• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QM/MM Study of the Second Harmonic Generation and Two-photon Absorption Properties of aFluorescent Proteins-Dreiklang①

    2018-10-12 03:54:20ZHANGMinYiWEIJingSONGJinShuiWUPengLIChunSen
    結(jié)構(gòu)化學(xué) 2018年9期

    ZHANG Min-Yi WEI Jing SONG Jin-Shui WU Peng LI Chun-Sen

    ?

    QM/MM Study of the Second Harmonic Generation and Two-photon Absorption Properties of aFluorescent Proteins-Dreiklang①

    ZHANG Min-Yia, bWEI JingaSONG Jin-Shuaia, bWU PengaLI Chun-Sena, b②

    a(350002)b(361005)

    A new reversibly switchable fluorescent protein (RSFP), namely Dreiklang, exhibits prominent feature that the wavelengths for switching and fluorescence are decoupled due to its great different structures between bright and dark states.This feature might also induce some nonlinear optic (NLO) properties changing as switching between two states, which might promote new method of biological science.We employ the QM/MM method to simulate the structures of different states, and study their second harmonic generation (SHG) and two-photon absorption (TPA) properties.And we found different states of Dreiklang have different SHGand TPA responses.TheSHGand TPA properties of Dreiklang are correlated to particularly geometrical structures of different states, especially the centrosymmetric or nocentrosymmetric-stacking structures which are formed by chromophore and beside residue Tyr203, so the SHGand TPA responses could be changed as the light induces switching among different states of Dreiklang.This work would prospectively guide the application of Dreiklang on the NLO technology, and help the development of new RSFP with special NLO function.

    fluorescent proteins,the second harmonic generation, two-photon absorption, QM/MM method;

    1 INTRODUCTION

    Fluorescent Proteins (FPs) have been widely used in cell biology like molecular labels, noninvasive markers of gene expression, and intracellular protein localization etc[1,2].Recently, a new kind of FPs namely reversibly switchable fluorescent proteins (RSFPs) has attracted great attention[3,4].These proteins could be repeatedly switched by irradiation with light from a fluorescent to a nonfluorescent state, which results in the controllable emitting fluorescent on-to-off transition[5].Due to this character, RSFPs have been used for super-resolution microscopy, fluorescence correlation spectroscopy, optical lock-in detection, and biotechnological developments such as rewritable high-density optical storage media[6-9].On the other hand, this particular characters of RSFPs evoke an exciting speculation that some RSFPs might exhibit the on-to-off transition of NLO properties, since repeatedly off/on switching of RSFPs is mainly attributed to the structural rearrange-ment in different states and the NLO properties are depending on the materials’ structure[10,11].

    It is well known that nonlinear optical (NLO) pro- perties, such as the second harmonic generation(SHG)[12]and two-photon absorption (TPA)[13], are under intense investigation due to many important applications like optical bistability, phase conjuga- tion, optical limiting, two-photon laser scanning microscopy and so on[14-16].Owing to the advantages used in live cell, FPs haveattracted much attention on the NLO biological imaging in the past decade[17,18].And Asselberghs and his coworkers have studied the SHG properties of a RSFPs named Dronpa, findingits SHG propertiescould be changed accor- ding to the protonation of chromophore structure[19].This work illuminated the potentially NLO photoswitchable properties of RSFPs.

    Recently, Brakemann and his coworkers have developed new RSFPs named Dreiklang from a kind of YFP namely Citrine[20].Dreiklang exhibits two absorption bands (peaking at 412 and 511 nm) in its on-state, corresponding to the neutral (protonated) and ionized (deprotonated) states of the chromophore, respectively, both of which emit 529nm fluorescent light by excitation; its off state presents a 340nm absorption band, which corresponds to the structural rearrangement of chromophore through light-induce hydration of the imidazolinone ring from the on-state.The structural rearrangement between the on- and dark-states of Dreiklang would changethe transition moments and energies, and these features mainly dominate the NLO properties of Dreiklang.Interestly, Beerepoot and coworkers studied the TPA properties of YFP, and they found that the-stacking structure of chromophore and the tyrosine 203 could enhance the TPA response of YFP[21].Furthermore, Clays and coworkers developed a new Tyr203Phe mutant of eYFP, whose SHG properties were enhanced through Tyr203Phe mutant to remove the centrosymmetric stacking of the chromophoric Tyr66 and the neighboring Tyr203 residue in eYFP[22].

    As Dreiklang was a mutant from a kind of YFP namely Citrine, its protonated chromophoric Tyr66 and Tyr203 residues of on state also form the centrosymmetric-stacking structure as YFP, which was determinated by X-ray crystallography(PDB code: 3NT9)[20].Therefore,the light induce swi- tchable feature among on-off states of Dreiklang absolutely influents this centrosymmetric-stacking structure, which might result in the change of SHG and TPA responses in Dreiklang.To further under- stand these particular NLO switchable properties of Dreiklang, in this work, we employ the QM/MM method to simulate different states of Dreiklang, and study their SHG and TPA properties.To the best of our knowledge, it is the first time to propose the protonated form of Dark state chromophore in Dreiklang, and reveal the structure-depending NLO switchable properties on Dreiklang.This work might help to guide the development of new RSFP with NLO switchable function, and develop new application of RSFP on biological imaging techno- logy.

    2 COMPUTATIONAL METHODS

    2.1 MD runs

    The initial structures of Brightand Dark states of Dreiklang were obtained from the Protein Data Bank (PDB IDs: 3NT9 and 3NT3), respectively[20].And the absent specific force-field parameters of chromophores in these four states were obtained by the cgenff program[23, 24].We assigned the proto- nation states of acidic and basic residues by using the pKa values given by the empirical PROPKA[25]procedure and verified the results through careful visual inspection.The missing hydrogen atoms were added by the HBUILD module[26]embed in CHARMM[27].As both chromophores of the Bright and Dark states might have protonated and deprotonated form, the protonation procedure of 3NT9 and 3NT3 results in four states of Bright neutral state (Bn), Bright anionic state (Ba), Dark neutral state (Dn) and Dark anionic state (Da), as shown in Fig.1.All four states of Dreiklang contain 26971 atoms, including 22104 atoms of solvent.After the full solvation procedure, a productive MD of 2ns was run for three states of Dreiklang using the CHARMM22 force fields implemented in the CHARMM program.The coordinates of the outer 8 ? of solvent layer were kept fixed during all MD simulations.Four representative snapshots from the MD trajectory of Bn, Ba and Dn were selected at 1, 1.5, 1.2 and 1 ns, respectively.

