• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of Apple Marssonina Blotch with PLSR, PCA, andLDA Using Outdoor Hyperspectral Imaging

    2020-05-07 09:10:26SooHyunParkYoungkiHongMubarakatShuaibuSangcheolKimWonSukLee
    光譜學(xué)與光譜分析 2020年4期

    Soo Hyun Park, Youngki Hong, Mubarakat Shuaibu, Sangcheol Kim, Won Suk Lee*

    1. Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States 2. Department of Agricultural Engineering, National Academy of Agricultural Science, RDA, Jeonju 55365, South Korea 3. Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung-si, Gangwon-do 25451, South Korea

    Abstract In this study, hyperspectral images were used to detect a fungal disease in apple leaves called Marssonina blotch (AMB). Estimation models were built to classify healthy, asymptomatic and symptomatic classes using partial least squares regression (PLSR), principal component analysis (PCA), and linear discriminant analysis (LDA) multivariate methods. In general, the LDA estimation model performed the best among the three models in detecting AMB asymptomatic pixels, while all the models were able to detect the symptomatic class. LDA correctly classified asymptomatic pixels and LDA model predicted them with an accuracy of 88.0%. An accuracy of 91.4% was achieved as the total classification accuracy. The results from this work indicate the potential of using the LDA estimation model to identify asymptomatic pixels on leaves infected by AMB.

    Keywords Apple Marssonina blotch; Hyperspectral imaging; PLSR; PCA; LDA

    Introduction

    AppleMarssoninablotch(AMB), caused by the fungusDiplocarponmali, is one of the most severe apple diseases known and it is widely distributed in South Korea[1-2]. Symptoms initially appear as brownish spots which later become darker and surrounded by chlorotic regions. The disease leads to defoliation during the growing season, thereby weakening tree vigor and diminishing fruit yield and quality[3]. AMB mainly infects leaves, but in severe situations, it can also attack twigs and fruits. The disease poses a serious problem to major apple producing regions due to the fact that it occurs in consecutive years and it is difficult to detect and control[4-5]. The early symptomatic stage of the disease is particularly challenging to detect by the human eye and symptoms might differ significantly by apple variety. Worst still, even if it is detected and sprayed with fungicides at the early symptomatic stage, it might be too late to save the tree owing to the fast developing speed of AMB. Due to these challenges, most Korean apple growers spray AMB fungicides in advance of favorable conditions for disease infection before the summer months[6]. This could lead to a waste in the use of fungicides, enhance fungicide resistance and also lead to environmental pollution. As a result, the development of AMB detection methods and determination of optimal timing for fungicide spray are needed to reduce fungicide usage.

    Nondestructive measurement techniques have been developed to overcome the disadvantages of the conventional invasive methods, in recent years, hyperspectral imaging technology has been developed as an effective inspection tool for quality and safety assessment of a variety of agricultural products[7-10]. It is generally non-destructive, reliable, and carries abundant data. There are several studies concerning the application of this technique for sensing fungal diseases including detection of black spots on citrus[11-12], fungal inspection in stored canola[13], fungal infection and development in corn kernels[14-15], damages by Fusarium in wheat and oats kernels[16-17], and black pox symptom on apple surface. These studies have shown the feasibility of hyperspectral imaging for identifying symptoms in crops through image or spectroscopic processing. However, the potential of hyperspectral imaging technique has not yet been studied in the detection of AMB in apple tree leaves. Thus, the main objective of this study was to develop detection methods for AMB diseased leaves using hyperspectral images. The specific objective of the study was to investigate various classification and estimation methods for separating healthy, asymptomatic and symptomatic regions on apple leaves using spectral reflectance data.

    1 Experimental procedure

    1.1 Experimental setup and data acquisition

    The experimental apple orchard from which hyperspectral images were acquired was located in the Apple Research Institute at Gunwi, Gyeongsangbuk-do province, South Korea. The apple cultivar used in this study was Fuji/M.9; the trees were inoculated with AMB spores three months before data acquisition. A cluster comprising of twelve leaves on a single tree branch was selected to be imaged for this study and was imaged once every five to nine days between October 14 and October 28, 2014. This was done so as to track the progression of the disease on the leaves.

