• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shape Control, Crystalline Conversion and Pseudocapacitance Properties of Mn3O4: Effects of Yb3+ Doping①

    2018-10-12 03:54:20YOUJunHuGUOYoZuZHAOYoNIZhiYunGUORui
    結(jié)構(gòu)化學(xué) 2018年9期

    YOU Jun-Hu GUO Yo-Zu ZHAO Yo NI Zhi-Yun GUO Rui,

    ?

    Shape Control, Crystalline Conversion and Pseudocapacitance Properties of Mn3O4: Effects of Yb3+Doping①

    YOU Jun-HuaaGUO Yao-ZuaZHAO YaoaNI Zhi-YuanbGUO Ruib,c②

    a(110870)b(110819)c(066004)

    We report a facile method for the synthesis of manganese oxide (Mn3O4) nanorodsvia the direct reaction of MnCl2and H2O2by doping Yb3+ions at room temperature and air atmosphere. The Mn3O4:Yb3+samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CVs), electrochemical impedance spectroscopy (EIS), and charging-discharging test (CD). The results show thattrace Yb3+doping (6 at%) could effectively induce crystalline transformation of Mn3O4from cubic system (space group-3) to tetragonal system (space group41/) and incite the morphology changing from irregular particles to uniform nanorods. When Yb3+doping amount is 3%, the capacitance of Mn3O4reaches the maximum, 246 F/g, which is related to the morphology change and the corresponding decrease of impedance.

    Mn3O4, Yb3+, shape control, crystalline conversion, pseudocapacitor;

    1 INTRODUCTION

    Manganese oxides (such as MnO, Mn2O3, Mn3O4, and MnO2) store electrochemical energy by simul- taneous injection of electrons and charge-compensa- ting cations, as other electroactive transition metal oxides[1, 2]. Among them, Mn3O4-based materials have attracted increased interest because of its superior electrochemical performance, environmen- tally friendly nature, and low cost[4-6]. In addition, most of the reports have focused on improving the specific surface area of Mn3O4nanomaterials but the effects of morphology and crystal phase on electro- chemical performance should not be ignored. For example, Shaik et al. reported tetragonal phase Mn3O4thin film grown on stainless steel substrates exhibited a specific capacitance of 568 Fg-1at a current density of 1 Ag-1in 1 M Na2SO4aqueous electrolyte with excellent capacitance retention of 93% even after 5000 cycles[3]. Different morpho- logies of Mn3O4prepared by various methods have also been reported, such as amorphous Mn3O4prepared by successive ionic layer adsorption and reaction (SILAR) method and galvanostatic anodic deposition method[4, 7], Mn3O4nanosheets prepared in xylene at 90 °C and in air atmosphere[3], Mn3O4composite loaded on CMK-3[8], Mn3O4with ant-cave structure[9], Mn3O4nanosheets prepared by a solvo- thermal method with a high-performance pseudoca- pacitors[10], Mn3O4nanoparticles via a one-pot method[11], well encapsulated Mn3O4octahedra in graphene nanosheets by a dealloying method[12], and so on. Among them, Mn3O4nanowires or nanorods were usually synthesized by hydrothermal method[13], whose excellent electrochemical properties caught our attention. Considering the large-scale application and low cost, nanomaterials should be prepared by a facile method. Then our group has devoted many efforts to improving the morphology of Mn3O4nanorods. In addition, there are few studies on improving the morphology and properties of Mn3O4by ion doping.

    In this work, we propose a cost-effective, large- scale synthesis method for Mn3O4nanorods. The product prepared by the direct reaction of MnC12with H2O2in alkaline conditions is a mixture of amorphous cubic Mn3O4and trace nanorod-like tetragonal Mn3O4. When Yb3+ions were added during the reaction, it was interesting to find that the amorphous Mn3O4is converted to uniform nanorods under the incitement of Yb3+ion.

    To the best of our knowledge, this facile prepara- tion method of Mn3O4nanorods in aqueous solution at room temperature and air pressure have not been reported. Excitingly, Yb3+ion doping further impro- ved the pseudocapacitive properties from the 161 F/g of pure Mn3O4to the 246 F/g of Mn3O4:3%Yb3+.

    2 EXPERIMENTAL

    All the reagents used for synthesis were of analytical grade. Typically, Mn3O4or Mn3O4:Yb3+was synthesized as follows[14-17].Stoichiometric MnCl2, H2O2, and NaOH were dissolved in deioni- zed water in air atmosphere under vigorous stirring for 4 h. Then the resulting solution was kept at room temperature for about 12 h. Purple precipitant was collected by filtration, washed with ethyl ether and dried in air. The chemical reaction between H2O2, NaOH and Mn2+ions leads to the deposition of Mn3O4, which could be described as Eq. 1.

    Here the NaOH is base and in basic medium Mn2+is an unstable state, hence Mn2+is partly oxidized to Mn3+[4].

