• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QM/MM Study of the Second Harmonic Generation and Two-photon Absorption Properties of aFluorescent Proteins-Dreiklang①

    2018-10-12 03:54:20ZHANGMinYiWEIJingSONGJinShuiWUPengLIChunSen
    結(jié)構(gòu)化學(xué) 2018年9期

    ZHANG Min-Yi WEI Jing SONG Jin-Shui WU Peng LI Chun-Sen

    ?

    QM/MM Study of the Second Harmonic Generation and Two-photon Absorption Properties of aFluorescent Proteins-Dreiklang①

    ZHANG Min-Yia, bWEI JingaSONG Jin-Shuaia, bWU PengaLI Chun-Sena, b②

    a(350002)b(361005)

    A new reversibly switchable fluorescent protein (RSFP), namely Dreiklang, exhibits prominent feature that the wavelengths for switching and fluorescence are decoupled due to its great different structures between bright and dark states.This feature might also induce some nonlinear optic (NLO) properties changing as switching between two states, which might promote new method of biological science.We employ the QM/MM method to simulate the structures of different states, and study their second harmonic generation (SHG) and two-photon absorption (TPA) properties.And we found different states of Dreiklang have different SHGand TPA responses.TheSHGand TPA properties of Dreiklang are correlated to particularly geometrical structures of different states, especially the centrosymmetric or nocentrosymmetric-stacking structures which are formed by chromophore and beside residue Tyr203, so the SHGand TPA responses could be changed as the light induces switching among different states of Dreiklang.This work would prospectively guide the application of Dreiklang on the NLO technology, and help the development of new RSFP with special NLO function.

    fluorescent proteins,the second harmonic generation, two-photon absorption, QM/MM method;

    1 INTRODUCTION

    Fluorescent Proteins (FPs) have been widely used in cell biology like molecular labels, noninvasive markers of gene expression, and intracellular protein localization etc[1,2].Recently, a new kind of FPs namely reversibly switchable fluorescent proteins (RSFPs) has attracted great attention[3,4].These proteins could be repeatedly switched by irradiation with light from a fluorescent to a nonfluorescent state, which results in the controllable emitting fluorescent on-to-off transition[5].Due to this character, RSFPs have been used for super-resolution microscopy, fluorescence correlation spectroscopy, optical lock-in detection, and biotechnological developments such as rewritable high-density optical storage media[6-9].On the other hand, this particular characters of RSFPs evoke an exciting speculation that some RSFPs might exhibit the on-to-off transition of NLO properties, since repeatedly off/on switching of RSFPs is mainly attributed to the structural rearrange-ment in different states and the NLO properties are depending on the materials’ structure[10,11].

    It is well known that nonlinear optical (NLO) pro- perties, such as the second harmonic generation(SHG)[12]and two-photon absorption (TPA)[13], are under intense investigation due to many important applications like optical bistability, phase conjuga- tion, optical limiting, two-photon laser scanning microscopy and so on[14-16].Owing to the advantages used in live cell, FPs haveattracted much attention on the NLO biological imaging in the past decade[17,18].And Asselberghs and his coworkers have studied the SHG properties of a RSFPs named Dronpa, findingits SHG propertiescould be changed accor- ding to the protonation of chromophore structure[19].This work illuminated the potentially NLO photoswitchable properties of RSFPs.

    Recently, Brakemann and his coworkers have developed new RSFPs named Dreiklang from a kind of YFP namely Citrine[20].Dreiklang exhibits two absorption bands (peaking at 412 and 511 nm) in its on-state, corresponding to the neutral (protonated) and ionized (deprotonated) states of the chromophore, respectively, both of which emit 529nm fluorescent light by excitation; its off state presents a 340nm absorption band, which corresponds to the structural rearrangement of chromophore through light-induce hydration of the imidazolinone ring from the on-state.The structural rearrangement between the on- and dark-states of Dreiklang would changethe transition moments and energies, and these features mainly dominate the NLO properties of Dreiklang.Interestly, Beerepoot and coworkers studied the TPA properties of YFP, and they found that the-stacking structure of chromophore and the tyrosine 203 could enhance the TPA response of YFP[21].Furthermore, Clays and coworkers developed a new Tyr203Phe mutant of eYFP, whose SHG properties were enhanced through Tyr203Phe mutant to remove the centrosymmetric stacking of the chromophoric Tyr66 and the neighboring Tyr203 residue in eYFP[22].