    A hyperspectral camera (PS-V10E, Specim, Finland) was used in acquiring hyperspectral images for the range of 400~1 000 nm and it is shown in Fig.1. The hyperspectral camera was mounted on a tripod of 70 cm in height. A black cloth was placed on the ground to prevent confusing weeds for apple leaves. A reflectance panel, with 99% reflectance , was placed on the black cloth for radiometrically correcting the images to reflectance. Images were exported to the Environment for Visualizing Images (ENVI version 5.2, EXELIS, Colorado, USA) software for further processing and extraction of reflectance spectra.

    Pixels on the apple leaves were classified into four classes: healthy green leaf (HG), healthy green vein (HGV), AMB asymptomatic (ASYM), and AMB symptomatic (SYM). The number of pixels extracted for each class is given in Table 1. The reason why HGV was included as one of the classes was because its color was similar to the color of the early symptomatic pixels. HG pixels were collected from regions far away from the symptomatic area, and HGV pixels were collected in the vein regions of the leaves. ASYM pixels were chosen from the earlier image than an image which had a developing symptomatic or new symptomatic pixels. According to the hyperspectral images acquired over time, features of developing AMB symptoms appeared as shown in Fig.2. Based on the overlapped symptomatic image of 3 stage images by time, ASYM pixels were chosen from the not-overlapped area as shown in Fig.3. In addition, pixels at the same location of the same leaf where new symptoms occurred one week later were also selected as ASYM pixels.

    Fig.1 Hyperspectral imaging system setup for appletree leaves imaging in experimental site

    Table 1 Names and the number of pixels for each class

    1.2 Data analysis

    White and dark references were captured in hyperspectral images in order to correct the acquired images to reflectance.

    Flat-field correction was performed on the original hyperspectral images using Eq. (1) defined below:

    (1)

    whereRCis the corrected reflectance,RRAWis the original sample image,RWHITEandRDARKwere the reference image obtained from white and dark references, respectively[18]. The dark reference was acquired digitally by SpectralDAQ (version 3.62, SPECIM, Spectral Imaging Ltd., Oulu, Finland). A reflectance factor of 100% for the white reference was used in this study for simplification, although the reflectance panel had a reflectance value of 99% across the wavelength range covered by the hyperspectral imaging system. The procedures used in this study for the hyperspectral images analysis are shown in Fig.4.

    Fig.2 An example to explain to select asymptomatic pixels using hyperspectral images of developingAMB symptoms over time and enlargements (polygon area means symptomatic area)

    Fig.3 How to make the overlapped images using developing symptomatic areas

    Fig.4 Steps taken in hyperspectral image analysis

    Matlab (R2015a, MathWorks, Natick, MA) was used to conduct partial least squares regression (PLSR), principal component analysis (PCA), and linear discriminant analysis (LDA) to the extracted reflectance spectra in range of 400 to 1 000 nm. The estimation model was developed with four linear discriminants from LDA classifiers. Results were represented in terms of score plots and coefficient of determination (R2) of cross-validation of the estimation model performance.

    2 Results and Discussion

    The average reflectance spectra of each class are shown in Fig.5. The other three classes, except for the symptomatic class, had a similar signature, especially around 555 nm and over 750 nm. Unlike the other classes, AMB symptomatic (SYM) spectra did not possess a peak between 495 and 570 nm due to the absence of chlorophyll in symptomatic regions. Based on the aforementioned characteristic, the SYM class can easily be separated from the other classes. PLSR, PCA, and LDA were conducted for effective separation and prediction and these estimation models were performed with the test set.

    First, PLSR and PCA were conducted to minimize spectroscopic interference and noise. For the most part, the results derived from PCA and PLSR were similar. PLSR and PCA explained 95.9% and 96.8% of the training set variation with four principal components, respectively. Figure 6 shows the first three latent variable (LV) from reflectance spectra, and it indicates that the PLSR model could efficiently classify pixels of SYM against pixels of HG, HGV and ASYM. However, pixels of ASYM should be recognized against other classes in order to develop a model to identify the early symptoms on apple leaves. The SYM class was separated easily from the other classes due to its distinct color and reflectance spectra. However, ASYM class could not be easily separated from the HG class using PLSR due to similarity in their color and spectra.