    The XRD patterns were recorded on a D/Max-RB X-ray diffractometer (Rigaku) using Cuirradia- tion from 10° to 90°.The powder morphologies were characterized using SEM (Zeiss Supra 55).

    The mixture of Mn3O4or Mn3O4:Yb3+, acetylene black, andPolyvinylidene Fluoride (PVDF) with the weight ratio of 7:2:1was used to prepare the working electrode. The typical mass loading of the active material in each electrode is about 10.0 mg. The mixture was coated onto 1 cm2of nickel foam (known mass). The prepared electrodes were dried at 80 ℃ for about 12 h[12, 14, 18]. All electrochemical measurements were performed in a three-electrode system, such as the prepared nickel foam electrode (working electrode), a platinum electrode (counter electrode), and a saturated calomel electrode (SCE, reference electrode). For all electrochemical measurements, 1 M Na2SO4was used as the electro- lyte and the experiments were done at ambient temperature, which was typically 25 ℃. The specific capacitance was calculated by integrating the area under the CV curve to obtain the charge () and then divided by the mass of electroactive material (), scan rate (), and potential window (Δa?c) according to Eq. 2.

    In addition, the specific capacitance can be calcu- lated from the galvanostatic charging-discharging function according to Eq. 3.

    Δis the discharging time, Δis the potential window, andis mass of the electroactive material.

    Electrochemical impedance spectroscopy (EIS) measurements were performed in the frequency range of 10 mHz~100 kHz in the amplitude of 5 mV[12, 19]. Constant current charge-discharge tests were performed in the voltage range of 0~0.8 V (SCE).

    3 RESULTS AND DISCUSSION

    XRD was first employed to investigate the phase structure ofpure Mn3O4and Mn3O4:Yb3+. As shown in Fig. 1a,themain diffraction peaks of pure Mn3O4and Mn3O4: 3% Yb3+are well indexed to cubic Mn3O4phase (corresponding to that of JCPDS 13-0162). However, it is clear that theintensity of the peak at 18.2o corresponding tothe (111) plane of cubic Mn3O4structure disappeared after Yb3+doping beyond 6% and the peaks at 18.0o and 28.9o are clearly observed, indicating that Mn3O4transfers from a cubic system to a tetragonal system (corresponding to that of JCPDS 24-0734) under the incitement of Yb3+ions. The change in the micro- structure of pure Mn3O4and Mn3O4:Yb3+is shown in Fig. 1b-1f. Fig. 1b shows the SEM image of pure Mn3O4, which exhibits a mixture of amorphous particles and trace short rod-like particles. However, all morphologies of Mn3O4:Yb3+are short rod- shaped and the surface is very smooth. With the increase of Yb3+ion doping, the short rod-like particles tend to agglomerate slightly and the length/diameter ratio of Mn3O4nanorods also gradually increases (Fig. 1b-e). The morphological changes of Mn3O4observed in SEM are consistent with the results of XRD, which further verify the induction effects of Yb3+doping, that is, Yb3+ion doping first causes the morphological changes of Mn3O4but does not induce the crystal lattice conversion. When the Yb3+doping amount exceeds 6%, the crystal lattices of all the particles are converted to tetragonal phase. Taking into account that the synthesis conditions are unchanged, the morphological change and crystalline lattice change of Mn3O4particles are directly related to the doping of Yb3+ions.

    Fig. 1. XRD patterns of pure Mn3O4:Yb (a) and SEM images of the pure Mn3O4(b) and Mn3O4: 3%Yb3+(c), 6%Yb3+(d), 9%Yb3+(e), 12%Yb3+(f)

    The pure Mn3O4and Mn3O4:Yb electrodes were used in the supercapacitor and their performances were tested using cyclic voltammograms (CV) technique. The CVs were measured at different voltage scan rates and shown in Fig. 2.The specific capacitance is proportional to the area under the CV curve. Importantly, the specific capacitance was measured at a high mass loading of 10.0 mg/cm2, which is higher than that investigated in other recent reports on Mn3O4[13]. It could be seen that the CV behavior of pure Mn3O4is similar to those of Mn3O4:Yb3+. The CVs curves of all samples remain rectangular at low scan speeds, indicating that the electrode process is reversible in this condition. When the scan speed increases, the CVs are asymmetric, indicating an irreversible redox process. When the scan speed is 5 mV/s, the specific capa- citance is the largest for each sample, which is shown in Fig. 2f. It is found the specific capacitance of pure Mn3O4is about 161 F/g. When 3% Yb3+is doped, although the cubic phase still dominates, the specific capacitance increases to 246 F/g[13], a 53% increase compared to pure Mn3O4. After the crystal lattices convert from cubic phase to tetragonal phase completely, the specific capacitance of Mn3O4: 6%Yb3+drops to 135 F/g, a 16% decrease compared to pure Mn3O4. Subsequently, as the Yb3+doping amount increases, the capacitance decreases gra- dually. The above results show that the change in morphology by Yb3+doping increases the specific capacitance of the cubic phase Mn3O4and the specific capacitance of the tetragonal Mn3O4is smaller than the cubic phase Mn3O4.