    As Dreiklang was a mutant from a kind of YFP namely Citrine, its protonated chromophoric Tyr66 and Tyr203 residues of on state also form the centrosymmetric-stacking structure as YFP, which was determinated by X-ray crystallography(PDB code: 3NT9)[20].Therefore,the light induce swi- tchable feature among on-off states of Dreiklang absolutely influents this centrosymmetric-stacking structure, which might result in the change of SHG and TPA responses in Dreiklang.To further under- stand these particular NLO switchable properties of Dreiklang, in this work, we employ the QM/MM method to simulate different states of Dreiklang, and study their SHG and TPA properties.To the best of our knowledge, it is the first time to propose the protonated form of Dark state chromophore in Dreiklang, and reveal the structure-depending NLO switchable properties on Dreiklang.This work might help to guide the development of new RSFP with NLO switchable function, and develop new application of RSFP on biological imaging techno- logy.

    2 COMPUTATIONAL METHODS

    2.1 MD runs

    The initial structures of Brightand Dark states of Dreiklang were obtained from the Protein Data Bank (PDB IDs: 3NT9 and 3NT3), respectively[20].And the absent specific force-field parameters of chromophores in these four states were obtained by the cgenff program[23, 24].We assigned the proto- nation states of acidic and basic residues by using the pKa values given by the empirical PROPKA[25]procedure and verified the results through careful visual inspection.The missing hydrogen atoms were added by the HBUILD module[26]embed in CHARMM[27].As both chromophores of the Bright and Dark states might have protonated and deprotonated form, the protonation procedure of 3NT9 and 3NT3 results in four states of Bright neutral state (Bn), Bright anionic state (Ba), Dark neutral state (Dn) and Dark anionic state (Da), as shown in Fig.1.All four states of Dreiklang contain 26971 atoms, including 22104 atoms of solvent.After the full solvation procedure, a productive MD of 2ns was run for three states of Dreiklang using the CHARMM22 force fields implemented in the CHARMM program.The coordinates of the outer 8 ? of solvent layer were kept fixed during all MD simulations.Four representative snapshots from the MD trajectory of Bn, Ba and Dn were selected at 1, 1.5, 1.2 and 1 ns, respectively.

    2.2 QM/MM methodology

    The QM region in our QM/MM calculations including chromophore, residue Glu222, residue Tyr203 and Wat242 is shown in Fig.1.All the geometry optimization calculations were carried out within ChemShell[28], combining Gaussian03[29]as QM code and DL_POLY[30]as MM code.The QM/MM boundary was treated by the hydrogen link atom[31]with the charge shift model[32].For the QM region, the B3LYP[33-35]functional was employed with 6-31G* for geometry optimization.The HDLC optimizer[36]was employed in the geometry optimization and the core regions of optimization were within 8? of the QM regions.After the geometry optimization in QM/MM level, we selected the QM region with H saturation of every stateas the new compound models.Then using the Gaussian 03 program package[29], we employed the time-depen- dent density functional theory (TDDFT) combining with the sum-overstates method[37,38]developed by Cheng’s group[39,40]atthe 6-311++G** basis sets level, to calculate their NLO properties.As the NLO properties only correspond to the static calculation, after geometry optimization in QM/MM level, the influence from molecules outside the QM region can be considered as point charge, which would be induced to the TDDFT calculation to obtain the NLO properties.This above method might be reliableto study the NLO properties of Dreiklang states system in this work.

    The compact expression of the tensor component of polarizability and the frequency-dependent first-order hyperpolarizability, which can be obtained from the transition moment, dipole moment and transition energy, can be written as follows:

    For the first-order nonlinear response, we are interested in the vector component along the ground state dipole moment direction (vec) and the total hyperpolarizability (tot), which are defined as:

    The TPA efficiency can be characterized by the TPA cross-section(), and the latter can be directly related to the imaginary part of second hyperpolarizability(-;,, -) by[41]

    where(-;,, -) is the third-order polarizability,denotes the refractive index of the medium,corresponds to the local-field factor and= (2+ 2)/3.Generally,= 1.333 in aqueous and= 1.0 in vacuum.Here,value is set to 1.0 in all calculations for systematic comparison.