    2.2 QM/MM methodology

    The QM region in our QM/MM calculations including chromophore, residue Glu222, residue Tyr203 and Wat242 is shown in Fig.1.All the geometry optimization calculations were carried out within ChemShell[28], combining Gaussian03[29]as QM code and DL_POLY[30]as MM code.The QM/MM boundary was treated by the hydrogen link atom[31]with the charge shift model[32].For the QM region, the B3LYP[33-35]functional was employed with 6-31G* for geometry optimization.The HDLC optimizer[36]was employed in the geometry optimization and the core regions of optimization were within 8? of the QM regions.After the geometry optimization in QM/MM level, we selected the QM region with H saturation of every stateas the new compound models.Then using the Gaussian 03 program package[29], we employed the time-depen- dent density functional theory (TDDFT) combining with the sum-overstates method[37,38]developed by Cheng’s group[39,40]atthe 6-311++G** basis sets level, to calculate their NLO properties.As the NLO properties only correspond to the static calculation, after geometry optimization in QM/MM level, the influence from molecules outside the QM region can be considered as point charge, which would be induced to the TDDFT calculation to obtain the NLO properties.This above method might be reliableto study the NLO properties of Dreiklang states system in this work.

    The compact expression of the tensor component of polarizability and the frequency-dependent first-order hyperpolarizability, which can be obtained from the transition moment, dipole moment and transition energy, can be written as follows:

    For the first-order nonlinear response, we are interested in the vector component along the ground state dipole moment direction (vec) and the total hyperpolarizability (tot), which are defined as:

    The TPA efficiency can be characterized by the TPA cross-section(), and the latter can be directly related to the imaginary part of second hyperpolarizability(-;,, -) by[41]

    where(-;,, -) is the third-order polarizability,denotes the refractive index of the medium,corresponds to the local-field factor and= (2+ 2)/3.Generally,= 1.333 in aqueous and= 1.0 in vacuum.Here,value is set to 1.0 in all calculations for systematic comparison.

    We calculated lm(-;,, -) using the sum-over-states (SOS) expression[42, 43].To compare the calculated TPA cross-section value with the experimental value measured in solution, the orientationally averaged (isotropic) value ofis evaluated, which is defined as:

    where,=,,

    3 RESULTS AND DISCUSSION

    3.1 Geometry of different states in Dreiklang

    To depict the hydrogen-bonding network among the chromophore and residue Try203, we optimized the geometric structures of four states in Fig.1 by employing the QM/MM method with the QM region including the chromophore, Wat242, residue Try203 and Glu222.And the main geometric parameters are shown in Table 1.The Bnstate has nearly planar chromophore structure with its phenol ring almost parallel to the phenol ring plane of Try203.The similar distances of C(2)–C(5) (4.28 ?) and C(3)–C(4) (4.56 ?) imply the two phenol rings of the chromo- phoric Tyr66 and the neighboring Tyr203 residue are parallel-displace (see Fig.1).And the distance between the centres of the phenol rings from chromophore and Tyr203 is about 3.4 ?.A strong hydrogen-bonding network composed of three H-bonds of O(4)–H(1)···O(1) (2.75 ?), O(1)– H(2)···O(2) (2.76 ?),and O(3)–H(3)···N (3.04 ?) might keep this particular feature of structure and stabilize Wat242 in close vicinity to the C(1) of the chromophore for further light-drive hydration reaction.

    Fig.1. QM region of four study states.Bright neutral state and bright anionic state referring to the neutral and anionic chromophore of bright states, respectively; Dark neutral state and dark anionic state referring to the neutral and anionic chromophore of dark states, respectively

    Table 1. Selected Optimized Structural Parameters (Bond Lengths (?) and Bond Angles (°)) for the Studied States of Dreiklang

    For Ba state, deprotonated chromophore also has a nearly planar structure as that of Bn, and its phenol ring of chromophore develops to a more quinoidal structure than that of Bn.The greatly distinct distances of C(2)–C(5) (4.28 ?) and C(3)–C(4) (4.56 ?) indicate the origin parallel structures of two phenol rings in Bn are broken.This result suggests large structural rearrangement as the proton transfer within the hydrogen-bonding network.As shown in Table 1, a new strong H-bond of O(4)–H(1)···O(5) (2.82 ?) was formed as the H-bond of O(4)–H(1)···O(1)is weakened.The direct H-bond connec- tion between residue Try203 and chromophore causes the phenol ring of Try203 to deviate away from the phenol ring of chromophore and approach to the imidazolinone ring.Further, the phenol ring of Try203 makes a certain angle with the phenol ring of chromophore and breaks the origin parallel structure in Bn.Finally, Try203 also forms hydrogen bonds to Wat242 through a new weak hydrogen bond of O(4)–H(1)···O(1) (3.29 ?).Wat242 can be stabilized again in close vicinity to the C1 of chromophore by new hydrogen bond network which is composed of O(4)–H(1)···O(1), O(1)–H(2)···O(2) (2.79 ?) and O(3)–H(3)···N (3.00 ?).

    For the Dark state of Dreiklang, as Wat242 has been used to light-induced hydration of the imidazo- linone ring upon switching from the bright to the dark state, the hydrogen bond network between Try203 and chromophore is broken, and the dis- tances of O(1)–O(4) enlarge to 5.12 and 5.03 ? in neutral and anionic dark states, respectively.However, the phenol ring of Try203 still approaches to the phenol ring of chromophore for both two dark states.The light-induced water split reaction results in the imidazolinone ring of chromophore convert into a 2-hydroxyimidazolidinone ring, and the H(2) transfers to Glu222 with forming the H(2)–O(2) bond, while H(3) transfers to chromophore to generate a H(3)–N bond.This proton transfer and structure adjustment indicate that the proton transfer through Glu222 might be an indispensable process in light-induce water split reaction.Furthermore, depro- tonation of dark chromophore in Da results in the same structure adjustment as that of Dn, except the quinoidal structure of phenol ring of chromophore.The geometry study of different states in Dreiklang clearly illuminates that structures undergo large rearrangement within the light induce switch process.

    3.2 Electronic structure and one-photon absorption properties

    We employ TDDFT/MM method with B3LYP/6-311++G** level in QM region to calculate the one- photon absorption (OPA) properties of the four states in Fig.1.The protein environment was considered by imposing the point charge from QM/MM geometri- cal optimization results.OPA calculation result is shown in Table 2.And the plots of relevance frontier orbitals of study states are shown in Fig.2.The OPA band of Bn locates at 371 nm with the oscillator strength of 0.5665.This band corresponds tothe second excitation with HOMO-1 to LUMO charac- ters.From Fig.2, both the HOMO-1 and LUMO of Bn completely locate on the chromophore, showingand*characters, respectively.The Ba state has its OPA band at 419.9 nm with oscillator strength of 0.6666.This band corresponds to S2 with HOMO to LUMO characters.As shown in Fig.2, HOMO and LUMO of Ba also completely locate on the chromo- phore, showingand*characters, respectively.Therefore, both the OPA bands of Bn and Ba are mainly contributed by the-conjugation of chromo- phore.