    Fig. 2. Cycling performance of pure Mn3O4(a) and Mn3O4doped by Yb3+(3%, b; 6%, c; 9%, d; 12%, e) at different scan speeds, and the plots of the specific capacitancescan speed (f)

    Fig. 3. Corresponding Nyquist plots (a) and Galvanostatic charging-discharging curves for pure Mn3O4and Mn3O4: Yb3+at 2 A/g current density (b)

    Electrochemical impedance spectroscopy (EIS), a powerful technique for the investigation of capacitive behavior, has been also used to explore the effects of Yb3+doping on electrochemical performances of Mn3O4. The EIS measurements for pure Mn3O4and Mn3O4:Yb3+electrodes were conducted at open circuit voltage state using fresh cells. As observed in Fig. 3a, all Nyquist plots show a sloping line from in the high-frequency region to the low-frequency region. By comparison, the biggest difference for these Nyquist plots lies in the absolute values of the impedance in the low-frequency region due to Yb3+doping. When the Yb3+doping amount is 3%, the decrease in the imaginary part of the impedance means that the properties of the interface between the electrode and the active material is improved, which also indicates that the adsorption/desorption activation energy of the redox species on the surface of Mn3O4is more moderate at this time. Taking account of a high mass loading, a smaller impedance is helpful for the electron injection into active substance, yielding a large specific capacitance of Mn3O4:3%Yb3+. When the Yb3+doping amount is beyond 3%, the real part of the impedance increases gradually as the crystal lattice transforms into a tetragonal phase, implying the internal resistance of the tetragonal phase is higher. Fig. 3b shows galvanostatic charging-discharging curves of pure Mn3O4and Mn3O4:Yb3+electrodes at 2 A/g current density. For current densities at 2 A/g, thedrops of pure Mn3O4, Mn3O4:9%Yb3+and Mn3O4:12%Yb are larger, which is greatly in agreement with the results of EIS. The charging times of Mn3O4:3%Yb3+and Mn3O4:6%Yb3+are similar. But the charging current of Mn3O4:3%Yb3+rises faster and the discharging time of Mn3O4:3%Yb3+is longer, indicating a greater specific capacity, which is also consistent with the EIS.

    4 CONCLUSION

    In this investigation, for the first time, we success- fully prepared rod-shaped Mn3O4using a facile method at room temperature and air pressure by doping Yb3+ions. The Yb3+doping not only changed the morphology of Mn3O4but also converted the crystal lattice of Mn3O4from cubic phase into tetragonal phase. When the Yb3+doping amount is 3%, the specific capacitance reaches the maximum, 246 F/g. As the doping amount of Yb3+ions con- tinues to increase, the specific capacitance of the tetragonal Mn3O4begins to decrease due to the increase of impedance. The specific capacitances of Yb3+-doped tetragonal Mn3O4are always smaller than that of cubic Mn3O4, indicating that cubic Mn3O4is a more promising electrode material for electrochemical capacitor.

    (1) Liu, G. Q.; Li, Y.; Du, Y. L.; Wen, L. Synthesis and properties of Na0.8Ni0.4Mn0.6O2oxide used as cathode material for sodium ion batteries.2017, 36, 977–980.

    (2) Bao, S. J.; Jia, W.; Xu, M. W. Rapid synthesis of Mn3O4by in-situ redox method and its capacitive performances.2011, 30, 81–84.

    (3) Shaik,D. P. M. D.; Rosaiah, P.; Ganesh, K. S.; Qiu, Y. J.; Hussain, O. M. Improved electrochemical performance of Mn3O4thin film electrodes forsupercapacitors.2018, 84, 83–90.

    (4) Chen, Q. Y.; Chen, J. Z.; Zhou, Y. Y.; Song, C.; Tian, Q. H.; Xu, J. L.; Wong, C. P. Enhancing pseudocapacitive kinetics of nanostructured MnO2through anchoring onto biomass-derived porous carbon.2018, 440, 1027–1036.

    (5) Guo,R.; Liu, G.; Zhang, Y.; Li, C. C.; Qi, J. J.; Liu, X. W.; Su, N. Synthesis, crystal structure, fluorescent property and DFT study of a novel 1D polymer [Zn(HMICD)(bpy)]n·2nH2O.2016, 35, 1420–1426.

    (6) Jiang, S.; Zeng, X. R.; Yang, H. P. Synthesis of porous MnO2-CoO microsheets and nanocones as a high-performance battery-type capacitive material.. 2018, 101, 123–131.

    (7) Ramírez, A.; Hillebrand, P.; Stellmach, D.; May, M. M.; Bogdanoff, P.; Fiechter, S. Evaluation of MnOx, Mn2O3, and Mn3O4electrodeposited films for the oxygen evolution reaction of water.2014, 118, 14073–14081.