    Fig.5 Average spectra by classification

    Fig.6 Score plot between leaf pixels in terms of the principal components from PLSR

    PCA was performed to ideotify four classes. The PC1, PC2, and PC3 scores plots, shown in Fig.7, contained the greatest amount of variability in the data set, and as a result, they were used in discriminating among the classes. PCA showed similar performance results as those of PLSR. Score plots indicated that PCA could classify pixels of SYM against pixels of other classes. Just as was the case in the PLSR analysis, the ASYM class could hardly be separated from the other classes. Score plots of PCA performed less efficiently than the score plots of PLSR in separating the classes, since SYM was distributed in wide area and overlapped more with HG and ASYM in spacious plain.

    Fig.7 Score plots between leaf pixels in termsof the principal components from PCA

    Cross-validation results used in identifying the four classes from both PLSR and PCA analyses are shown in Fig.8. The PLSR estimation model performed better becauseR2of estimation models using PLSR and PCA were 0.57 and 0.36, respectively. Based on the estimation model performances, PLSR and PCA models could be suitable to separate SYM pixels against pixels of HG, HGV and ASYM. However, both models showed high separation error for ASYM class. Further analysis should be considered so as to ensure the ASYM class can easily be separated from the other classes.

    Fig.8 Cross-validation results to identify 4 classes using PLSR (a) and PCA (b)

    LDA is closely related to both PCA and factor analysis in that they all look for linear combinations of variables that explain the data well. LDA explicitly attempts to model the differences between classes while PCA does not take into account any difference between classes, it provides only a visualization of the variability of the data, does not imply any clustering, although formation of sample groups could be a possible result[19]. Score plots with the liner discriminants from LDA are shown in Fig.9. Based on the score plot formation, LDA performed better in separating the classes than PLSR and PCA. In particular, ASYM pixels were separated against the other three classes. Additionally, the reflectance taken from ASYM seems to be separated from HG effectively. Thereby, cross-validation was applied to verify the estimation model using LDA scores.

    Fig.9 Score plots between leaf pixels in terms of the liner discriminants (LD) from LDA

    The LDA score plots and cross-validation results are shown in Fig.10, and Table 2 shows the classification accuracy and error obtained for each class using thresholds of 1.7, 2.1, and 3.6. TheR2of estimation model using LDA scores was 0.81. It performed better compared toR2achieved using PLSR and PCA estimation models. In particular, the classification accuracy obtained for ASYM class was 88%, and 11.8% of SYM samples were misclassified as healthy pixels (HG and HGV). Comparing the classification accuracy achieved for the ASYM class with results obtained by other researchers who have studied similar fungal diseases, the results from this analysis were not as high as some others. Bulanon et al.[11]obtained an accuracy of 96% for citrus black spot detection , Senthilkumar et al.[13]achieved over 92% classification accuracy for infected canola seeds, and Tallada et al.[14]reported 98% detection accuracy of uninfected corn kernels. However, the AMB asymptomatic area on leaves is very difficult to characterize since they have the same color as healthy leaves. Considering that asymptomatic diseased leaves are hardly ever spotted by the human eyes, the developed estimation model using LDA has the potential for being used for identification of asymptomatic regions of leaves infected by AMB.

    Fig.10 Cross-validation result of linier estimationmodel using LD scores

    Table2NumberofpixelsandclassificationratesinperformanceofestimationmodelusingLDAscores

    WActual classHGHGVASYMSYMSumEstimatedclassHG8133482601 187HGV42759714201 166ASYM771801 2531621 672SYM0031 7111 714Sum1 3171 1251 4241 8735 739Classification accuracy/%61.753.188.088.091.4Classification error/%38.346.912.012.08.6

    3 Conclusion

    In this study, multivariate data analysis of hyperspectral images was applied to identify four different classes of apple leaves which were healthy green leaf (HG), healthy green vein (HGV), AMB asymptomatic (ASYM), and AMB symptomatic (SYM). Reflectance spectra information was extracted from time lapse hyperspectral images acquired from a cluster of leaves on a tree and class estimation models were built using PCA PLSR, and LDA. The estimation model built using LDA classifier performed better than PLSR and PCA in separating the SYM class from the other classes. Using this model, an accuracy of 88.0% was obtained in discriminating the ASYM class from the other three classes, while an accuracy of 91.4% was achieved for the SYM class. Based on the results achieved from this study, the developed estimation model using LDA score has the potential for being used for the identification of asymptomatic pixels on hyperspectral images of leaves infected by AMB. Our results indicate that the developed model has the potential for being used for the identification of asymptomatic pixels on hyperspectral images of leaves infected by AMB. Thus, this study will be of interest to many agro-engineers in disease detection.

