2 obtained by fitting the experimental results illustrated in Figs. 1(a)-(c).

    The establishment of thermodynamic equilibrium is preceded by the homogenization of the absorbed water molecules in the material, which is a diffusion-controlled process. Under constant relative humidity, a higher temperature increases the diffusion coefficient of the water molecules, causing the absorption or desorption to reach its equilibrium faster (results shown in Figs. 1(a)-(c)).

    3.2. Moisture desorption

    As mentioned above, an encapsulant with saturated moisture content can release the absorbed water molecules if the air humidity of its surroundings decreases.This phenomenon is clearly indicated by the results shown in Fig. 2. As can be seen, although the EMC in the samples is initially unequal, the temporal developments of the moisture content are similar. This means that the kinetics of moisture desorption, and therefore the rate constant of desorption kdes, are independent of the amount of adsorbed water molecules.Hence,we describe this kind of water desorption by using the Kissinger analysis for the first-order homogeneous reaction [17] with the following form:

    3.3. Absorption isotherm

    Fig. 3 schematically describes the influence of RH on the moisture content at equilibrium M∞in the ionomer pellet samples according to our current experimental results.The red dashed line is a guideline for the eye, based on the Hailwood-Horrobin equation [18]:

    Fig. 2. Moisture desorption of the ionomer-based encapsulant, whose moisture content was saturated at room temperature under two different air humidities.Moisture desorption was realized by storing these samples at room temperature with significantly lower air humidity.The normalized moisture contents,according to the saturated value, are plotted against the storage duration and fitted with a black dashed curve using Eq. (4).

    Fig. 3. Sorption isotherm of water molecules for ionomer pellets at 50 °C. The results at 26%RH and 70%RH are graphically determined and listed in Table 1.The result at 7.5%RH was calculated through our previous work(not published).Results are fitted with a red dashed curve using Eq. (5).

    A, B, and C represent the temperature-related constants,respectively.

    Although a more accurate fitting is lacking, the red dashed line in Fig. 3, with A = 0.5278, B = 2.6516, and C = 4.0345, indicates a significant increase of EMC in the ionomer if the relative air humidity is greater than 60%.The line further serves as a guideline for the manufacture of both the encapsulant and the module, in order to control air humidity during production.

    3.4. Self-breathing encapsulant

    In regard to the spontaneous moisture absorption and desorption, as discussed above, it is reasonable to consider the investigated ionomer-based encapsulant as a self-breathing material that depends on air humidity: During the daytime, when there is comparative higher relative air humidity, the encapsulant absorbs moisture. Thanks to the low diffusion coefficient, as listed in Table 2, most of the absorbed water molecules are concentrated on the very outer edge of the PV module. During the night, the lower air humidity reverses the direction of the thermodynamic process;thus,the encapsulant releases moisture.Therefore,as long as the edge area is wide enough(which is also essential for insulation distance),moisture can scarcely reach the cells under conventional application conditions, and no edge sealing is required.

    Compared with other conventional moisture-absorbing encapsulants such as EVA and PVB, we emphasize that the selfbreathing function of the ionomer-based encapsulant exhibits two practical and essential advantages: ①No hydrolysis reaction exists, and moisture absorption and desorption in the ionomerbased encapsutant are completely reversible; and ②the diffusion coefficient of water in the ionomer is significantly lower than that in EVA and PVB, as discussed in Section 3.1. Although water diffusion in EAA is comparatively faster,the EMC of EAA,which is about 0.02%, is negligible.Hence, as the presented encapsulant is a combination of these two components,the water penetration depth in it will be much smaller than that in EVA and PVB under the same conditions. According to the results in Ref. [14], 10 h is roughly sufficient for water molecules to penetrate a distance of 10 mm in EVA and PVB at 85°C and 85%RH.As certificated by TüV Rheinland, we report that, after a standard 1000 h of damp heat treatment, the power degradation of our CIGS modules, which have an edge width of 8.4 mm and use the ionomer-based encapsulant,is less than 5%, which fulfills the regulation of the international electrotechnical commission standards (IEC 61730).

    4. Conclusions

    In the present work, we have introduced a promising ionomerbased encapsulant, which is able to spontaneously absorb and/or desorb moisture. This process is thermodynamically driven by the RH of the environment. Furthermore, since the temperaturedepended diffusion coefficient of water molecules is relatively low due to the polar nature of the COO-Me+groups in the ionomer,the encapsulant is able to‘‘inhale”moisture when the air humidity is high, and ‘‘exhale” it when the air humidity decreases, without letting the moisture ingress into the cells.