    (8) Sekhar, S. C.; Nagaraju, G.; Yu, J. S. Ant-cave structured MnCO3/Mn3O4microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors.2018, 435, 398–405.

    (9) Poon, R.; Zhitomirsky, L. High areal capacitance of Mn3O4-carbon nanotube electrodes.2018, 215, 4–7.

    (10) Ling, B. L.; Chen, A.; Liu, W. F.; Liu, K. Y.; Hu, H.; Zhang, J. W. Simply and rapidly synthesized composites of MnO2nanosheets anchoring on carbon nanotubes as efficient sulfur hosts for Li–S batteries.2018, 218, 321–324.

    (11) Rathour, R. K. S.; Bhattacharya, J. A green approach for single-pot synthesis of graphene oxide and its composite with Mn3O4.2018, 437, 41–50.

    (12) Hao, Q.; Liu, B. B.; Ye, J. J.; Xu, C. X. Well encapsulated Mn3O4octahedra in graphene nanosheets with much enhanced Li-storage performances.2017, 504, 603–610.

    (13) Wang, C. B.; Yin, L. W.; Xiang, D.; Qi, Y. X. Uniform carbon layer coated Mn3O4nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries.2012, 4, 1636–1642.

    (14) Liu, X. W.; Guo, R.; Liu, H.; Yu, Y. Q.; Qi, X. W.; Xu, J. Y.; Xie, C. Z. Two series of novel 3D potentially porous heterometallic Cu–Ln coordination frameworks assembled by 3,4-pyridinedicarboxylic acid with different topologies and channels: syntheses, structures, luminescence and magnetic properties.2015, 5, 15059–15068.

    (15) Liu, X. W.; Wang, R. C.; Ni, Z. Y.; Zhou, W. L.; Du, Y. C.; Ye, Z. Q.; Guo, R. Facile synthesis and selective adsorption properties of Sm2CuO4for malachite green: kinetics, thermodynamics and DFT studies.2018, 743, 17–25.

    (16) Gao, H.; Zhang, X. B.; Chen, W. T.; Yang, Z. F.; Pan, J. F.; Li, L. Y.; Yu, Y.Optical spectroscopic properties of Yb3+-doped MgMoO4crystal grown by the TSSG method.2017, 36, 631–639.

    (17) Li, Y. Q.; Qu, J. Y.; Gao, F.; Lv, S. Y.; Shi, L.; He, C. X.; Sun, J. C. In situ fabrication of Mn3O4decorated graphene oxide as a synergistic catalyst for degradation of methylene blue.2015, 162, 268–274.

    (18) Wang, M. Y.; Huang, Y.; Zhang, N.; Wang, K.; Chen, X. F.; Ding, X. A facile synthesis of controlled Mn3O4hollow polyhedron for high-performance lithium-ion battery anodes.2018, 334, 2383–2391.

    (19) Gopalakrishnan, M.; Srikesh, G.; Mohan, A.; Arivazhagan, V.synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications.2017, 403, 578–583.

    11 May 2018;

    16 July 2018

    ①Supported by the National Natural Science Funds Youth Project of China (No. 51704064), the Fundamental Research Funds for the Central Universities (No. N162302001), Hebei Province Higher Education Science and Technology Research Project(No.ZD2017309), the Scientific and Technological Research and Development Plan of Qinhuangdao City (201701B063), the further support fund of Key Laboratory of Nanomaterials and Photoelectrocatalysis in Qinhuangdao City (201705B021), and the Northeastern University at Qinhuangdao Campus Research Fund (XNK201602)