    While, these two bands of bright state both overes- timate the excitation energies compared to the regarding experimental measurements of Dreiklang (see Table1).The reason can be attributed to the systematic overestimation of excitation energy in B3LYP calculations, especially for the anionic chro- mophores.Another reason might be the chromophore of QM region in our models more close to a model compound for the chromophore, 4-hydroxybenzy- lidene-2,3-dimethylimidazolinone (HBDI), which is a well-known model compound of the GFP chromo- phore.The OPA bands of HBDI in neutral and anionic states are 370 and 432 nm, respectively.Our calculation bands of two bright states agree well with the regarding OPA experiment data of HBDI.The OPA calculation of Dreiklang illuminates that the-conjugation chromophore mainly dominates the OPA properties of FPs, and the structural integrity of chromophore would sensitively influence the theoretical simulation of OPA properties.

    Fig.2. Isosurfaces of the frontier orbitals which participate in the relevant excitations for the studied states

    Table 2. One-photon Absorption Properties of Studied States.Oscillator Strengths ?, One-photon Absorption Wavelength λ (nm) and Relevant Excitations

    For dark state of Dreiklang, the OPA band of neutral state locates at 328.8 nm with oscillator strength of 0.5407.This band corresponds to the S1 excitation state with HOMO-1 to LUMO characters, and agrees well with the experiment data of 340 nm.From Fig.2, the HOMO-1 and LUMO of Dn state also almost locate on chromophore withto*character mainly locating on the phenol ring of chromophore.Due to hydration reaction, theconjugation of Da’s chromophore is smaller than that of Bn and Ba, which also result in the great blue shift of the OPA band of Dn.Additionally, we also find the strongest OPA band of anionic state located at 388.2 nm, which is neither inconsistent with the experiment data of 340 nm nor deviating from the systematic overestimation of excitation energy in B3LYP calculations.Since the protonated form of chromophore in dark state of Dreiklang has not been identified yet, we suggest that the chromophore of Dreiklang dark state might not be the anionic but neutral.

    3.3 The second harmonic generation properties

    Before calculating the first-order hyperpolarizabi- litywith truncated sum-over-states (SOS) method, it is necessaryto investigate the behavior of the convergence in the summationof the excited states, in order to obtain reliable results.Fig.3ashows the relationship of the calculated first-order hyperpo- larizability and the number of states for the studied conformers.The results showed that all the first-orderhyperpolarizabilitywas converged before 60 states.Accordingly, all discussionsand studies in the following are based on the truncatedSOS method with 60 excited states.

    We obtained the calculated static and dynamic first hyperpolarizabilities by means of TDDFT/MM calculations and SOS method, and the protein environment was considered by point charge field from QM/MM optimization (Table 3).Ba state has the largeststatic first hyperpolarizability of 23.52 × 1030cm5/esu among the three states of Dreiklang.And the Dn state has the smallest static first hyperpolarizability of 9.06 × 1030cm5/esu.We also calculated the dynamic first-order hyperpolarizability(2;,) according to formula (2), in which the laser frequency () is an input parameter in the SOS formulation.For instance, the values of btot at the input energy of 1.165 eV (1064 nm), far from resonance, are 20.59, 68.05 and 14.84 × 1030cm5/esu for the Bn, Ba and Dn states, respectively, with the same order as in the static case.It is interesting that the first-order hyperpolarizabilityamplitude ordering of protonated Bn state and deprotonated Ba state of Dreiklang are quite different from that of Dronpa, another kind of RSPFs, whose protonated chromo- phore form has larger static first hyperpolarizability than the deprotonated chromophore form.Thus, the first-order hyperpolarizability amplitude ordering in Dreiklang might follow with other rules.

    Fig.3. (a) Convergent behavior oftotwith the number of excited states; (b) Relationship of the imaginary part of the third-order optical susceptibility and the number of excited state

    Table 3. The First-order Hyperpolarizabilities β (× 1030 cm5/esu) of Studied States.Oscillator Strengths?, One-photon Absorption Wavelengthλ (nm) and Relevant Excitations

    Significantly, the static first hyperpolarizability values of Bn state (9.53 × 1030cm5/esu) agree well with that of eYFP, which has a centrosymmetric stacking of the chromophoric Tyr66 and the neigh- boring Tyr203 residue.And the static first hyperpolarizability value of Ba state (23.52 × 1030cm5/esu) is consistent well with an eYFP mutant- SHardonnay, which is developed by Meulenaere and coworkers.Through Y203F mutant of eYFP, the original centrosymmetric stacking structure in eYFP has been broken in SHardonnay, so nocentrosym- metric structure changing of SHardonnay greatly improves its first-order hyperpolarizability response.Dreiklang undergoes similar centrosymmetric or nocentrosymmetric structure rearrangement within the Bn to Ba photon switching process.The Dn state of Dreiklang contains the centrosymmetric stacking structure similar to that of eYFP, which causes a substantial drop in the first-order hyperpolarizability of the Dn state, while for the Ba state, the centrosym- metric stacking structure is broken to the nocen- trosymmetric structure as the structural rearrange- ment, which results in the improvement of the first-order hyperpolarizability.So, the first hyperpo- larizabilityproperties of Dreiklang are correlated to the particular geometrical structures of different states.

    3.4 Two-photon absorption properties

    In this section, we employed the time-dependent density functional theory and sum over state method to calculate the TPA cross section of three confor- mers of Dreiklang.Fig.3b shows the relationships between the imaginary part of the third-order polarizability and the number of states for all conformers studied.It is illustrated that all imaginary parts of the third-order polarizabilities of BCNNRs were converged before 60 states, which ascertains 60 states are enough for the convergence of the third-order optical polarizability.

    The selected TPA parameters are listed in Table 4.Our calculation presents that all the three states of Dreiklang did not show the common main TPA band at twice wavelength of their each strongest OPA band.Instead, the TPA spectra of Bn only show a strong band with TPA cross section of 7.99 GM at 608 nm.This band corresponds to its fifth excitation state with HOMO-3 to the LUMO character, while for the Ba state, it has strong band locatinghloyedonverted ties would switch strong or low as the at 596 nm (2.08 eV) with the largest TPA cross section of 15.63 GM among the three states of Dreiklang.This TPA band corresponds to the twelfth excitation with contribution from HOMO-3 to the LUMO character.The anionic chromophore of bright state has the largest TPA cross section.This result is consistent with other GPF-like fluorescence proteins whose deprotonated chromophore form has larger TPA cross section than that of protonated form.The strongest TPA band of Dn locates at 496 nm (2.49 eV) with TPA cross section of 7.98 GM.This band corresponds to a very higher excited state of S21 with contribution from HOMO-1 to the LUMO+6 character, and this band blue shifts above 100 nm compared to other two bright states.For the three states of Dreiklang, their TPA responses are different, because the rearrangement of chromophore structures would change theirconjugation of chromophores which directly affect the TPA of response of the three states of Dreiklang.