    Acknowledgements

    The support from our partner company in providing the ionomer-based encapsulant samples and the corresponding raw materials as well as the permission for material analysis is fruitfully acknowledged. Special thanks are due to Dr. Gernot Oreski from Polymer Competence Center Leoben GmbH (Austra)for the helpful discussions.

    Compliance with ethics guidelines

    Miao Yang, Raymund Sch?ffler, Tobias Repmann, and Kay Orgassa declare that they have no conflict of interest or financial conflicts to disclose.

    悠悠久久av| 在线十欧美十亚洲十日本专区| 成人永久免费在线观看视频| 国产午夜精品论理片| 国产熟女xx| 亚洲成av人片在线播放无| 久久精品国产综合久久久| 成人永久免费在线观看视频| 免费无遮挡裸体视频| 精品国产超薄肉色丝袜足j| 日本黄大片高清| 久久久久亚洲av毛片大全| 亚洲国产精品sss在线观看| 男女做爰动态图高潮gif福利片| 久久精品夜夜夜夜夜久久蜜豆| 久久中文看片网| 琪琪午夜伦伦电影理论片6080| 少妇裸体淫交视频免费看高清| 久久6这里有精品| 久久久色成人| 久久久久性生活片| 精品午夜福利视频在线观看一区| www.熟女人妻精品国产| 成人一区二区视频在线观看| 欧美高清成人免费视频www| 日本熟妇午夜| 色综合婷婷激情| 窝窝影院91人妻| 国产午夜精品论理片| 国产乱人伦免费视频| 日本黄色视频三级网站网址| 亚洲专区中文字幕在线| 亚洲欧美日韩无卡精品| 黄色女人牲交| 久久香蕉国产精品| 国产精品精品国产色婷婷| 亚洲av熟女| 在线观看午夜福利视频| 欧美日韩一级在线毛片| 欧美中文日本在线观看视频| 亚洲不卡免费看| 看免费av毛片| 欧美乱色亚洲激情| 在线观看66精品国产| 悠悠久久av| 欧美av亚洲av综合av国产av| 国产91精品成人一区二区三区| 亚洲无线在线观看| а√天堂www在线а√下载| www.www免费av| 亚洲成人久久爱视频| 亚洲av不卡在线观看| 日日夜夜操网爽| 搡老熟女国产l中国老女人| 亚洲国产精品合色在线| 成人特级黄色片久久久久久久| 一区二区三区高清视频在线| 亚洲美女黄片视频| 日韩欧美一区二区三区在线观看| 国产一区二区激情短视频| 51午夜福利影视在线观看| 男人的好看免费观看在线视频| 国产成人av教育| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩高清在线视频| 内射极品少妇av片p| 动漫黄色视频在线观看| 免费看a级黄色片| 国产91精品成人一区二区三区| 国产一区二区三区在线臀色熟女| 亚洲国产精品成人综合色| 男人和女人高潮做爰伦理| 色视频www国产| 国产精品一区二区免费欧美| 搡老熟女国产l中国老女人| 欧美日韩综合久久久久久 | 亚洲av第一区精品v没综合| 在线观看午夜福利视频| 99热6这里只有精品| 欧洲精品卡2卡3卡4卡5卡区| 久久久精品大字幕| 亚洲一区二区三区不卡视频| 在线天堂最新版资源| 女人高潮潮喷娇喘18禁视频| 免费av毛片视频| 俄罗斯特黄特色一大片| 99riav亚洲国产免费| 麻豆国产av国片精品| 性欧美人与动物交配| 久久久久久久亚洲中文字幕 | 手机成人av网站| 