    Acknowledgement: This study was carried out in the University of Florida, USA, and supported by the National Academy of Agricultural Science, Rural Development Administration, Republic of Korea.

    国产毛片a区久久久久| 黄片wwwwww| 91狼人影院| 国产一级毛片在线| 一区二区三区免费毛片| 久久午夜福利片| 少妇猛男粗大的猛烈进出视频 | 18禁裸乳无遮挡免费网站照片| 国产亚洲av嫩草精品影院| 国产精品美女特级片免费视频播放器| 久久久精品大字幕| a级毛色黄片| 99久久精品国产国产毛片| 性插视频无遮挡在线免费观看| 淫秽高清视频在线观看| 免费看美女性在线毛片视频| 美女 人体艺术 gogo| 午夜精品一区二区三区免费看| 99久久九九国产精品国产免费| 中文欧美无线码| 久久久精品94久久精品| 国产片特级美女逼逼视频| 国产在视频线在精品| 国产精品一区二区三区四区免费观看| 欧美日韩精品成人综合77777| 亚洲自偷自拍三级| 色播亚洲综合网| 欧美色欧美亚洲另类二区| 国产探花在线观看一区二区| 人妻夜夜爽99麻豆av| 国产精品一及| 最近视频中文字幕2019在线8| a级毛片a级免费在线| 床上黄色一级片| 青青草视频在线视频观看| 午夜亚洲福利在线播放| 日韩强制内射视频| 一区二区三区四区激情视频 | 国产亚洲精品av在线| 亚洲一区高清亚洲精品| 日本欧美国产在线视频| 青春草亚洲视频在线观看| 国产精品一区二区三区四区久久| 国产伦精品一区二区三区视频9| 黄片wwwwww| 国产精品一区二区三区四区久久| 丰满乱子伦码专区| 日韩高清综合在线| 免费在线观看成人毛片| 国产v大片淫在线免费观看| 亚洲人成网站高清观看| 欧美激情久久久久久爽电影| 国内少妇人妻偷人精品xxx网站| 3wmmmm亚洲av在线观看| 久久亚洲精品不卡| 国内揄拍国产精品人妻在线| 色吧在线观看| 欧美一区二区国产精品久久精品| 色吧在线观看| 欧美一区二区国产精品久久精品| 激情 狠狠 欧美| 在线观看美女被高潮喷水网站| 亚洲欧美日韩卡通动漫| 最近手机中文字幕大全| 久久午夜亚洲精品久久| 日本撒尿小便嘘嘘汇集6| 亚洲精品456在线播放app| 亚洲内射少妇av| 国产伦精品一区二区三区视频9| 国产伦精品一区二区三区视频9| 久久精品国产自在天天线| 高清日韩中文字幕在线| 久久久久久久久久黄片| 国产成人福利小说| 精品免费久久久久久久清纯| 免费人成视频x8x8入口观看| 六月丁香七月| 亚洲欧美中文字幕日韩二区| 国产亚洲av嫩草精品影院| 免费观看的影片在线观看| 国产精品美女特级片免费视频播放器| 成人亚洲精品av一区二区| 日韩大尺度精品在线看网址| 18+在线观看网站| 婷婷亚洲欧美| 日日啪夜夜撸| 亚洲国产欧美在线一区| 一个人免费在线观看电影| 最近2019中文字幕mv第一页| 老女人水多毛片| 亚洲av中文字字幕乱码综合| 日本成人三级电影网站| 少妇人妻一区二区三区视频| 中文精品一卡2卡3卡4更新| АⅤ资源中文在线天堂| 床上黄色一级片| 国产精品精品国产色婷婷| 免费大片18禁| 午夜老司机福利剧场| 一进一出抽搐动态| 99久国产av精品| 日韩欧美国产在线观看| 中文字幕av在线有码专区| 国产精品乱码一区二三区的特点| 欧美激情久久久久久爽电影| 小说图片视频综合网站| 人妻夜夜爽99麻豆av| 悠悠久久av| 美女脱内裤让男人舔精品视频 | 岛国毛片在线播放| 国产高清不卡午夜福利| 国产精品综合久久久久久久免费| 国产av在哪里看| 在线观看一区二区三区| 国产高清视频在线观看网站| 国产亚洲91精品色在线| 欧美性猛交╳xxx乱大交人| 一本久久精品| 国产精品久久久久久久久免| 尤物成人国产欧美一区二区三区| 精品人妻一区二区三区麻豆| 国产精品.