    Table 4. Two-photon Absorption Properties of STUDIED States.Two-photon Absorption Wavelength λ2 (nm), Oscillator Strength?, Two-photon Absorption Cross Section δ (GM) and Relevant Excitations

    Furthermore, we investigate the-stacking interac- tion on TPA properties.We select two snapshots from 2 ns molecular dynamic of Bright neutral states noted as Bn-1 and Bn-2, respectively, whose distances between the centers of the phenol rings from the chromophore and Tyr203 are shorter than that of Bn, about 3.8 and 4.0 ? for Bn-1 and Bn-2, respectively.Their TPA properties are also presented in Table 4.We find that both Bn-1 and Bn-2 have similar TPA cross section value of 10.2 GM, which is larger than that of Bn.The improvement of TPA response mainly attributes to the shorter distance between the centers of phenol rings from chromophore and Tyr203 of Bn-1 and Bn-2, which would enhance the charge transfer among the-stacking systems and further lead to the increase of TPA cross sections.Combined with the preceding paragraph, the TPA properties of Dreiklang are also structural depending.Theconjugation of chromo- phore and the-stacking systems might be two important factors for TPA response enhancement.

    4 CONCLUSION

    Here we employed the QM/MM method to opti- mize the different states in Dreiklang, and calculate their SHG and TPA properties.The geometrical study of different states in Dreiklang illuminates that the structure undergoes large rearrangement within the light inducing switchable process, which could influence their SHG and TPA properties.Bn state exhibits very low SHG response for its centrosym- metry of-stacking structure, while its TPA responses would be enhanced as two phenol rings get close.The strongest SHG and TPA responses both present in the Ba state of Dreiklang due to its nocentrosymmetric structure and anionic chromo- phore form, respectively.Dark state has similar SHG response as Bn and the lowest TPA response in Dreiklang.In general, the SHG and TPA responses might undergo one changeas the light induces once switchable process among different states.Further- more, we propose for first time that the protonated form of chromophore in Dark state is neutral.This work would prospectively guide the application of Dreiklang on the NLO technology, and help develop new RSFP with special NLO functions.

    (1) Tsien, R.Y.The green fluorescence protein..1998,67, 509-544.

    (2) Zipfel, W.R.; Williams, R.M.; Webb,W.W.Nonlinear magic: multiphoton microscopy in the biosciences..2003, 21, 1369-1377.

    (3) Ando, R.; Mizuno, H.; Miyawaki, A.Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting.2004, 306, 1370-1373.

    (4) Adam,V.Phototransformable fluorescent proteins: which one for which application?.2014, 142, 19-41.

    (5) So, P.T.;Dong,Y.C.; Masters,B.R.Two-photon excitation fluorescence microscopy.2000,02, 399-429.

    (6) Bizzarri, R.; Serresi, M.; Cardarelli, F.; Abbruzzetti, S.; Campanini, B.; Viappiani, C.; Beltram, F.Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable.2010,132, 85-95.

    (7) Grotjohann, T.; Testa, I.; Leutenegger, M.; Bock, H.; Urban, N.T.; Lavoie-Cardinal, F.; Willig, K.I.; Eggeling, C.; Jakobs, S.; Hell, S.W.Diffraction-unlimited all-optical imaging and writing with a photochromic GFP.2011, 478, 204-208.

    (8) Marriott, G.; Mao, S.; Sakata, T.; Ran, J.; Jackson, D.K.; Petchprayoon, C.; Gomez, T.J.; Warp, E.; Tulyathan, O.; Aaron, H.L.; Isacoff, E.Y.; Yan, Y.Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells.2008, 105, 17789-17794.

    (9) Adam, V.; Mizuno, H.; Grichine, A.; Hotta, J.I.; Yamagata, Y.; Moeyaert, B.; Nienhaus, G.U.; Miyawaki, A.; Bourgeois, D.; Hofkens, J.Data storage based on photochromic and photoconvertible fluorescent proteins..2010,4, 377-390.

    (10) Coe, B.J.; Harris, J.A.; Jones, L.A.; Brunschwig, B.S.; Song, K.; Clays, K.; Garín, J.; Orduna, J.; Coles, S.J.; Hursthouse, M.B.Syntheses and properties of two-dimensional charged nonlinear optical chromophores incorporating redox-switchable cis-tetraammineruthenium(II) centers..2005, 127, 4845-4859.

    (11) Muhammad, S.; Xu, H.L.; Liao, Y.; Kan, Y.H.; Su, Z.M.Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response..2009, 131,11833-11840.

    (12) Han, M.; Zickler, L.; Giese, G.; Walter, M.; Loesel, F.H.; Bille, J.F.Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation..2004,9, 760-6.

    (13) Denk, W.; Strickler, J.H.; Webb, W.W.Two-photon laser scanning fluorescence microscopy.1990, 248, 73-76.

    (14) Stiel, A.C.; Andresen, M.; Bock, H.; Hilbert, M.; Schilde, J.; Schonle, A.; Eggeling, C.; Egner, A.; Hell, S.W.; Jakobs, S.Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy.2008, 95, 2989-2997.

    (15) Chudakov, D.M.; Chepurnykh, T.V.; Belousov, V.V.; Lukyanov, S.; Lukyanov.K.A.Fast and precise protein tracking using repeated reversible photoactivation..2006, 7, 1304-1310.

    (16) Chang, H.; Zhang, M.; Jia, W.; Chen, J.; Zhang, Y.; Liu, B.; Lu, J.; Zhang, J.; Xu, P.; Xu,T.A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications.2012, 109, 4455-4460.

    (17) Warren, M.M.; Kaucikas, M.; Fitzpatrick, A.; Champion, P.; Sage, J.T.; Thor, J.J.Ground-state proton transfer in the photoswitching reactions of the fluorescent protein Dronpa.2013, 4, 1461-8.

    (18) Stiel, A.C.; Trowitzsch, S.; Weber, G.; Andresen, M.; Eggeling, C.; Hell,S.W.; Jakobs, S.; Wahl, M.C.1.8 ? bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants.2007, 402, 35-42.