    . Born in 1979. Tel: 15076015448, E-mail: guorui@mail.neuq.edu.cn

    10.14102/j.cnki.0254-5861.2011-2067

    亚洲国产精品一区二区三区在线| 18禁在线无遮挡免费观看视频| 国产黄色视频一区二区在线观看| 黄色欧美视频在线观看| 欧美日韩综合久久久久久| 日本与韩国留学比较| 少妇的逼好多水| 黄色毛片三级朝国网站| 成年av动漫网址| 亚洲在久久综合| 视频在线观看一区二区三区| 国产精品免费大片| 熟女人妻精品中文字幕| 午夜免费观看性视频| 亚洲欧美一区二区三区黑人 | 欧美日本中文国产一区发布| 91aial.com中文字幕在线观看| 午夜久久久在线观看| 国产精品久久久久成人av| 自线自在国产av| 午夜视频国产福利| 在线看a的网站| 女人精品久久久久毛片| 夜夜骑夜夜射夜夜干| 亚洲av在线观看美女高潮| 黄色配什么色好看| 国产国语露脸激情在线看| 日韩强制内射视频| 麻豆精品久久久久久蜜桃| 成人午夜精彩视频在线观看| 成人毛片60女人毛片免费| 爱豆传媒免费全集在线观看| 国内精品宾馆在线| 国产精品麻豆人妻色哟哟久久| 国产精品一区二区在线观看99| 日韩中字成人| 亚洲欧美日韩卡通动漫| 高清毛片免费看| 成年人免费黄色播放视频| 久久免费观看电影| 一级a做视频免费观看| 一本一本综合久久| 久久精品熟女亚洲av麻豆精品| 国产男女超爽视频在线观看| 十分钟在线观看高清视频www| 午夜久久久在线观看| 久久 成人 亚洲| 欧美xxxx性猛交bbbb| 亚洲精品456在线播放app| 尾随美女入室| 国产一区二区三区av在线| 91久久精品国产一区二区三区| 欧美日韩av久久| 成年女人在线观看亚洲视频| 91午夜精品亚洲一区二区三区| 777米奇影视久久| 国产亚洲精品久久久com| 老熟女久久久| 免费观看av网站的网址| 午夜激情久久久久久久| 午夜激情av网站| 秋霞伦理黄片| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 香蕉精品网在线| 国产在线视频一区二区| 国产精品秋霞免费鲁丝片| 91精品国产国语对白视频| 如何舔出高潮| 亚洲成人av在线免费| 亚洲国产av影院在线观看| 亚洲高清免费不卡视频| 久久久久久久亚洲中文字幕| av网站免费在线观看视频| 国产国拍精品亚洲av在线观看| 在现免费观看毛片| 考比视频在线观看| 中文欧美无线码| 青青草视频在线视频观看| 国产精品久久久久久精品古装| 欧美+日韩+精品| 国产精品一国产av| 毛片一级片免费看久久久久| 国产日韩欧美亚洲二区| 天天操日日干夜夜撸| 大片电影免费在线观看免费| 亚洲精品成人av观看孕妇| 国产不卡av网站在线观看| 欧美日韩成人在线一区二区| 91在线精品国自产拍蜜月| 亚洲国产成人一精品久久久| 最近中文字幕2019免费版| 女人精品久久久久毛片| 国产黄色视频一区二区在线观看| 不卡视频在线观看欧美| 少妇人妻久久综合中文| 女性被躁到高潮视频| 精品视频人人做人人爽| 亚洲精品自拍成人| 日本爱情动作片www.在线观看| 国产精品蜜桃在线观看| 久久人妻熟女aⅴ| 欧美精品国产亚洲| 亚洲五月色婷婷综合| 日韩在线高清观看一区二区三区| 国产欧美日韩综合在线一区二区| 国语对白做爰xxxⅹ性视频网站| 久久久a久久爽久久v久久| 国产免费一级a男人的天堂| 亚洲欧洲日产国产| 香蕉精品网在线| 国产精品一区二区在线观看99| 一本色道久久久久久精品综合| 在现免费观看毛片| 久久av网站| 欧美日韩精品成人综合77777| 91精品国产国语对白视频| av在线app专区| 国产成人精品久久久久久| 国产精品免费大片| 欧美3d第一页| 99国产综合亚洲精品| 久久久久视频综合| 秋霞在线观看毛片| 久久女婷五月综合色啪小说| 国产精品三级大全| 中文字幕制服av| 插逼视频在线观看| 激情五月婷婷亚洲| 91精品国产九色| 亚洲成人av在线免费| 大片电影免费在线观看免费| 国产一级毛片在线| 欧美三级亚洲精品| 久久ye,这里只有精品| 欧美亚洲日本最大视频资源| 九九在线视频观看精品| 男女高潮啪啪啪动态图| 18禁观看日本| 高清黄色对白视频在线免费看| 多毛熟女@视频| 久久久精品区二区三区| 在线天堂最新版资源| 免费久久久久久久精品成人欧美视频 | 丰满乱子伦码专区| 成人二区视频| 天堂中文最新版在线下载| 色哟哟·www| 