亚洲专区中文字幕在线| 搡女人真爽免费视频火全软件 | 一个人免费在线观看的高清视频| 日韩av在线大香蕉| 精品熟女少妇八av免费久了| 99热这里只有精品一区| 麻豆一二三区av精品| 国产精品98久久久久久宅男小说| 好男人电影高清在线观看| 99久久精品热视频| 舔av片在线| 禁无遮挡网站| 99久国产av精品| 国产探花在线观看一区二区| 亚洲色图av天堂| 亚洲 国产 在线| 国产蜜桃级精品一区二区三区| 亚洲av电影在线进入| a在线观看视频网站| 欧美3d第一页| 免费人成在线观看视频色| 成人国产综合亚洲| 亚洲 国产 在线| 宅男免费午夜| 狠狠狠狠99中文字幕| 在线观看日韩欧美| 成人18禁在线播放| 在线观看舔阴道视频| 亚洲中文字幕一区二区三区有码在线看| 美女免费视频网站| 国产三级黄色录像| 天天躁日日操中文字幕| 女警被强在线播放| 国产精品永久免费网站| 99久久99久久久精品蜜桃| 99视频精品全部免费 在线| 村上凉子中文字幕在线| 亚洲熟妇中文字幕五十中出| 成人午夜高清在线视频| 免费在线观看亚洲国产| 精品久久久久久久久久免费视频| 岛国在线观看网站| 国产精品影院久久| 亚洲熟妇中文字幕五十中出| svipshipincom国产片| 亚洲国产日韩欧美精品在线观看 | 老鸭窝网址在线观看| x7x7x7水蜜桃| 亚洲av成人精品一区久久| 少妇高潮的动态图| 最好的美女福利视频网| 老汉色av国产亚洲站长工具| 母亲3免费完整高清在线观看| 色av中文字幕| netflix在线观看网站| 国产视频一区二区在线看| 国产真实伦视频高清在线观看 | 免费av观看视频| 午夜福利在线观看免费完整高清在 | 中国美女看黄片| 狂野欧美激情性xxxx| 一级毛片高清免费大全| 午夜两性在线视频| 国产真人三级小视频在线观看| 一个人免费在线观看的高清视频| 男人和女人高潮做爰伦理| 高清在线国产一区| 手机成人av网站| 亚洲成人免费电影在线观看| 日韩成人在线观看一区二区三区| 亚洲国产欧美人成| 亚洲最大成人手机在线| 内地一区二区视频在线| 国产伦一二天堂av在线观看| 久久久久久九九精品二区国产| 日韩欧美三级三区| 夜夜爽天天搞| 久久草成人影院| 久久精品国产综合久久久| 国产精品综合久久久久久久免费| 在线观看一区二区三区| 在线观看美女被高潮喷水网站 | 夜夜爽天天搞| 欧美中文日本在线观看视频| 中文资源天堂在线| 日韩免费av在线播放| 深夜精品福利| 免费看十八禁软件| 精品日产1卡2卡| 中文字幕高清在线视频| 国产高清视频在线播放一区| 97超视频在线观看视频| 亚洲七黄色美女视频| 美女 人体艺术 gogo| 夜夜躁狠狠躁天天躁| 国产精品亚洲一级av第二区| 国产精品av视频在线免费观看| 乱人视频在线观看| 国产美女午夜福利| 99热精品在线国产| 欧美日韩黄片免| 亚洲,欧美精品.| 欧美xxxx黑人xx丫x性爽| 亚洲国产中文字幕在线视频| 国产精品国产高清国产av| 色在线成人网| 亚洲av电影在线进入| 51国产日韩欧美| 欧美最黄视频在线播放免费| 亚洲精品在线美女| 免费av毛片视频| 最近最新免费中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产亚洲av涩爱 | 国产精品野战在线观看| 亚洲中文字幕一区二区三区有码在线看| 色综合亚洲欧美另类图片| 免费搜索国产男女视频| 亚洲人成网站在线播| 欧美不卡视频在线免费观看| 国产真人三级小视频在线观看| 国产黄色小视频在线观看| 中文字幕精品亚洲无线码一区| 成人一区二区视频在线观看| 老汉色∧v一级毛片| 中文字幕人妻丝袜一区二区| 免费观看的影片在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 麻豆一二三区av精品| 亚洲人成网站在线播放欧美日韩| 国产精品av视频在线免费观看| 最近最新中文字幕大全免费视频| 