    We calculated lm(-;,, -) using the sum-over-states (SOS) expression[42, 43].To compare the calculated TPA cross-section value with the experimental value measured in solution, the orientationally averaged (isotropic) value ofis evaluated, which is defined as:

    where,=,,

    3 RESULTS AND DISCUSSION

    3.1 Geometry of different states in Dreiklang

    To depict the hydrogen-bonding network among the chromophore and residue Try203, we optimized the geometric structures of four states in Fig.1 by employing the QM/MM method with the QM region including the chromophore, Wat242, residue Try203 and Glu222.And the main geometric parameters are shown in Table 1.The Bnstate has nearly planar chromophore structure with its phenol ring almost parallel to the phenol ring plane of Try203.The similar distances of C(2)–C(5) (4.28 ?) and C(3)–C(4) (4.56 ?) imply the two phenol rings of the chromo- phoric Tyr66 and the neighboring Tyr203 residue are parallel-displace (see Fig.1).And the distance between the centres of the phenol rings from chromophore and Tyr203 is about 3.4 ?.A strong hydrogen-bonding network composed of three H-bonds of O(4)–H(1)···O(1) (2.75 ?), O(1)– H(2)···O(2) (2.76 ?),and O(3)–H(3)···N (3.04 ?) might keep this particular feature of structure and stabilize Wat242 in close vicinity to the C(1) of the chromophore for further light-drive hydration reaction.

    Fig.1. QM region of four study states.Bright neutral state and bright anionic state referring to the neutral and anionic chromophore of bright states, respectively; Dark neutral state and dark anionic state referring to the neutral and anionic chromophore of dark states, respectively

    Table 1. Selected Optimized Structural Parameters (Bond Lengths (?) and Bond Angles (°)) for the Studied States of Dreiklang

    For Ba state, deprotonated chromophore also has a nearly planar structure as that of Bn, and its phenol ring of chromophore develops to a more quinoidal structure than that of Bn.The greatly distinct distances of C(2)–C(5) (4.28 ?) and C(3)–C(4) (4.56 ?) indicate the origin parallel structures of two phenol rings in Bn are broken.This result suggests large structural rearrangement as the proton transfer within the hydrogen-bonding network.As shown in Table 1, a new strong H-bond of O(4)–H(1)···O(5) (2.82 ?) was formed as the H-bond of O(4)–H(1)···O(1)is weakened.The direct H-bond connec- tion between residue Try203 and chromophore causes the phenol ring of Try203 to deviate away from the phenol ring of chromophore and approach to the imidazolinone ring.Further, the phenol ring of Try203 makes a certain angle with the phenol ring of chromophore and breaks the origin parallel structure in Bn.Finally, Try203 also forms hydrogen bonds to Wat242 through a new weak hydrogen bond of O(4)–H(1)···O(1) (3.29 ?).Wat242 can be stabilized again in close vicinity to the C1 of chromophore by new hydrogen bond network which is composed of O(4)–H(1)···O(1), O(1)–H(2)···O(2) (2.79 ?) and O(3)–H(3)···N (3.00 ?).

    For the Dark state of Dreiklang, as Wat242 has been used to light-induced hydration of the imidazo- linone ring upon switching from the bright to the dark state, the hydrogen bond network between Try203 and chromophore is broken, and the dis- tances of O(1)–O(4) enlarge to 5.12 and 5.03 ? in neutral and anionic dark states, respectively.However, the phenol ring of Try203 still approaches to the phenol ring of chromophore for both two dark states.The light-induced water split reaction results in the imidazolinone ring of chromophore convert into a 2-hydroxyimidazolidinone ring, and the H(2) transfers to Glu222 with forming the H(2)–O(2) bond, while H(3) transfers to chromophore to generate a H(3)–N bond.This proton transfer and structure adjustment indicate that the proton transfer through Glu222 might be an indispensable process in light-induce water split reaction.Furthermore, depro- tonation of dark chromophore in Da results in the same structure adjustment as that of Dn, except the quinoidal structure of phenol ring of chromophore.The geometry study of different states in Dreiklang clearly illuminates that structures undergo large rearrangement within the light induce switch process.