欧美3d第一页| 熟女电影av网| 黄片播放在线免费| 午夜影院在线不卡| 日产精品乱码卡一卡2卡三| 最近中文字幕高清免费大全6| 十八禁高潮呻吟视频| 男女免费视频国产| av国产精品久久久久影院| 丁香六月天网| 久久99蜜桃精品久久| 国产精品久久久久久av不卡| 亚洲第一av免费看| 国产精品偷伦视频观看了| 热re99久久国产66热| 国产一区有黄有色的免费视频| 男的添女的下面高潮视频| 亚洲国产精品一区三区| 欧美精品高潮呻吟av久久| 午夜日本视频在线| videossex国产| 午夜影院在线不卡| 3wmmmm亚洲av在线观看| 国产精品嫩草影院av在线观看| 国产又色又爽无遮挡免| 成人国产麻豆网| 五月天丁香电影| 中国美白少妇内射xxxbb| 国产极品粉嫩免费观看在线 | 日韩,欧美,国产一区二区三区| 国产成人91sexporn| 黄色视频在线播放观看不卡| 久久精品国产亚洲av涩爱| 久久久久久久久大av| 欧美xxxx性猛交bbbb| 91精品一卡2卡3卡4卡| 日韩伦理黄色片| 亚洲精品日本国产第一区| 久久久久久久久久成人| 色吧在线观看| 婷婷色av中文字幕| 天天操日日干夜夜撸| 91在线精品国自产拍蜜月| 在线观看一区二区三区激情| 国产精品国产三级专区第一集| 啦啦啦视频在线资源免费观看| 精品一区二区三卡| 亚洲美女视频黄频| 在线观看www视频免费| 美女脱内裤让男人舔精品视频| 精品久久国产蜜桃| 精品99又大又爽又粗少妇毛片| 满18在线观看网站| 国产成人免费无遮挡视频| 成年女人在线观看亚洲视频| www.色视频.com| 国产成人aa在线观看| 国产白丝娇喘喷水9色精品| 少妇的逼好多水| 纯流量卡能插随身wifi吗| 欧美xxⅹ黑人| 久久韩国三级中文字幕| 一区二区日韩欧美中文字幕 | 少妇的逼好多水| 亚洲av不卡在线观看| 亚洲欧美精品自产自拍| 美女福利国产在线| 免费看不卡的av| www.色视频.com| 人妻系列 视频| 国产有黄有色有爽视频| 啦啦啦中文免费视频观看日本| 欧美精品高潮呻吟av久久| 91aial.com中文字幕在线观看| 大香蕉97超碰在线| 在线精品无人区一区二区三| 国产欧美另类精品又又久久亚洲欧美| 九九爱精品视频在线观看| 久久热精品热| 王馨瑶露胸无遮挡在线观看| 精品少妇黑人巨大在线播放| 色哟哟·www| 亚洲图色成人| 成人黄色视频免费在线看| 五月天丁香电影| 伦理电影大哥的女人| 多毛熟女@视频| 十八禁高潮呻吟视频| 大香蕉久久成人网| 九色亚洲精品在线播放| av.在线天堂| 国产成人av激情在线播放 | 亚洲怡红院男人天堂| 人妻系列 视频| 成年美女黄网站色视频大全免费 | 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 日韩欧美一区视频在线观看| 国产成人91sexporn| 99热全是精品| 我的老师免费观看完整版| 久久午夜综合久久蜜桃| 三上悠亚av全集在线观看| 一级毛片黄色毛片免费观看视频| 亚洲国产精品一区三区| 亚洲精品乱码久久久v下载方式| 国产成人精品无人区| 91精品伊人久久大香线蕉| 另类亚洲欧美激情| 国产精品三级大全| 久久国产精品男人的天堂亚洲 | 久久韩国三级中文字幕| 日韩,欧美,国产一区二区三区| 夫妻午夜视频| 国产成人精品一,二区| 26uuu在线亚洲综合色| 狂野欧美激情性bbbbbb| 高清午夜精品一区二区三区| av国产久精品久网站免费入址| 国产精品不卡视频一区二区| 欧美另类一区| 免费人成在线观看视频色| 亚洲欧洲国产日韩| 香蕉精品网在线| 亚洲av中文av极速乱| 日韩免费高清中文字幕av| 成年人免费黄色播放视频| av一本久久久久| 一个人免费看片子| 极品人妻少妇av视频| 99热这里只有是精品在线观看| 人妻夜夜爽99麻豆av| 王馨瑶露胸无遮挡在线观看| 久久久国产精品麻豆| 国产成人av激情在线播放 | 国产欧美另类精品又又久久亚洲欧美| 涩涩av久久男人的天堂| 日本wwww免费看| 韩国高清视频一区二区三区| 亚洲一区二区三区欧美精品| 简卡轻食公司| 国产免费一级a男人的天堂| 精品国产国语对白av| 国产精品99久久久久久久久| 成人18禁高潮啪啪吃奶动态图 | 成人国产麻豆网| 免费看av在线观看网站| 成人手机av| 中文乱码字字幕精品一区二区三区| 亚洲经典国产精华液单| 中文字幕av电影在线播放| 久久亚洲国产成人精品v| 九色成人免费人妻av| videos熟女内射| 又大又黄又爽视频免费| 18禁动态无遮挡网站| 日本与韩国留学比较| 最近2019中文字幕mv第一页| 美女大奶头黄色视频| 日韩免费高清中文字幕av| videosex国产| 嫩草影院入口| videosex国产| 精品少妇内射三级| 女人久久www免费人成看片| 久久综合国产亚洲精品| 高清视频免费观看一区二区| 天堂8中文在线网| 蜜桃在线观看..