国产v大片淫在线免费观看| 国产精品99久久久久久久久| 午夜免费成人在线视频| 久久久国产精品麻豆| 黄色片一级片一级黄色片| 麻豆一二三区av精品| 成人国产一区最新在线观看| 亚洲无线在线观看| 久久久久性生活片| 搡老熟女国产l中国老女人| 2021天堂中文幕一二区在线观| 亚洲无线在线观看| 99热6这里只有精品| 韩国av一区二区三区四区| 国产野战对白在线观看| 超碰av人人做人人爽久久 | 99国产精品一区二区三区| 少妇人妻一区二区三区视频| 观看美女的网站| 蜜桃亚洲精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人精品中文字幕电影| 国产伦人伦偷精品视频| 久久精品国产99精品国产亚洲性色| 又黄又粗又硬又大视频| av欧美777| 老汉色∧v一级毛片| 国产精品久久久久久精品电影| 性色avwww在线观看| 国产在线精品亚洲第一网站| 国产精品亚洲一级av第二区| 99热只有精品国产| 真人一进一出gif抽搐免费| 国产色婷婷99| 久久久久久九九精品二区国产| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 国产午夜精品论理片| 亚洲精品成人久久久久久| 亚洲七黄色美女视频| 国产久久久一区二区三区| h日本视频在线播放| 亚洲激情在线av| 久久九九热精品免费| 可以在线观看毛片的网站| 免费看a级黄色片| 久久6这里有精品| 欧美丝袜亚洲另类 | 亚洲午夜理论影院| 国内少妇人妻偷人精品xxx网站| 91麻豆精品激情在线观看国产| 男人的好看免费观看在线视频| 蜜桃久久精品国产亚洲av| 青草久久国产| 欧美黄色淫秽网站| 欧美不卡视频在线免费观看| 美女黄网站色视频| 午夜福利视频1000在线观看| 久久久久久久亚洲中文字幕 | 网址你懂的国产日韩在线| 黄片小视频在线播放| 在线观看日韩欧美| 内射极品少妇av片p| 国产主播在线观看一区二区| 亚洲最大成人手机在线| 国产av麻豆久久久久久久| 精品人妻1区二区| 岛国在线免费视频观看| 一本精品99久久精品77| 日韩欧美 国产精品| av在线天堂中文字幕| 婷婷丁香在线五月| 在线观看免费视频日本深夜| 一二三四社区在线视频社区8| 三级毛片av免费| 欧美绝顶高潮抽搐喷水| 午夜a级毛片| 久久午夜亚洲精品久久| 看黄色毛片网站| 少妇人妻一区二区三区视频| 18美女黄网站色大片免费观看| 亚洲欧美日韩高清在线视频| 波多野结衣高清无吗| 免费搜索国产男女视频| 亚洲人成网站高清观看| 大型黄色视频在线免费观看| av在线天堂中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕一区二区三区有码在线看| 90打野战视频偷拍视频| 99久久综合精品五月天人人| 99视频精品全部免费 在线| 亚洲av免费在线观看| 国产中年淑女户外野战色| 国产精品乱码一区二三区的特点| 黄色女人牲交| 日韩有码中文字幕| 一个人看视频在线观看www免费 | 国内久久婷婷六月综合欲色啪| 国产99白浆流出| 乱人视频在线观看| av黄色大香蕉| ponron亚洲| 国产黄色小视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成网站在线播放欧美日韩| 19禁男女啪啪无遮挡网站| 欧美3d第一页| 精品不卡国产一区二区三区| 亚洲国产欧美人成| 内地一区二区视频在线| 免费在线观看影片大全网站| 精品免费久久久久久久清纯| 99热这里只有是精品50| 人人妻人人澡欧美一区二区| 中亚洲国语对白在线视频| 国产精品野战在线观看| 日韩 欧美 亚洲 中文字幕| 精品欧美国产一区二区三| 香蕉久久夜色| www.