    3.2 Electronic structure and one-photon absorption properties

    We employ TDDFT/MM method with B3LYP/6-311++G** level in QM region to calculate the one- photon absorption (OPA) properties of the four states in Fig.1.The protein environment was considered by imposing the point charge from QM/MM geometri- cal optimization results.OPA calculation result is shown in Table 2.And the plots of relevance frontier orbitals of study states are shown in Fig.2.The OPA band of Bn locates at 371 nm with the oscillator strength of 0.5665.This band corresponds tothe second excitation with HOMO-1 to LUMO charac- ters.From Fig.2, both the HOMO-1 and LUMO of Bn completely locate on the chromophore, showingand*characters, respectively.The Ba state has its OPA band at 419.9 nm with oscillator strength of 0.6666.This band corresponds to S2 with HOMO to LUMO characters.As shown in Fig.2, HOMO and LUMO of Ba also completely locate on the chromo- phore, showingand*characters, respectively.Therefore, both the OPA bands of Bn and Ba are mainly contributed by the-conjugation of chromo- phore.

    While, these two bands of bright state both overes- timate the excitation energies compared to the regarding experimental measurements of Dreiklang (see Table1).The reason can be attributed to the systematic overestimation of excitation energy in B3LYP calculations, especially for the anionic chro- mophores.Another reason might be the chromophore of QM region in our models more close to a model compound for the chromophore, 4-hydroxybenzy- lidene-2,3-dimethylimidazolinone (HBDI), which is a well-known model compound of the GFP chromo- phore.The OPA bands of HBDI in neutral and anionic states are 370 and 432 nm, respectively.Our calculation bands of two bright states agree well with the regarding OPA experiment data of HBDI.The OPA calculation of Dreiklang illuminates that the-conjugation chromophore mainly dominates the OPA properties of FPs, and the structural integrity of chromophore would sensitively influence the theoretical simulation of OPA properties.

    Fig.2. Isosurfaces of the frontier orbitals which participate in the relevant excitations for the studied states

    Table 2. One-photon Absorption Properties of Studied States.Oscillator Strengths ?, One-photon Absorption Wavelength λ (nm) and Relevant Excitations

    For dark state of Dreiklang, the OPA band of neutral state locates at 328.8 nm with oscillator strength of 0.5407.This band corresponds to the S1 excitation state with HOMO-1 to LUMO characters, and agrees well with the experiment data of 340 nm.From Fig.2, the HOMO-1 and LUMO of Dn state also almost locate on chromophore withto*character mainly locating on the phenol ring of chromophore.Due to hydration reaction, theconjugation of Da’s chromophore is smaller than that of Bn and Ba, which also result in the great blue shift of the OPA band of Dn.Additionally, we also find the strongest OPA band of anionic state located at 388.2 nm, which is neither inconsistent with the experiment data of 340 nm nor deviating from the systematic overestimation of excitation energy in B3LYP calculations.Since the protonated form of chromophore in dark state of Dreiklang has not been identified yet, we suggest that the chromophore of Dreiklang dark state might not be the anionic but neutral.

    3.3 The second harmonic generation properties

    Before calculating the first-order hyperpolarizabi- litywith truncated sum-over-states (SOS) method, it is necessaryto investigate the behavior of the convergence in the summationof the excited states, in order to obtain reliable results.Fig.3ashows the relationship of the calculated first-order hyperpo- larizability and the number of states for the studied conformers.The results showed that all the first-orderhyperpolarizabilitywas converged before 60 states.Accordingly, all discussionsand studies in the following are based on the truncatedSOS method with 60 excited states.

    We obtained the calculated static and dynamic first hyperpolarizabilities by means of TDDFT/MM calculations and SOS method, and the protein environment was considered by point charge field from QM/MM optimization (Table 3).Ba state has the largeststatic first hyperpolarizability of 23.52 × 1030cm5/esu among the three states of Dreiklang.And the Dn state has the smallest static first hyperpolarizability of 9.06 × 1030cm5/esu.We also calculated the dynamic first-order hyperpolarizability(2;,) according to formula (2), in which the laser frequency () is an input parameter in the SOS formulation.For instance, the values of btot at the input energy of 1.165 eV (1064 nm), far from resonance, are 20.59, 68.05 and 14.84 × 1030cm5/esu for the Bn, Ba and Dn states, respectively, with the same order as in the static case.It is interesting that the first-order hyperpolarizabilityamplitude ordering of protonated Bn state and deprotonated Ba state of Dreiklang are quite different from that of Dronpa, another kind of RSPFs, whose protonated chromo- phore form has larger static first hyperpolarizability than the deprotonated chromophore form.Thus, the first-order hyperpolarizability amplitude ordering in Dreiklang might follow with other rules.