| 亚洲欧洲日产国产| 少妇被粗大的猛进出69影院 | 国产综合精华液| 国产午夜精品一二区理论片| 蜜臀久久99精品久久宅男| 精品一区二区三区视频在线| 永久免费av网站大全| 夜夜骑夜夜射夜夜干| 久久女婷五月综合色啪小说| 精品国产国语对白av| 看十八女毛片水多多多| 久久韩国三级中文字幕| 国产成人精品在线电影| 嫩草影院入口| 99精国产麻豆久久婷婷| 久久韩国三级中文字幕| 色94色欧美一区二区| 精品少妇久久久久久888优播| 国产伦理片在线播放av一区| 18禁在线播放成人免费| 亚洲国产精品999| a级毛片免费高清观看在线播放| 久久精品熟女亚洲av麻豆精品| 免费不卡的大黄色大毛片视频在线观看| 日日啪夜夜爽| 中国三级夫妇交换| 涩涩av久久男人的天堂| 亚州av有码| 97在线人人人人妻| 亚洲av.av天堂| 亚洲精品一区蜜桃| 久久久久精品久久久久真实原创| 黑人巨大精品欧美一区二区蜜桃 | 大片免费播放器 马上看| 国产成人精品福利久久| 久久韩国三级中文字幕| 黑丝袜美女国产一区| 国产成人免费无遮挡视频| 黄色一级大片看看| 国精品久久久久久国模美| 国产一区二区三区综合在线观看 | 丝袜在线中文字幕| 欧美人与性动交α欧美精品济南到 | 视频区图区小说| 久久久久久久国产电影| 人人妻人人澡人人看| 中文字幕免费在线视频6| 久久精品国产自在天天线| 飞空精品影院首页| 日韩伦理黄色片| 午夜精品国产一区二区电影| 国产一区二区在线观看av| 久久精品国产鲁丝片午夜精品| 日本wwww免费看| av线在线观看网站| 色吧在线观看| 男人添女人高潮全过程视频| 国国产精品蜜臀av免费| kizo精华| 久久99热这里只频精品6学生| 免费看光身美女| av在线播放精品| www.av在线官网国产| 国产高清有码在线观看视频| 久久女婷五月综合色啪小说| 中文字幕精品免费在线观看视频 | 国产男人的电影天堂91| 两个人免费观看高清视频| 激情五月婷婷亚洲| 亚洲久久久国产精品| 黄色怎么调成土黄色| 18+在线观看网站| 啦啦啦在线观看免费高清www| 久久精品夜色国产| 18禁在线无遮挡免费观看视频| 久久久久久久亚洲中文字幕| 一级,二级,三级黄色视频| 一二三四中文在线观看免费高清| 久久狼人影院| 成人国语在线视频| 高清毛片免费看| 五月伊人婷婷丁香| 啦啦啦啦在线视频资源| 亚洲一区二区三区欧美精品| 午夜老司机福利剧场| 黄色欧美视频在线观看| 一区二区av电影网| 亚洲欧美日韩另类电影网站| 久久毛片免费看一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲av在线观看美女高潮| 欧美日韩在线观看h| 色婷婷久久久亚洲欧美| 精品熟女少妇av免费看| 精品卡一卡二卡四卡免费| 看免费成人av毛片| 国产亚洲午夜精品一区二区久久| 蜜桃久久精品国产亚洲av| 大香蕉久久成人网| 男人爽女人下面视频在线观看| 99国产综合亚洲精品| 丰满少妇做爰视频| 九草在线视频观看| xxx大片免费视频| 午夜福利视频在线观看免费| 日韩制服骚丝袜av| 亚洲av不卡在线观看| 日本午夜av视频| 欧美3d第一页| 我的老师免费观看完整版| 丰满少妇做爰视频| 免费大片黄手机在线观看| 日韩成人av中文字幕在线观看| 精品人妻在线不人妻| 最新的欧美精品一区二区| 最近2019中文字幕mv第一页| 伊人亚洲综合成人网| 欧美日韩av久久| 交换朋友夫妻互换小说| 国产精品熟女久久久久浪| 国产成人精品无人区| 老司机亚洲免费影院| 岛国毛片在线播放| 久久久久人妻精品一区果冻| 国产精品麻豆人妻色哟哟久久| 久久久久久久久大av| 亚洲av成人精品一区久久| 男女边吃奶边做爰视频| 欧美+日韩+精品| av卡一久久| 你懂的网址亚洲精品在线观看| a 毛片基地| 国产精品偷伦视频观看了| 精品99又大又爽又粗少妇毛片| 只有这里有精品99| 狠狠精品人妻久久久久久综合| 国产伦精品一区二区三区视频9| 久久久久久久亚洲中文字幕| 狂野欧美激情性xxxx在线观看| 伊人久久精品亚洲午夜| 亚洲欧美清纯卡通| 男的添女的下面高潮视频| 