    (19) Asselberghs, I.; Flors, C.; Ferrighi, L.; Botek, E.; Champagne, B.; Mizuno, H.; Ando, R.; Miyawaki, A.; Hofkens, J.; Van der Auweraer, M.; Clays, K.Second-harmonic generation in GFP-like proteins.2008, 130, 15713-15719.

    (20) Brakemann, T.; Stiel, A.C.; Weber, G.; Andresen, M.; Testa, I.; Grotjohann, T.; Leutenegger, M.; Plessmann, U.; Urlaub, H.; Eggeling, C.; Wahl, M.C.; Hell, S.W.; Jakobs, S.A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching.2011, 29, 942-947.

    (21) Beerepoot, M.T.P.; Friese, D.H.; Ruud, K.Benchmarking two-photon absorption cross secctions.2014, 16, 5958-5964.

    (22) Meulenaere, E.D.; Bich, N.N.; Wergifosse, M.; Hecke, K.; Meervelt, L.V.; Vanderleyden, J.; Champagne, B.; Clays, K.Improving the second-order nonlinear optical response of fluorescent proteins: The symmetry argument.2013, 135, 4061-4069.

    (23) Vanommeslaeghe,K.; Hatcher, E.;Acharya, C.;Kundu, S.;Zhong,S.; Shim,J.; Darian, E.;Guvench,O.; Lopes,P.; Vorobyov, I.;MacKerell Jr.A.D.CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force field.2010, 31, 671-690.

    (24) Yu, W.;He, X.;Vanommeslaeghe, K.;MacKerell Jr.A.D.Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations.2012, 33, 2451-2468.

    (25) Li, H.; Robertson, A.D.; Jensen, J.H.Very fast empirical prediction and rationalization of protein pKa?values.2005, 61, 704-721.

    (26) Brünger, A.T.; Karplus, M.Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison.:.1988, 4, 148-56.

    (27) MacKerell, A.D.; Bashford, D.; Bellott; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M.All-atom empirical potential for molecular modeling and dynamics studies of proteins.1998, 102, 3586-3616.

    (28) Sherwood, P.; de Vries, A.H.; Guest, M.F.; Schreckenbach, G.; Catlow, C.R.A.; French, S.A.; Sokol, A.A.; Bromley, S.T.; Thiel, W.; Turner, A.J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S.C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sj?voll, M.; Fahmi, A.; Sch?f C.; Rodger, P.er, A.; Lennartz, C.QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis.2003, 632, 1-28.

    (29) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery Jr., J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.Gaussian, Inc., Pittsburgh PA,2003

    (30) Smith, W.; Yong, C.W.; Rodger, P.M.DL_POLY: application to molecular simulation..2002, 28, 385-471.

    (31) Vries, A.H.; Sherwood, P.; Collins, S.J.; Rigby, A.M.; Rigutto, M.; Kramer, G.J.Zeolite structure and reactivity by combined quantum-chemical-classical calculations.1999, 103, 6133-6141.

    (32) Sherwood, P.; Vries, A.; Collins, S.; Greatbanks, S.; Burton, N.; Vincent, M.; Hillier, I.Computer simulation of zeolite structure and reactivity using embedded cluster methods..1997, 106, 79-92.

    (33) Lee, C.; Yang, W.; Parr, R.G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.1988, 37, 785-789.

    (34) Becke, A.D.Density-functional thermochemistry.III.The role of exact exchange.1993, 98, 5648-5652.

    (35) Becke, A.D.Density-functional thermochemistry.II.The effect of the Perdew-Wang generalized-gradient correlation correction..1992, 97, 9173-9177.

    (36) Billeter, S.R.; Turner, A.J.; Thiel, W.Linear scaling geometry optimization and transition state search in hybrid delocalised internal coordinates..2000,, 2177-2186.

    (37) Orr,B.J.;Ward,J.F.Perturbation theory of the non-linear optical polarization of an isolated systema..1971, 20, 513-526.

    (38) Bishop, D.M.Explicit nondivergent formulas for atomic and molecular dynamic hyperpolarizabilities..1994, 100, 6535-6542.

    (39) Cheng,W.D.; Shen, J.; Wu, D.S.; Li, X.D.; Lan, Y.Z.;Li, F.F.; Huang, S.P.; Zhang, H.;Gong, Y.J.Electronic origin for enhanced nonlinear optical response of complexes from tetraalkylammonium halide and carbon tetrabromide: electrostatic potentials of intermolecular donor-acceptor dyads.2006, 12, 6880-6887.

    (40) Cheng, W.D.;Wu, D.S.;Shen, J.;Huang, S.P.;Xie, Z.;Zhang, H.;Gong, Y.J.From molecule to bulk material: optical properties of hydrogen-bonded dimers [C12H12N4O2AgPF6]2and [C28H28N6O3AgPF6]2depend on the arrangement of the oxime moieties.2007, 13, 5151-5159.

    (41) Dick, B.;Hochstrasser, R.M.;Trommsdorff, H.P.Nonlinear optical properties of organic molecules and crystals.Chemla, D.S.; Zyss, J.; Eds.1987, 2, 167-170.

    (42) Cheng, W.D.;Wu, D.S.;Li, X.D.; Lan, Y.Z.; Zhang, H.; Chen, D.G.; Gong, Y.J.; Zhang, Y.C.; Li, F.F.; Shen, J.; Kan, Z.G.Design of single-walled carbon nanotubes with a large two-photon absorption cross section.2004, 70, 2806-2810.

    (43) Champagne, B.; Kirtman, B.Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull-conjugated systems..2006.125, 053819.

    15 December 2017;

    23 March 2018

    ①This investigation was based on work supported by the National Natural Science Foundation of China (No.21703246 and 21403242) and Natural Science Foundation of Fujian Province (2014J05021)