    Fig.3. (a) Convergent behavior oftotwith the number of excited states; (b) Relationship of the imaginary part of the third-order optical susceptibility and the number of excited state

    Table 3. The First-order Hyperpolarizabilities β (× 1030 cm5/esu) of Studied States.Oscillator Strengths?, One-photon Absorption Wavelengthλ (nm) and Relevant Excitations

    Significantly, the static first hyperpolarizability values of Bn state (9.53 × 1030cm5/esu) agree well with that of eYFP, which has a centrosymmetric stacking of the chromophoric Tyr66 and the neigh- boring Tyr203 residue.And the static first hyperpolarizability value of Ba state (23.52 × 1030cm5/esu) is consistent well with an eYFP mutant- SHardonnay, which is developed by Meulenaere and coworkers.Through Y203F mutant of eYFP, the original centrosymmetric stacking structure in eYFP has been broken in SHardonnay, so nocentrosym- metric structure changing of SHardonnay greatly improves its first-order hyperpolarizability response.Dreiklang undergoes similar centrosymmetric or nocentrosymmetric structure rearrangement within the Bn to Ba photon switching process.The Dn state of Dreiklang contains the centrosymmetric stacking structure similar to that of eYFP, which causes a substantial drop in the first-order hyperpolarizability of the Dn state, while for the Ba state, the centrosym- metric stacking structure is broken to the nocen- trosymmetric structure as the structural rearrange- ment, which results in the improvement of the first-order hyperpolarizability.So, the first hyperpo- larizabilityproperties of Dreiklang are correlated to the particular geometrical structures of different states.

    3.4 Two-photon absorption properties

    In this section, we employed the time-dependent density functional theory and sum over state method to calculate the TPA cross section of three confor- mers of Dreiklang.Fig.3b shows the relationships between the imaginary part of the third-order polarizability and the number of states for all conformers studied.It is illustrated that all imaginary parts of the third-order polarizabilities of BCNNRs were converged before 60 states, which ascertains 60 states are enough for the convergence of the third-order optical polarizability.

    The selected TPA parameters are listed in Table 4.Our calculation presents that all the three states of Dreiklang did not show the common main TPA band at twice wavelength of their each strongest OPA band.Instead, the TPA spectra of Bn only show a strong band with TPA cross section of 7.99 GM at 608 nm.This band corresponds to its fifth excitation state with HOMO-3 to the LUMO character, while for the Ba state, it has strong band locatinghloyedonverted ties would switch strong or low as the at 596 nm (2.08 eV) with the largest TPA cross section of 15.63 GM among the three states of Dreiklang.This TPA band corresponds to the twelfth excitation with contribution from HOMO-3 to the LUMO character.The anionic chromophore of bright state has the largest TPA cross section.This result is consistent with other GPF-like fluorescence proteins whose deprotonated chromophore form has larger TPA cross section than that of protonated form.The strongest TPA band of Dn locates at 496 nm (2.49 eV) with TPA cross section of 7.98 GM.This band corresponds to a very higher excited state of S21 with contribution from HOMO-1 to the LUMO+6 character, and this band blue shifts above 100 nm compared to other two bright states.For the three states of Dreiklang, their TPA responses are different, because the rearrangement of chromophore structures would change theirconjugation of chromophores which directly affect the TPA of response of the three states of Dreiklang.

    Table 4. Two-photon Absorption Properties of STUDIED States.Two-photon Absorption Wavelength λ2 (nm), Oscillator Strength?, Two-photon Absorption Cross Section δ (GM) and Relevant Excitations

    Furthermore, we investigate the-stacking interac- tion on TPA properties.We select two snapshots from 2 ns molecular dynamic of Bright neutral states noted as Bn-1 and Bn-2, respectively, whose distances between the centers of the phenol rings from the chromophore and Tyr203 are shorter than that of Bn, about 3.8 and 4.0 ? for Bn-1 and Bn-2, respectively.Their TPA properties are also presented in Table 4.We find that both Bn-1 and Bn-2 have similar TPA cross section value of 10.2 GM, which is larger than that of Bn.The improvement of TPA response mainly attributes to the shorter distance between the centers of phenol rings from chromophore and Tyr203 of Bn-1 and Bn-2, which would enhance the charge transfer among the-stacking systems and further lead to the increase of TPA cross sections.Combined with the preceding paragraph, the TPA properties of Dreiklang are also structural depending.Theconjugation of chromo- phore and the-stacking systems might be two important factors for TPA response enhancement.