久久久| 日韩一本色道免费dvd| 免费av毛片视频| 成人特级av手机在线观看| 久久这里只有精品中国| 少妇的逼好多水| av视频在线观看入口| 久久久久网色| 国产视频内射| 又黄又爽又刺激的免费视频.| 国产精品电影一区二区三区| 亚洲在线观看片| 国产精品野战在线观看| 黄片wwwwww| 亚洲va在线va天堂va国产| 日韩视频在线欧美| 2021天堂中文幕一二区在线观| 亚洲av第一区精品v没综合| 女的被弄到高潮叫床怎么办| 欧美人与善性xxx| 国产爱豆传媒在线观看| 国产精品无大码| АⅤ资源中文在线天堂| 国产日本99.免费观看| 亚洲,欧美,日韩| 午夜a级毛片| 97热精品久久久久久| 国产精品蜜桃在线观看 | 黄色配什么色好看| 日本与韩国留学比较| 淫秽高清视频在线观看| 亚洲精品久久国产高清桃花| 国产精品电影一区二区三区| 少妇丰满av| 午夜福利视频1000在线观看| 亚洲无线观看免费| 日日啪夜夜撸| 国产精品精品国产色婷婷| 久久韩国三级中文字幕| 女人十人毛片免费观看3o分钟| 日韩成人av中文字幕在线观看| 一区二区三区免费毛片| 中文字幕精品亚洲无线码一区| 内射极品少妇av片p| 九九久久精品国产亚洲av麻豆| 久久国内精品自在自线图片| 午夜免费男女啪啪视频观看| 此物有八面人人有两片| 欧美bdsm另类| 免费大片18禁| 在线免费十八禁| a级一级毛片免费在线观看| 成人毛片60女人毛片免费| www日本黄色视频网| 大型黄色视频在线免费观看| 国产精品无大码| 九色成人免费人妻av| 最近手机中文字幕大全| 中文字幕免费在线视频6| 97在线视频观看| 美女高潮的动态| 国产高清不卡午夜福利| 国产精品爽爽va在线观看网站| 国产视频内射| 你懂的网址亚洲精品在线观看 | 欧美成人a在线观看| 别揉我奶头 嗯啊视频| 少妇熟女aⅴ在线视频| 日韩欧美 国产精品| 国产精品,欧美在线| 免费搜索国产男女视频| 亚洲精品456在线播放app| 日韩在线高清观看一区二区三区| 色噜噜av男人的天堂激情| 毛片女人毛片| 老熟妇乱子伦视频在线观看| 中文字幕熟女人妻在线| 欧美高清性xxxxhd video| 网址你懂的国产日韩在线| av天堂中文字幕网| 亚洲成人精品中文字幕电影| 久久久成人免费电影| 校园人妻丝袜中文字幕| 51国产日韩欧美| 日日摸夜夜添夜夜添av毛片| 免费观看a级毛片全部| 综合色丁香网| 日日摸夜夜添夜夜爱| 99久国产av精品国产电影| 99久久人妻综合| 久久久久久九九精品二区国产| 青青草视频在线视频观看| 久久久a久久爽久久v久久| 欧美日本亚洲视频在线播放| 成人无遮挡网站| 成人午夜精彩视频在线观看| 色噜噜av男人的天堂激情| 99久久精品国产国产毛片| 大又大粗又爽又黄少妇毛片口| 国产精品不卡视频一区二区| 国产高潮美女av| 国产高清视频在线观看网站| 我要看日韩黄色一级片| 国产黄片视频在线免费观看| 麻豆成人午夜福利视频| 精品久久久久久久久久久久久| 国语自产精品视频在线第100页| 边亲边吃奶的免费视频| 久久中文看片网| 免费看av在线观看网站| 亚洲中文字幕一区二区三区有码在线看| 国产精品女同一区二区软件| 欧美成人免费av一区二区三区| 免费一级毛片在线播放高清视频| 看免费成人av毛片| 一级黄色大片毛片| 爱豆传媒免费全集在线观看| 