    .E-mail:chunsen.li@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-1931

    精品少妇久久久久久888优播| 18禁黄网站禁片午夜丰满| 黄色视频,在线免费观看| 亚洲精品粉嫩美女一区| 男人添女人高潮全过程视频| 国产成人系列免费观看| 国产一区有黄有色的免费视频| 国产高清视频在线播放一区 | 91麻豆精品激情在线观看国产 | 久久精品人人爽人人爽视色| 黄色视频,在线免费观看| 亚洲激情五月婷婷啪啪| 久久影院123| 下体分泌物呈黄色| 亚洲国产看品久久| 99精国产麻豆久久婷婷| 国产成人一区二区三区免费视频网站| 久久久久久久精品精品| 999久久久国产精品视频| 久久亚洲国产成人精品v| 日韩人妻精品一区2区三区| 自拍欧美九色日韩亚洲蝌蚪91| 99久久综合免费| 纯流量卡能插随身wifi吗| 美女高潮喷水抽搐中文字幕| 国产精品成人在线| xxxhd国产人妻xxx| 成人国产一区最新在线观看| 一个人免费在线观看的高清视频 | 侵犯人妻中文字幕一二三四区| 国产又爽黄色视频| 男女免费视频国产| 亚洲欧洲日产国产| 亚洲成人免费电影在线观看| 一本一本久久a久久精品综合妖精| 一级片免费观看大全| 婷婷丁香在线五月| 欧美精品啪啪一区二区三区 | 国产国语露脸激情在线看| 九色亚洲精品在线播放| 日韩视频一区二区在线观看| 亚洲第一青青草原| 他把我摸到了高潮在线观看 | 丰满少妇做爰视频| 在线十欧美十亚洲十日本专区| 两性午夜刺激爽爽歪歪视频在线观看 | 美女高潮到喷水免费观看| 亚洲成av片中文字幕在线观看| 在线永久观看黄色视频| 精品亚洲成a人片在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲精品久久午夜乱码| 亚洲第一欧美日韩一区二区三区 | 国产精品久久久人人做人人爽| 12—13女人毛片做爰片一| 成年人午夜在线观看视频| 一本大道久久a久久精品| 91精品伊人久久大香线蕉| 91大片在线观看| 亚洲国产中文字幕在线视频| 亚洲成国产人片在线观看| 麻豆国产av国片精品| 久久精品成人免费网站| 成人三级做爰电影| 一本久久精品| 欧美在线黄色| 亚洲激情五月婷婷啪啪| 50天的宝宝边吃奶边哭怎么回事| 12—13女人毛片做爰片一| 十八禁网站免费在线| 亚洲精品自拍成人| 国产精品一区二区免费欧美 | 国产欧美日韩综合在线一区二区| 午夜日韩欧美国产| 国产成人系列免费观看| 日韩人妻精品一区2区三区| 国产男女内射视频| 精品少妇一区二区三区视频日本电影| 男女床上黄色一级片免费看| 三级毛片av免费| 国产免费视频播放在线视频| 丝瓜视频免费看黄片| 五月开心婷婷网| 中文字幕人妻熟女乱码| 99九九在线精品视频| 乱人伦中国视频| 老司机影院毛片| 精品一区二区三区四区五区乱码| 99国产精品一区二区三区| 免费黄频网站在线观看国产| 纵有疾风起免费观看全集完整版| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 91精品三级在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲国产精品一区三区| 午夜视频精品福利| 91成年电影在线观看| 日本猛色少妇xxxxx猛交久久| 我要看黄色一级片免费的| 在线观看一区二区三区激情| 国产成人精品无人区| 高清av免费在线| 女性被躁到高潮视频| 亚洲欧美色中文字幕在线| 欧美xxⅹ黑人| 中文字幕最新亚洲高清| 18禁观看日本| 少妇裸体淫交视频免费看高清 | 伊人久久大香线蕉亚洲五| 欧美黄色片欧美黄色片| 99久久国产精品久久久| 女性被躁到高潮视频| 一区福利在线观看| 欧美成狂野欧美在线观看| 我的亚洲天堂| 国产日韩欧美亚洲二区| 国产精品久久久久久人妻精品电影 | 男女高潮啪啪啪动态图| 免费在线观看影片大全网站| 国产精品av久久久久免费| 桃花免费在线播放| 国产精品1区2区在线观看. | 中文字幕制服av| 国产三级黄色录像| 亚洲精品乱久久久久久| 国产亚洲av高清不卡| 18禁国产床啪视频网站| 免费在线观看黄色视频的| 精品卡一卡二卡四卡免费| 国产亚洲av片在线观看秒播厂| 久久久久精品人妻al黑| 久久久精品国产亚洲av高清涩受| 在线十欧美十亚洲十日本专区| 亚洲精品久久成人aⅴ小说| 最近最新免费中文字幕在线| 久久久久视频综合| 色婷婷久久久亚洲欧美| 青春草视频在线免费观看| 男女边摸边吃奶| 久久影院123| 12—13女人毛片做爰片一| 成年人免费黄色播放视频| 别揉我奶头~嗯~啊~动态视频 | 国产精品.久久久| 欧美日韩视频精品一区| 搡老熟女国产l中国老女人| 免费少妇av软件| 亚洲激情五月婷婷啪啪| 国产av国产精品国产| 欧美+亚洲+日韩+国产| 精品国产乱码久久久久久男人| 久久久国产一区二区| 精品少妇一区二区三区视频日本电影| 亚洲性夜色夜夜综合| 精品久久蜜臀av无| av有码第一页| 母亲3免费完整高清在线观看| 一级片'在线观看视频| 色播在线永久视频| 蜜桃国产av成人99| 80岁老熟妇乱子伦牲交| 99香蕉大伊视频| 黑人操中国人逼视频| 爱豆传媒免费全集在线观看| 精品国产超薄肉色丝袜足j| 五月开心婷婷网| 大码成人一级视频| 999久久久精品免费观看国产| 精品久久久久久久毛片微露脸 | 在线亚洲精品国产二区图片欧美| cao死你这个sao货| 一级毛片电影观看| 国产日韩欧美亚洲二区| 欧美精品一区二区免费开放| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品亚洲av一区麻豆| 国产精品免费视频内射| 免费高清在线观看日韩| 黑人欧美特级aaaaaa片| 国产精品麻豆人妻色哟哟久久| 最新的欧美精品一区二区| 一级毛片精品| 在线永久观看黄色视频| 成人国产av品久久久| 自线自在国产av| 男女下面插进去视频免费观看| 国产精品一区二区免费欧美 | 欧美少妇被猛烈插入视频| 欧美 日韩 精品 国产| 欧美xxⅹ黑人| 国产成人a∨麻豆精品| 国产真人三级小视频在线观看| 国产色视频综合| 