    4 CONCLUSION

    Here we employed the QM/MM method to opti- mize the different states in Dreiklang, and calculate their SHG and TPA properties.The geometrical study of different states in Dreiklang illuminates that the structure undergoes large rearrangement within the light inducing switchable process, which could influence their SHG and TPA properties.Bn state exhibits very low SHG response for its centrosym- metry of-stacking structure, while its TPA responses would be enhanced as two phenol rings get close.The strongest SHG and TPA responses both present in the Ba state of Dreiklang due to its nocentrosymmetric structure and anionic chromo- phore form, respectively.Dark state has similar SHG response as Bn and the lowest TPA response in Dreiklang.In general, the SHG and TPA responses might undergo one changeas the light induces once switchable process among different states.Further- more, we propose for first time that the protonated form of chromophore in Dark state is neutral.This work would prospectively guide the application of Dreiklang on the NLO technology, and help develop new RSFP with special NLO functions.

    (1) Tsien, R.Y.The green fluorescence protein..1998,67, 509-544.

    (2) Zipfel, W.R.; Williams, R.M.; Webb,W.W.Nonlinear magic: multiphoton microscopy in the biosciences..2003, 21, 1369-1377.

    (3) Ando, R.; Mizuno, H.; Miyawaki, A.Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting.2004, 306, 1370-1373.

    (4) Adam,V.Phototransformable fluorescent proteins: which one for which application?.2014, 142, 19-41.

    (5) So, P.T.;Dong,Y.C.; Masters,B.R.Two-photon excitation fluorescence microscopy.2000,02, 399-429.

    (6) Bizzarri, R.; Serresi, M.; Cardarelli, F.; Abbruzzetti, S.; Campanini, B.; Viappiani, C.; Beltram, F.Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable.2010,132, 85-95.

    (7) Grotjohann, T.; Testa, I.; Leutenegger, M.; Bock, H.; Urban, N.T.; Lavoie-Cardinal, F.; Willig, K.I.; Eggeling, C.; Jakobs, S.; Hell, S.W.Diffraction-unlimited all-optical imaging and writing with a photochromic GFP.2011, 478, 204-208.

    (8) Marriott, G.; Mao, S.; Sakata, T.; Ran, J.; Jackson, D.K.; Petchprayoon, C.; Gomez, T.J.; Warp, E.; Tulyathan, O.; Aaron, H.L.; Isacoff, E.Y.; Yan, Y.Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells.2008, 105, 17789-17794.

    (9) Adam, V.; Mizuno, H.; Grichine, A.; Hotta, J.I.; Yamagata, Y.; Moeyaert, B.; Nienhaus, G.U.; Miyawaki, A.; Bourgeois, D.; Hofkens, J.Data storage based on photochromic and photoconvertible fluorescent proteins..2010,4, 377-390.

    (10) Coe, B.J.; Harris, J.A.; Jones, L.A.; Brunschwig, B.S.; Song, K.; Clays, K.; Garín, J.; Orduna, J.; Coles, S.J.; Hursthouse, M.B.Syntheses and properties of two-dimensional charged nonlinear optical chromophores incorporating redox-switchable cis-tetraammineruthenium(II) centers..2005, 127, 4845-4859.

    (11) Muhammad, S.; Xu, H.L.; Liao, Y.; Kan, Y.H.; Su, Z.M.Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response..2009, 131,11833-11840.

    (12) Han, M.; Zickler, L.; Giese, G.; Walter, M.; Loesel, F.H.; Bille, J.F.Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation..2004,9, 760-6.

    (13) Denk, W.; Strickler, J.H.; Webb, W.W.Two-photon laser scanning fluorescence microscopy.1990, 248, 73-76.