在线观看www视频免费| 搡女人真爽免费视频火全软件| 久久久a久久爽久久v久久| 国产精品欧美亚洲77777| 日日摸夜夜添夜夜添av毛片| 亚洲婷婷狠狠爱综合网| 成人毛片a级毛片在线播放| 麻豆乱淫一区二区| 久久久久精品久久久久真实原创| 国产免费又黄又爽又色| 久久影院123| 国产欧美亚洲国产| 一本一本综合久久| 亚洲美女黄色视频免费看| 内地一区二区视频在线| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久精品电影小说| 在线观看免费日韩欧美大片 | 亚州av有码| 国产色爽女视频免费观看| 精品国产一区二区久久| 韩国高清视频一区二区三区| 日产精品乱码卡一卡2卡三| 一级黄片播放器| 一级,二级,三级黄色视频| 午夜激情福利司机影院| 男女边摸边吃奶| 亚洲精品第二区| 亚洲av中文av极速乱| 久久久久国产精品人妻一区二区| 母亲3免费完整高清在线观看 | 99国产综合亚洲精品| 亚洲,一卡二卡三卡| 亚洲,欧美,日韩| 日韩成人av中文字幕在线观看| 久久av网站| 久久青草综合色| 肉色欧美久久久久久久蜜桃| 麻豆乱淫一区二区| 极品人妻少妇av视频| 国产片特级美女逼逼视频| 久久99蜜桃精品久久| 久久久久久久久久久丰满| 亚洲内射少妇av| 一个人看视频在线观看www免费| av电影中文网址| 最新的欧美精品一区二区| 国产深夜福利视频在线观看| 黑人猛操日本美女一级片| 黄色配什么色好看| av女优亚洲男人天堂| 日本av免费视频播放| 在线观看人妻少妇| 美女xxoo啪啪120秒动态图| 人人妻人人澡人人爽人人夜夜| 在线 av 中文字幕| 欧美日韩精品成人综合77777| 天天影视国产精品| 日本爱情动作片www.在线观看| 日本-黄色视频高清免费观看| 建设人人有责人人尽责人人享有的| 国产精品秋霞免费鲁丝片| 久久这里有精品视频免费| 国产av国产精品国产| 免费av不卡在线播放| av国产久精品久网站免费入址| 久久国产精品大桥未久av| 日韩免费高清中文字幕av| 两个人的视频大全免费| 国产 精品1| 亚洲精品乱码久久久久久按摩| 在线免费观看不下载黄p国产| 欧美日韩视频精品一区| 国产免费又黄又爽又色| 国产高清有码在线观看视频| 两个人的视频大全免费| 亚洲精品国产av蜜桃| 爱豆传媒免费全集在线观看| 国产成人一区二区在线| 亚洲精品国产av成人精品| 黄片无遮挡物在线观看| 久久久国产欧美日韩av| 综合色丁香网| 久久99一区二区三区| 18禁动态无遮挡网站| 有码 亚洲区| 女人久久www免费人成看片| 九色亚洲精品在线播放| www.色视频.com| a级片在线免费高清观看视频| 精品国产国语对白av| 亚洲精品久久久久久婷婷小说| 高清在线视频一区二区三区| 国产视频首页在线观看| 国产熟女欧美一区二区| 国产亚洲一区二区精品| 亚洲精品色激情综合| 欧美人与善性xxx| 日韩亚洲欧美综合| 免费观看a级毛片全部| 国产色婷婷99| 综合色丁香网| 亚洲精品aⅴ在线观看| 久久久久久人妻| 国产片内射在线| 国产熟女欧美一区二区| 亚洲精品456在线播放app| 大片电影免费在线观看免费| 国产白丝娇喘喷水9色精品| 亚洲精品成人av观看孕妇| 久久久久久久久大av| 伦精品一区二区三区| 女性被躁到高潮视频| 人人妻人人澡人人看| 蜜桃在线观看..| 免费观看的影片在线观看| 观看av在线不卡| 久久婷婷青草| 午夜91福利影院| 欧美日韩在线观看h| 久久精品熟女亚洲av麻豆精品| 国产精品久久久久久av不卡| 日产精品乱码卡一卡2卡三| 国产一区有黄有色的免费视频| 亚洲,一卡二卡三卡| 亚洲精品视频女| tube8黄色片| 校园人妻丝袜中文字幕| 伊人亚洲综合成人网| 精品亚洲乱码少妇综合久久| 成人漫画全彩无遮挡| 我的老师免费观看完整版| 亚洲图色成人| 国产成人av激情在线播放 | 亚洲国产最新在线播放| 亚洲色图 男人天堂 中文字幕 | 黄色配什么色好看| 午夜激情福利司机影院| 爱豆传媒免费全集在线观看| 黄色一级大片看看| 国产乱来视频区| 啦啦啦在线观看免费高清www| 成人亚洲精品一区在线观看| 久久精品国产亚洲网站| 在线观看三级黄色| 成人亚洲精品一区在线观看| 在线观看www视频免费| 九色成人免费人妻av| 99国产综合亚洲精品| 国产精品蜜桃在线观看| 狂野欧美激情性xxxx在线观看| 制服丝袜香蕉在线| 内地一区二区视频在线| 亚洲情色 制服丝袜| av.在线天堂| 蜜桃久久精品国产亚洲av|