色视频.com| xxxwww97欧美| 在线天堂最新版资源| 国内毛片毛片毛片毛片毛片| 日韩欧美国产在线观看| 欧美+亚洲+日韩+国产| 69av精品久久久久久| 欧美一级a爱片免费观看看| 日韩免费av在线播放| 美女cb高潮喷水在线观看| 亚洲人成网站在线播放欧美日韩| 黄片大片在线免费观看| 精品一区二区三区视频在线观看免费| 亚洲最大成人手机在线| 国产高潮美女av| 欧美乱妇无乱码| 精品国产超薄肉色丝袜足j| 桃红色精品国产亚洲av| 99视频精品全部免费 在线| 在线观看午夜福利视频| 久久精品91蜜桃| 桃红色精品国产亚洲av| 人妻夜夜爽99麻豆av| 1024手机看黄色片| 日韩人妻高清精品专区| 99久久精品国产亚洲精品| 中文字幕av成人在线电影| 亚洲精品影视一区二区三区av| 亚洲欧美日韩高清在线视频| 欧美av亚洲av综合av国产av| 国产亚洲av嫩草精品影院| 少妇熟女aⅴ在线视频| 97超视频在线观看视频| 国产精品亚洲av一区麻豆| 精品一区二区三区视频在线观看免费| 亚洲av第一区精品v没综合| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩无卡精品| 亚洲成av人片免费观看| 内射极品少妇av片p| 99精品欧美一区二区三区四区| 国产成人欧美在线观看| 国产午夜福利久久久久久| 日本免费a在线| 天堂网av新在线| 午夜a级毛片| aaaaa片日本免费| 国产精品久久久久久久电影 | 在线播放无遮挡| 亚洲,欧美精品.| 国产v大片淫在线免费观看| 国产高潮美女av| 中国美女看黄片| 国产精品亚洲美女久久久| 三级男女做爰猛烈吃奶摸视频| 香蕉av资源在线| 首页视频小说图片口味搜索| 三级国产精品欧美在线观看| 亚洲七黄色美女视频| 国产av麻豆久久久久久久| 黄色女人牲交| 夜夜夜夜夜久久久久| 我的老师免费观看完整版| 精品免费久久久久久久清纯| 亚洲在线自拍视频| 啦啦啦免费观看视频1| 国产成人aa在线观看| 一级黄色大片毛片| 国产黄色小视频在线观看| 精品国内亚洲2022精品成人| 久久精品国产亚洲av香蕉五月| 国产中年淑女户外野战色| 成人特级黄色片久久久久久久| 性色av乱码一区二区三区2| 国产精品电影一区二区三区| www.色视频.com| 国产成人欧美在线观看| 国产爱豆传媒在线观看| www.www免费av| 国产乱人伦免费视频| 18禁在线播放成人免费| 99精品在免费线老司机午夜| 一进一出好大好爽视频| 亚洲第一欧美日韩一区二区三区| 日韩人妻高清精品专区| 日本一二三区视频观看| 亚洲最大成人中文| 琪琪午夜伦伦电影理论片6080| 一本精品99久久精品77| 欧美在线黄色| 很黄的视频免费| 国产一区二区三区视频了| 天天躁日日操中文字幕| 又黄又粗又硬又大视频| 中文字幕熟女人妻在线| 国产成人av激情在线播放| xxxwww97欧美| 国产成+人综合+亚洲专区| 日本精品一区二区三区蜜桃| 亚洲不卡免费看| 亚洲成人精品中文字幕电影| 亚洲最大成人手机在线| 亚洲精品一卡2卡三卡4卡5卡| 国内毛片毛片毛片毛片毛片| 国产伦精品一区二区三区四那| 久久久成人免费电影| 性欧美人与动物交配| 欧美+亚洲+日韩+国产| 国产精品嫩草影院av在线观看 | 亚洲av电影在线进入| 中文字幕久久专区| 精品国产美女av久久久久小说| 特大巨黑吊av在线直播| 男女午夜视频在线观看| 国产精品美女特级片免费视频播放器| 成人特级黄色片久久久久久久| 母亲3免费完整高清在线观看| 国产精品99久久久久久久久| 亚洲av电影在线进入| 国产激情欧美一区二区| 在线免费观看的www视频| 欧美中文综合在线视频| 久久欧美精品欧美久久欧美| 麻豆国产av国片精品| 国产一区二区三区视频了| 一边摸一边抽搐一进一小说| 激情在线观看视频在线高清| 少妇裸体淫交视频免费看高清| 在线国产一区二区在线| 女生性感内裤真人,穿戴方法视频| 日本一本二区三区精品| 18禁国产床啪视频网站| svipshipincom国产片| eeuss影院久久| 欧美黄色淫秽网站| 