    (14) Stiel, A.C.; Andresen, M.; Bock, H.; Hilbert, M.; Schilde, J.; Schonle, A.; Eggeling, C.; Egner, A.; Hell, S.W.; Jakobs, S.Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy.2008, 95, 2989-2997.

    (15) Chudakov, D.M.; Chepurnykh, T.V.; Belousov, V.V.; Lukyanov, S.; Lukyanov.K.A.Fast and precise protein tracking using repeated reversible photoactivation..2006, 7, 1304-1310.

    (16) Chang, H.; Zhang, M.; Jia, W.; Chen, J.; Zhang, Y.; Liu, B.; Lu, J.; Zhang, J.; Xu, P.; Xu,T.A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications.2012, 109, 4455-4460.

    (17) Warren, M.M.; Kaucikas, M.; Fitzpatrick, A.; Champion, P.; Sage, J.T.; Thor, J.J.Ground-state proton transfer in the photoswitching reactions of the fluorescent protein Dronpa.2013, 4, 1461-8.

    (18) Stiel, A.C.; Trowitzsch, S.; Weber, G.; Andresen, M.; Eggeling, C.; Hell,S.W.; Jakobs, S.; Wahl, M.C.1.8 ? bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants.2007, 402, 35-42.

    (19) Asselberghs, I.; Flors, C.; Ferrighi, L.; Botek, E.; Champagne, B.; Mizuno, H.; Ando, R.; Miyawaki, A.; Hofkens, J.; Van der Auweraer, M.; Clays, K.Second-harmonic generation in GFP-like proteins.2008, 130, 15713-15719.

    (20) Brakemann, T.; Stiel, A.C.; Weber, G.; Andresen, M.; Testa, I.; Grotjohann, T.; Leutenegger, M.; Plessmann, U.; Urlaub, H.; Eggeling, C.; Wahl, M.C.; Hell, S.W.; Jakobs, S.A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching.2011, 29, 942-947.

    (21) Beerepoot, M.T.P.; Friese, D.H.; Ruud, K.Benchmarking two-photon absorption cross secctions.2014, 16, 5958-5964.

    (22) Meulenaere, E.D.; Bich, N.N.; Wergifosse, M.; Hecke, K.; Meervelt, L.V.; Vanderleyden, J.; Champagne, B.; Clays, K.Improving the second-order nonlinear optical response of fluorescent proteins: The symmetry argument.2013, 135, 4061-4069.

    (23) Vanommeslaeghe,K.; Hatcher, E.;Acharya, C.;Kundu, S.;Zhong,S.; Shim,J.; Darian, E.;Guvench,O.; Lopes,P.; Vorobyov, I.;MacKerell Jr.A.D.CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force field.2010, 31, 671-690.

    (24) Yu, W.;He, X.;Vanommeslaeghe, K.;MacKerell Jr.A.D.Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations.2012, 33, 2451-2468.

    (25) Li, H.; Robertson, A.D.; Jensen, J.H.Very fast empirical prediction and rationalization of protein pKa?values.2005, 61, 704-721.

    (26) Brünger, A.T.; Karplus, M.Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison.:.1988, 4, 148-56.

    (27) MacKerell, A.D.; Bashford, D.; Bellott; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M.All-atom empirical potential for molecular modeling and dynamics studies of proteins.1998, 102, 3586-3616.

    (28) Sherwood, P.; de Vries, A.H.; Guest, M.F.; Schreckenbach, G.; Catlow, C.R.A.; French, S.A.; Sokol, A.A.; Bromley, S.T.; Thiel, W.; Turner, A.J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S.C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sj?voll, M.; Fahmi, A.; Sch?f C.; Rodger, P.er, A.; Lennartz, C.QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis.2003, 632, 1-28.

    (29) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery Jr., J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.Gaussian, Inc., Pittsburgh PA,2003

    (30) Smith, W.; Yong, C.W.; Rodger, P.M.DL_POLY: application to molecular simulation..2002, 28, 385-471.

    (31) Vries, A.H.; Sherwood, P.; Collins, S.J.; Rigby, A.M.; Rigutto, M.; Kramer, G.J.Zeolite structure and reactivity by combined quantum-chemical-classical calculations.1999, 103, 6133-6141.

    (32) Sherwood, P.; Vries, A.; Collins, S.; Greatbanks, S.; Burton, N.; Vincent, M.; Hillier, I.Computer simulation of zeolite structure and reactivity using embedded cluster methods..1997, 106, 79-92.