午夜精品国产一区二区电影 | 免费大片18禁| 赤兔流量卡办理| 亚洲综合色惰| 欧美丝袜亚洲另类| 91久久精品电影网| 嫩草影院入口| 久久久久国产网址| 菩萨蛮人人尽说江南好唐韦庄 | 97人妻精品一区二区三区麻豆| 日韩制服骚丝袜av| 午夜亚洲福利在线播放| 三级毛片av免费| av天堂中文字幕网| 日日摸夜夜添夜夜爱| 亚洲在线观看片| 91久久精品电影网| 狂野欧美激情性xxxx在线观看| 中文字幕精品亚洲无线码一区| 欧美+日韩+精品| 黄片wwwwww| 国内精品宾馆在线| 精品不卡国产一区二区三区| 久久韩国三级中文字幕| 少妇熟女aⅴ在线视频| 久久久久久久午夜电影| 成人美女网站在线观看视频| 国产伦精品一区二区三区视频9| 久久99热6这里只有精品| 久久精品91蜜桃| 一夜夜www| 国产在线男女| 国产亚洲91精品色在线| 男女那种视频在线观看| 久久精品国产亚洲av香蕉五月| 国产69精品久久久久777片| 亚洲中文字幕一区二区三区有码在线看| 亚洲av熟女| 小蜜桃在线观看免费完整版高清| 精品久久国产蜜桃| 亚洲av成人精品一区久久| 日产精品乱码卡一卡2卡三| 性插视频无遮挡在线免费观看| 内地一区二区视频在线| 国产毛片a区久久久久| www日本黄色视频网| 狂野欧美白嫩少妇大欣赏| 国产老妇女一区| 一区二区三区四区激情视频 | 免费搜索国产男女视频| 少妇熟女aⅴ在线视频| 日韩强制内射视频| 看黄色毛片网站| 爱豆传媒免费全集在线观看| 高清毛片免费看| 国产三级在线视频| 少妇人妻精品综合一区二区 | 99久久精品热视频| 午夜福利视频1000在线观看| av在线老鸭窝| 欧美+亚洲+日韩+国产| 91久久精品国产一区二区成人| 亚洲一区高清亚洲精品| 老女人水多毛片| 国语自产精品视频在线第100页| 久久亚洲精品不卡| 久久九九热精品免费| 午夜精品一区二区三区免费看| 免费看a级黄色片| 一夜夜www| 99久久人妻综合| 人体艺术视频欧美日本| 最近中文字幕高清免费大全6| 亚洲av中文字字幕乱码综合| 欧美精品一区二区大全| 听说在线观看完整版免费高清| 麻豆国产av国片精品| 欧美极品一区二区三区四区| 一个人看的www免费观看视频| 精品久久国产蜜桃| 亚洲精品国产成人久久av| 欧美成人一区二区免费高清观看| 日本在线视频免费播放| 欧美日韩一区二区视频在线观看视频在线 | 在线免费观看不下载黄p国产| 中文字幕制服av| 麻豆一二三区av精品| 欧美日韩综合久久久久久| 亚洲自偷自拍三级| 精品久久久久久久久久久久久| 26uuu在线亚洲综合色| 国产亚洲欧美98| 91午夜精品亚洲一区二区三区| 久久久久网色| 久久久久久九九精品二区国产| 日韩亚洲欧美综合| 亚洲在久久综合| 色综合亚洲欧美另类图片| 一个人观看的视频www高清免费观看| 日韩欧美国产在线观看| 12—13女人毛片做爰片一| 狠狠狠狠99中文字幕| 内射极品少妇av片p| 偷拍熟女少妇极品色| 99精品在免费线老司机午夜| 2022亚洲国产成人精品| 国产一区二区在线av高清观看| 国产片特级美女逼逼视频| 久久亚洲国产成人精品v| 免费av毛片视频| 可以在线观看的亚洲视频| 午夜视频国产福利| 日韩制服骚丝袜av| 国产综合懂色| 亚洲国产欧美在线一区| 久久久精品大字幕| 99在线人妻在线中文字幕| 男女那种视频在线观看| 国产亚洲91精品色在线| 久久精品国产99精品国产亚洲性色| 亚洲电影在线观看av| 国产av不卡久久| 国产美女午夜福利| 特级一级黄色大片| 亚洲精品色激情综合| 久久99热6这里只有精品| 国产一级毛片七仙女欲春2| 日韩成人av中文字幕在线观看| 干丝袜人妻中文字幕| 