国产av在哪里看| 51国产日韩欧美| 国内少妇人妻偷人精品xxx网站| tocl精华| 成年女人看的毛片在线观看| 在线观看午夜福利视频| 亚洲av二区三区四区| 日韩av在线大香蕉| 成人高潮视频无遮挡免费网站| 制服丝袜大香蕉在线| 在线播放无遮挡| 亚洲av电影在线进入| 波多野结衣巨乳人妻| 国产三级黄色录像| 免费在线观看日本一区| 亚洲av美国av| 国产精品一区二区免费欧美| 色吧在线观看| 国产 一区 欧美 日韩| 国产蜜桃级精品一区二区三区| 蜜桃久久精品国产亚洲av| 午夜福利欧美成人| 91麻豆av在线| 国产成人系列免费观看| 国产成人欧美在线观看| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| 亚洲乱码一区二区免费版| 国内精品久久久久久久电影| 国产av在哪里看| 国产日本99.免费观看| 婷婷精品国产亚洲av在线| 三级毛片av免费| 亚洲av成人不卡在线观看播放网| 国产美女午夜福利| 伊人久久大香线蕉亚洲五| bbb黄色大片| 在线观看av片永久免费下载| 别揉我奶头~嗯~啊~动态视频| 国产高清视频在线播放一区| 日韩有码中文字幕| 97碰自拍视频| 免费在线观看成人毛片| 国产av在哪里看| 欧美丝袜亚洲另类 | 国产精品野战在线观看| 国产成人福利小说| 免费一级毛片在线播放高清视频| 床上黄色一级片| 免费一级毛片在线播放高清视频| 久久久久久久午夜电影| 麻豆一二三区av精品| 90打野战视频偷拍视频| 亚洲成av人片在线播放无| 极品教师在线免费播放| 无限看片的www在线观看| 日本a在线网址| 757午夜福利合集在线观看| 亚洲aⅴ乱码一区二区在线播放| 又黄又爽又免费观看的视频| 欧美在线一区亚洲| 欧美日韩精品网址| 午夜老司机福利剧场| 一区二区三区激情视频| 禁无遮挡网站| 99久久久亚洲精品蜜臀av| 亚洲成人久久爱视频| 神马国产精品三级电影在线观看| 一级黄片播放器| 最好的美女福利视频网| 国产成人欧美在线观看| 一a级毛片在线观看| 内地一区二区视频在线| 久久精品国产清高在天天线| 久久国产精品人妻蜜桃| 五月玫瑰六月丁香| 国产精品野战在线观看| 中文字幕熟女人妻在线| 日韩国内少妇激情av| 亚洲黑人精品在线| 韩国av一区二区三区四区| 超碰av人人做人人爽久久 | 日本 av在线| 国产aⅴ精品一区二区三区波| 久久久久久久久久黄片| 国产探花在线观看一区二区| 淫秽高清视频在线观看| 国产午夜精品论理片| 成人午夜高清在线视频| 欧美最新免费一区二区三区 | 日本免费a在线| 免费无遮挡裸体视频| 狠狠狠狠99中文字幕| 婷婷亚洲欧美| 一边摸一边抽搐一进一小说| 身体一侧抽搐| 亚洲人成伊人成综合网2020| 日韩成人在线观看一区二区三区| 亚洲不卡免费看| 男女床上黄色一级片免费看| 亚洲av中文字字幕乱码综合| 精品久久久久久久毛片微露脸| 在线十欧美十亚洲十日本专区| 丝袜美腿在线中文| 亚洲 欧美 日韩 在线 免费| 一进一出抽搐动态| 男女午夜视频在线观看| 精品久久久久久成人av| 日韩欧美三级三区| 麻豆一二三区av精品| 精品免费久久久久久久清纯| 麻豆成人av在线观看| 麻豆国产av国片精品| 女人高潮潮喷娇喘18禁视频| 午夜福利成人在线免费观看| 久久中文看片网| 一级毛片高清免费大全| 精品免费久久久久久久清纯| 在线观看免费视频日本深夜| 99精品久久久久人妻精品| 亚洲美女黄片视频| 日本在线视频免费播放| 亚洲熟妇熟女久久| 欧美乱码精品一区二区三区| 亚洲精品影视一区二区三区av| 免费在线观看影片大全网站| 国产成人欧美在线观看| 国产91精品成人一区二区三区| 国产欧美日韩精品一区二区| 69人妻影院| 国产午夜福利久久久久久| aaaaa片日本免费| 久久精品夜夜夜夜夜久久蜜豆| 国内精品久久久久精免费| 国内毛片毛片毛片毛片毛片| 婷婷精品国产亚洲av| 一进一出抽搐动态|