女人爽到高潮嗷嗷叫在线视频| 男女无遮挡免费网站观看| 亚洲天堂av无毛| 又黄又粗又硬又大视频| 久久久水蜜桃国产精品网| 亚洲成国产人片在线观看| 黄网站色视频无遮挡免费观看| 亚洲人成77777在线视频| 欧美另类一区| 波多野结衣av一区二区av| 亚洲精华国产精华精| 一级毛片精品| 免费在线观看完整版高清| 亚洲免费av在线视频| 国产精品国产三级国产专区5o| 国产成人精品在线电影| 黑人欧美特级aaaaaa片| av欧美777| 一进一出抽搐动态| 亚洲欧美日韩另类电影网站| 成年美女黄网站色视频大全免费| 国产av国产精品国产| 男女无遮挡免费网站观看| 亚洲五月婷婷丁香| 人人澡人人妻人| 日韩中文字幕欧美一区二区| 在线精品无人区一区二区三| 欧美中文综合在线视频| 久久人人爽av亚洲精品天堂| 久久人人97超碰香蕉20202| 一区福利在线观看| 午夜福利在线观看吧| 日韩大片免费观看网站| 两人在一起打扑克的视频| 国产老妇伦熟女老妇高清| 国产av一区二区精品久久| 欧美精品人与动牲交sv欧美| 久久ye,这里只有精品| 精品少妇一区二区三区视频日本电影| 精品乱码久久久久久99久播| 一区二区av电影网| 午夜激情av网站| 在线观看免费视频网站a站| 国产色视频综合| 亚洲中文日韩欧美视频| 青春草视频在线免费观看| 欧美亚洲 丝袜 人妻 在线| 精品国产乱子伦一区二区三区 | 色婷婷av一区二区三区视频| 国产精品1区2区在线观看. | 欧美中文综合在线视频| 丝瓜视频免费看黄片| 天天操日日干夜夜撸| 亚洲av电影在线观看一区二区三区| 老熟妇仑乱视频hdxx| 久久人妻福利社区极品人妻图片| 人人妻人人添人人爽欧美一区卜| 国产精品久久久av美女十八| 一区在线观看完整版| 91精品国产国语对白视频| 欧美在线黄色| 日本vs欧美在线观看视频| 麻豆乱淫一区二区| 国产免费福利视频在线观看| 亚洲av片天天在线观看| 国产在线视频一区二区| 夫妻午夜视频| 国产在线观看jvid| 日本wwww免费看| 国产亚洲av高清不卡| 亚洲九九香蕉| 国产1区2区3区精品| 80岁老熟妇乱子伦牲交| 久久久久国产一级毛片高清牌| 婷婷成人精品国产| 亚洲激情五月婷婷啪啪| 色婷婷久久久亚洲欧美| 俄罗斯特黄特色一大片| 国产成人免费无遮挡视频| 精品人妻在线不人妻| 极品人妻少妇av视频| 黄网站色视频无遮挡免费观看| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 国产一区二区激情短视频 | 岛国毛片在线播放| 亚洲国产精品一区三区| 日韩欧美一区视频在线观看| av片东京热男人的天堂| 男人舔女人的私密视频| 制服诱惑二区| 亚洲成人免费电影在线观看| a级毛片在线看网站| 丰满少妇做爰视频| 国产精品一区二区在线观看99| 国产高清国产精品国产三级| 国产主播在线观看一区二区| 中文字幕色久视频| 亚洲少妇的诱惑av| 18禁黄网站禁片午夜丰满| 99热全是精品| 又大又爽又粗| av免费在线观看网站| 欧美日韩亚洲综合一区二区三区_| 黄色怎么调成土黄色| 午夜福利一区二区在线看| 夜夜夜夜夜久久久久| 飞空精品影院首页| 成人手机av| 老熟妇乱子伦视频在线观看 | 国产av国产精品国产| 久久中文看片网| 精品欧美一区二区三区在线| 国产精品久久久av美女十八| 可以免费在线观看a视频的电影网站| 三上悠亚av全集在线观看| 久久久久国内视频| 国产精品免费视频内射| 国产精品久久久久久人妻精品电影 | 久久精品久久久久久噜噜老黄| 国产精品一二三区在线看| 国产精品 国内视频| 夜夜骑夜夜射夜夜干| 美女高潮到喷水免费观看| 青春草亚洲视频在线观看| 美女午夜性视频免费| 极品人妻少妇av视频| 国产欧美日韩一区二区三区在线| 国产欧美日韩一区二区精品| 热re99久久精品国产66热6| 母亲3免费完整高清在线观看| 国产在视频线精品| 国产av精品麻豆| 日日夜夜操网爽| 久久中文看片网| av一本久久久久| 国产真人三级小视频在线观看| 亚洲av男天堂| 波多野结衣av一区二区av| 热99re8久久精品国产| 国产精品久久久久久精品古装| 一级片免费观看大全| 超碰成人久久| 久久人妻熟女aⅴ| 一区二区三区乱码不卡18| 美女高潮到喷水免费观看| 亚洲精品久久午夜乱码| www.999成人在线观看| av一本久久久久| 在线观看免费视频网站a站| 成人国产av品久久久| 国产xxxxx性猛交| 亚洲伊人久久精品综合| 国产亚洲精品第一综合不卡| 两人在一起打扑克的视频| av线在线观看网站| 久久久精品国产亚洲av高清涩受| 人人妻,人人澡人人爽秒播| av福利片在线| 亚洲国产成人一精品久久久| 午夜精品久久久久久毛片777| 国产精品免费视频内射| 一级片免费观看大全| 下体分泌物呈黄色| 大型av网站在线播放| 亚洲自偷自拍图片 自拍| 免费高清在线观看日韩| 99九九在线精品视频| 五月开心婷婷网| av国产精品久久久久影院| 日韩电影二区| av又黄又爽大尺度在线免费看| 男女午夜视频在线观看| 最新在线观看一区二区三区| 在线观看人妻少妇| 18禁裸乳无遮挡动漫免费视频| av天堂在线播放| 99热网站在线观看| 极品少妇高潮喷水抽搐| 日韩大片免费观看网站| 欧美97在线视频| 国产亚洲欧美精品永久| 成年动漫av网址| 亚洲综合色网址| 欧美精品高潮呻吟av久久| 国产成人免费观看mmmm| 嫩草影视91久久| 女警被强在线播放| 国产深夜福利视频在线观看| 少妇人妻久久综合中文| 国产野战对白在线观看| 日韩一卡2卡3卡4卡2021年| 久久久久久人人人人人| 亚洲伊人久久精品综合| 国产成人系列免费观看| 亚洲综合色网址| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 国产淫语在线视频| 多毛熟女@视频| 午夜福利乱码中文字幕| 正在播放国产对白刺激| 精品人妻熟女毛片av久久网站| 国产99久久九九免费精品| 老汉色av国产亚洲站长工具| 国产成人免费无遮挡视频| 久久精品人人爽人人爽视色| 黑人操中国人逼视频| 国产一区二区三区在线臀色熟女 | 这个男人来自地球电影免费观看| 亚洲熟女毛片儿| 如日韩欧美国产精品一区二区三区| 动漫黄色视频在线观看| 日本一区二区免费在线视频| 精品亚洲乱码少妇综合久久| 18禁裸乳无遮挡动漫免费视频| 天天影视国产精品| 午夜成年电影在线免费观看| 久久天堂一区二区三区四区| 看免费av毛片| 国产在线视频一区二区| 精品国产国语对白av| 黄色视频,在线免费观看| 我要看黄色一级片免费的| 性色av乱码一区二区三区2| 99国产精品一区二区三区| 久久精品国产亚洲av高清一级| a 毛片基地| 电影成人av| 黄网站色视频无遮挡免费观看| tocl精华| 好男人电影高清在线观看| 久久这里只有精品19| 亚洲少妇的诱惑av| 美女扒开内裤让男人捅视频| 蜜桃在线观看..