天天一区二区日本电影三级| 亚洲国产欧洲综合997久久,| 国产成人影院久久av| 特级一级黄色大片| 久久99热这里只有精品18| 国产片特级美女逼逼视频| 国产免费男女视频| 久久人人爽人人爽人人片va| 国产在视频线在精品| 美女大奶头视频| 精品无人区乱码1区二区| 欧美又色又爽又黄视频| 最近2019中文字幕mv第一页| 亚洲av二区三区四区| 一级毛片电影观看 | 国产av麻豆久久久久久久| 哪里可以看免费的av片| 精品国内亚洲2022精品成人| 国产成人91sexporn| 久久精品国产亚洲网站| 亚洲真实伦在线观看| 亚洲最大成人手机在线| 婷婷精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放| 日韩国内少妇激情av| 一个人免费在线观看电影| 免费看光身美女| 亚洲aⅴ乱码一区二区在线播放| 国产精品.久久久| 亚洲婷婷狠狠爱综合网| 插逼视频在线观看| 日本欧美国产在线视频| 日韩一本色道免费dvd| 最近2019中文字幕mv第一页| 亚洲欧美精品专区久久| 欧美成人精品欧美一级黄| 男女下面进入的视频免费午夜| 成年av动漫网址| 色综合亚洲欧美另类图片| 天堂影院成人在线观看| 亚洲av免费在线观看| 精品久久久久久久久久免费视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美激情久久久久久爽电影| 国产成人a∨麻豆精品| 小说图片视频综合网站| 在现免费观看毛片| 在线观看av片永久免费下载| a级毛色黄片| 91av网一区二区| 成年av动漫网址| 久久精品国产清高在天天线| 日韩视频在线欧美| 国产精品日韩av在线免费观看| 天堂av国产一区二区熟女人妻| 久久精品国产亚洲av香蕉五月| 日本一二三区视频观看| 欧美高清成人免费视频www| 国国产精品蜜臀av免费| 中文资源天堂在线| 岛国在线免费视频观看| 在线天堂最新版资源| av女优亚洲男人天堂| 午夜福利高清视频| 久久99热6这里只有精品| 五月伊人婷婷丁香| 乱码一卡2卡4卡精品| 亚洲av成人av| 97超碰精品成人国产| 嫩草影院新地址| 国产成人freesex在线| 欧美在线一区亚洲| 亚洲中文字幕日韩| 熟女人妻精品中文字幕| 欧美日本亚洲视频在线播放| 内地一区二区视频在线| 淫秽高清视频在线观看| 国产大屁股一区二区在线视频| 国产三级在线视频| 久久精品夜色国产| 亚洲av中文av极速乱| 又爽又黄无遮挡网站| 看非洲黑人一级黄片| 国产av一区在线观看免费| 国产精品人妻久久久影院| 一级毛片aaaaaa免费看小| 中国国产av一级| 国产午夜精品论理片| 少妇猛男粗大的猛烈进出视频 | 最近2019中文字幕mv第一页| 哪个播放器可以免费观看大片| 国产精品永久免费网站| 长腿黑丝高跟| 欧美+日韩+精品| 美女内射精品一级片tv| 国内揄拍国产精品人妻在线| 如何舔出高潮| 少妇丰满av| 精品久久久久久成人av| 亚洲欧美成人综合另类久久久 | 日韩视频在线欧美| 亚洲自偷自拍三级| 日本一本二区三区精品| 日韩三级伦理在线观看| 日本一本二区三区精品| 99热只有精品国产| 直男gayav资源| 久久亚洲精品不卡| 九九爱精品视频在线观看| 国产一区二区在线观看日韩| 免费看日本二区| 五月伊人婷婷丁香| 中文字幕制服av| 精品久久久久久久久亚洲| 久久草成人影院| 色吧在线观看| 在线播放无遮挡| 99国产精品一区二区蜜桃av| av在线蜜桃| 成人鲁丝片一二三区免费| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产鲁丝片午夜精品| 