| 日本av手机在线免费观看| 国产欧美亚洲国产| 9191精品国产免费久久| 日本a在线网址| 手机成人av网站| 久久免费观看电影| 亚洲精品在线美女| 日本wwww免费看| 91精品伊人久久大香线蕉| 亚洲精品国产精品久久久不卡| 亚洲色图综合在线观看| 人人妻人人澡人人爽人人夜夜| 午夜91福利影院| 中文字幕人妻丝袜制服| 黄色视频在线播放观看不卡| 嫁个100分男人电影在线观看| 另类精品久久| 精品国产一区二区久久| 波多野结衣av一区二区av| 色综合欧美亚洲国产小说| 午夜免费观看性视频| 91大片在线观看| 十八禁网站免费在线| 免费一级毛片在线播放高清视频 | 首页视频小说图片口味搜索| 午夜福利一区二区在线看| 我的亚洲天堂| 一个人免费在线观看的高清视频 | 女性生殖器流出的白浆| 国产精品熟女久久久久浪| 1024视频免费在线观看| 国产精品久久久久久精品古装| 热99re8久久精品国产| 国产一区有黄有色的免费视频| 欧美另类亚洲清纯唯美| 精品乱码久久久久久99久播| 丝袜美足系列| 亚洲七黄色美女视频| 国产精品1区2区在线观看. | 国产成人精品久久二区二区免费| 久久人妻熟女aⅴ| 一级a爱视频在线免费观看| 久久性视频一级片| 欧美+亚洲+日韩+国产| 亚洲成国产人片在线观看| av欧美777| 黄色a级毛片大全视频| 国产一区二区三区在线臀色熟女 | av电影中文网址| 少妇猛男粗大的猛烈进出视频| 在线观看一区二区三区激情| 国产亚洲精品久久久久5区| 午夜久久久在线观看| 日韩中文字幕欧美一区二区| 美女高潮到喷水免费观看| 大片电影免费在线观看免费| 每晚都被弄得嗷嗷叫到高潮| 丝袜美腿诱惑在线| 黑人欧美特级aaaaaa片| 十八禁高潮呻吟视频| 黄片大片在线免费观看| 99国产精品一区二区三区| 国产成人精品在线电影| 色视频在线一区二区三区| 亚洲第一av免费看| 成人黄色视频免费在线看| 欧美激情久久久久久爽电影 | 欧美精品啪啪一区二区三区 | 别揉我奶头~嗯~啊~动态视频 | 熟女少妇亚洲综合色aaa.| 亚洲精品一二三| 日日爽夜夜爽网站| 男女之事视频高清在线观看| 久久久精品区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 免费黄频网站在线观看国产| 少妇的丰满在线观看| 精品亚洲成国产av| 男女高潮啪啪啪动态图| 国产精品二区激情视频| 成人三级做爰电影| 男女无遮挡免费网站观看| 黑人欧美特级aaaaaa片| 精品国产乱码久久久久久男人| 狂野欧美激情性bbbbbb| 免费在线观看黄色视频的| 精品国内亚洲2022精品成人 | 精品一区二区三卡| 精品国内亚洲2022精品成人 | 久热这里只有精品99| 免费一级毛片在线播放高清视频 | 正在播放国产对白刺激| 国产男女超爽视频在线观看| 色老头精品视频在线观看| 日本av免费视频播放| 中文字幕制服av| 日本一区二区免费在线视频| 新久久久久国产一级毛片| 欧美日本中文国产一区发布| 精品久久久久久久毛片微露脸 | 亚洲av成人不卡在线观看播放网 | 伊人久久大香线蕉亚洲五| 少妇人妻久久综合中文| 久久国产精品男人的天堂亚洲| 黑人猛操日本美女一级片| 国产又色又爽无遮挡免| 国产成人av激情在线播放| 十八禁网站免费在线| 黄色怎么调成土黄色| 久久亚洲精品不卡| 一级,二级,三级黄色视频| 一级a爱视频在线免费观看| 波多野结衣一区麻豆| 国产精品影院久久| 精品欧美一区二区三区在线| 亚洲,欧美精品.| 免费一级毛片在线播放高清视频 | av欧美777| 制服人妻中文乱码| 久久亚洲国产成人精品v| 欧美少妇被猛烈插入视频| 在线精品无人区一区二区三| av在线播放精品| 国产欧美亚洲国产| 窝窝影院91人妻| 女人久久www免费人成看片| 国产精品偷伦视频观看了| 青青草视频在线视频观看| 国产一区二区激情短视频 | 精品视频人人做人人爽| 高清在线国产一区| 成年人免费黄色播放视频| 老司机深夜福利视频在线观看 | 欧美国产精品va在线观看不卡| 最近最新中文字幕大全免费视频| 久久精品亚洲熟妇少妇任你| 成年美女黄网站色视频大全免费| 热99国产精品久久久久久7| 肉色欧美久久久久久久蜜桃| 久久久久网色| 这个男人来自地球电影免费观看| 婷婷成人精品国产| 三级毛片av免费| 男女午夜视频在线观看| 国产亚洲欧美精品永久| 蜜桃在线观看..| 啦啦啦中文免费视频观看日本| videosex国产| 久久精品亚洲熟妇少妇任你| 午夜福利在线观看吧| 美女视频免费永久观看网站| 亚洲国产av新网站| 丁香六月天网| 欧美日韩亚洲国产一区二区在线观看 | 亚洲人成77777在线视频| 欧美性长视频在线观看| 伊人亚洲综合成人网| 精品国产超薄肉色丝袜足j| 青草久久国产| 99久久人妻综合| 2018国产大陆天天弄谢| 久久亚洲国产成人精品v| 热re99久久国产66热| 性色av乱码一区二区三区2| 国产亚洲av高清不卡| 国产成人av教育| 巨乳人妻的诱惑在线观看| 男女国产视频网站| 一二三四社区在线视频社区8| 男男h啪啪无遮挡| 交换朋友夫妻互换小说| 国产亚洲一区二区精品| 亚洲色图 男人天堂 中文字幕| 自线自在国产av| 精品欧美一区二区三区在线| 宅男免费午夜| 男男h啪啪无遮挡| 国产福利在线免费观看视频| 黑人巨大精品欧美一区二区mp4| av福利片在线| 国产日韩欧美在线精品| 精品一区在线观看国产| 国产欧美日韩精品亚洲av| 日韩免费高清中文字幕av| 美女大奶头黄色视频|