天堂√8在线中文| 91精品一卡2卡3卡4卡| 欧美激情在线99| 国产午夜福利久久久久久| 欧美色欧美亚洲另类二区| 久久精品国产亚洲av香蕉五月| 联通29元200g的流量卡| 69人妻影院| 免费观看在线日韩| 国产69精品久久久久777片| 国产成人91sexporn| 成人午夜精彩视频在线观看| 99久久无色码亚洲精品果冻| 边亲边吃奶的免费视频| 老司机福利观看| 波多野结衣高清作品| 欧美+日韩+精品| 亚洲精品国产av成人精品| 亚洲激情五月婷婷啪啪| 亚洲精品乱码久久久v下载方式| av又黄又爽大尺度在线免费看 | av天堂中文字幕网| 少妇人妻精品综合一区二区 | 女人被狂操c到高潮| 91麻豆精品激情在线观看国产| 麻豆一二三区av精品| 亚洲aⅴ乱码一区二区在线播放| 国产免费一级a男人的天堂| 麻豆av噜噜一区二区三区| 久久婷婷人人爽人人干人人爱| 国产激情偷乱视频一区二区| 亚洲欧美日韩卡通动漫| 边亲边吃奶的免费视频| 亚洲av电影不卡..在线观看| 国产黄a三级三级三级人| 国产探花极品一区二区| 久久久色成人| 精品久久久久久久久亚洲| 成人综合一区亚洲| av在线播放精品| 永久网站在线| 干丝袜人妻中文字幕| 丰满人妻一区二区三区视频av| 中国美白少妇内射xxxbb| 插阴视频在线观看视频| 村上凉子中文字幕在线| 国产91av在线免费观看| 国产精品日韩av在线免费观看| 白带黄色成豆腐渣| 狂野欧美白嫩少妇大欣赏| 男女做爰动态图高潮gif福利片| 小蜜桃在线观看免费完整版高清| 一区二区三区免费毛片| 国产av在哪里看| 国产又黄又爽又无遮挡在线| 一级毛片久久久久久久久女| 天堂中文最新版在线下载 | 22中文网久久字幕| 麻豆av噜噜一区二区三区| 久久久久久久久久黄片| 日韩在线高清观看一区二区三区| 高清毛片免费观看视频网站| 欧美日韩在线观看h| 老师上课跳d突然被开到最大视频| 成人漫画全彩无遮挡| av.在线天堂| 国产一级毛片在线| 99在线人妻在线中文字幕| 欧美不卡视频在线免费观看| 国产人妻一区二区三区在| 热99在线观看视频| 亚洲成av人片在线播放无| 久久午夜福利片| 蜜臀久久99精品久久宅男| av黄色大香蕉| 黄色视频,在线免费观看| 欧美三级亚洲精品| 老司机福利观看| 欧美一区二区国产精品久久精品| 小说图片视频综合网站| 女人被狂操c到高潮| АⅤ资源中文在线天堂| 亚洲av二区三区四区| 国产日本99.免费观看| 爱豆传媒免费全集在线观看| 成人高潮视频无遮挡免费网站| 99在线视频只有这里精品首页| 日韩精品有码人妻一区| 国产伦精品一区二区三区四那| 国模一区二区三区四区视频| 国产精品福利在线免费观看| 国产色婷婷99| 欧美成人a在线观看| 久久99精品国语久久久| 精品久久久噜噜| 一区二区三区四区激情视频 | 九九爱精品视频在线观看| 噜噜噜噜噜久久久久久91| 国产亚洲精品久久久久久毛片| 国产精品伦人一区二区| 男女边吃奶边做爰视频| 国产老妇女一区| 久久草成人影院| 97在线视频观看| 你懂的网址亚洲精品在线观看 | 亚洲色图av天堂| 国产黄色视频一区二区在线观看 | 六月丁香七月| 大型黄色视频在线免费观看| 国产综合懂色| 久久6这里有精品| 看十八女毛片水多多多| 夜夜夜夜夜久久久久| av免费在线看不卡| 中国美白少妇内射xxxbb| 国产老妇伦熟女老妇高清| 午夜a级毛片| 成人午夜精彩视频在线观看| 亚洲精品国产av成人精品| 久久精品国产自在天天线| 亚洲成av人片在线播放无| 欧美色视频一区免费| 日韩欧美一区二区三区在线观看| 内射极品少妇av片p| 最近2019中文字幕mv第一页| 日韩欧美三级三区|