    (33) Lee, C.; Yang, W.; Parr, R.G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.1988, 37, 785-789.

    (34) Becke, A.D.Density-functional thermochemistry.III.The role of exact exchange.1993, 98, 5648-5652.

    (35) Becke, A.D.Density-functional thermochemistry.II.The effect of the Perdew-Wang generalized-gradient correlation correction..1992, 97, 9173-9177.

    (36) Billeter, S.R.; Turner, A.J.; Thiel, W.Linear scaling geometry optimization and transition state search in hybrid delocalised internal coordinates..2000,, 2177-2186.

    (37) Orr,B.J.;Ward,J.F.Perturbation theory of the non-linear optical polarization of an isolated systema..1971, 20, 513-526.

    (38) Bishop, D.M.Explicit nondivergent formulas for atomic and molecular dynamic hyperpolarizabilities..1994, 100, 6535-6542.

    (39) Cheng,W.D.; Shen, J.; Wu, D.S.; Li, X.D.; Lan, Y.Z.;Li, F.F.; Huang, S.P.; Zhang, H.;Gong, Y.J.Electronic origin for enhanced nonlinear optical response of complexes from tetraalkylammonium halide and carbon tetrabromide: electrostatic potentials of intermolecular donor-acceptor dyads.2006, 12, 6880-6887.

    (40) Cheng, W.D.;Wu, D.S.;Shen, J.;Huang, S.P.;Xie, Z.;Zhang, H.;Gong, Y.J.From molecule to bulk material: optical properties of hydrogen-bonded dimers [C12H12N4O2AgPF6]2and [C28H28N6O3AgPF6]2depend on the arrangement of the oxime moieties.2007, 13, 5151-5159.

    (41) Dick, B.;Hochstrasser, R.M.;Trommsdorff, H.P.Nonlinear optical properties of organic molecules and crystals.Chemla, D.S.; Zyss, J.; Eds.1987, 2, 167-170.

    (42) Cheng, W.D.;Wu, D.S.;Li, X.D.; Lan, Y.Z.; Zhang, H.; Chen, D.G.; Gong, Y.J.; Zhang, Y.C.; Li, F.F.; Shen, J.; Kan, Z.G.Design of single-walled carbon nanotubes with a large two-photon absorption cross section.2004, 70, 2806-2810.

    (43) Champagne, B.; Kirtman, B.Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull-conjugated systems..2006.125, 053819.

    15 December 2017;

    23 March 2018

    ①This investigation was based on work supported by the National Natural Science Foundation of China (No.21703246 and 21403242) and Natural Science Foundation of Fujian Province (2014J05021)

    .E-mail:chunsen.li@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-1931

    大型黄色视频在线免费观看| 男人舔女人下体高潮全视频| 精品久久久久久久毛片微露脸| 不卡一级毛片| 多毛熟女@视频| 亚洲精品国产一区二区精华液| 欧美最黄视频在线播放免费| 搡老熟女国产l中国老女人| 麻豆一二三区av精品| 久久国产亚洲av麻豆专区| 国产99久久九九免费精品| 看免费av毛片| 欧美精品啪啪一区二区三区| 日日摸夜夜添夜夜添小说| 久久精品国产综合久久久| 亚洲一区二区三区不卡视频| 老司机靠b影院| av视频免费观看在线观看| 国产欧美日韩一区二区三| 久久精品人人爽人人爽视色| 午夜福利在线观看吧| 久久精品成人免费网站| 极品人妻少妇av视频| 老司机福利观看| 啦啦啦韩国在线观看视频| 熟妇人妻久久中文字幕3abv| 亚洲国产欧美日韩在线播放| 久久久久久人人人人人| 99国产极品粉嫩在线观看| 免费av毛片视频| www.999成人在线观看| 在线免费观看的www视频| 国产精品日韩av在线免费观看 | 少妇裸体淫交视频免费看高清 | 脱女人内裤的视频| 国产精品国产高清国产av| 一区二区三区高清视频在线| 黄片小视频在线播放| 极品教师在线免费播放| 日本 欧美在线| 国产极品粉嫩免费观看在线| 亚洲情色 制服丝袜| 欧美激情久久久久久爽电影 | 青草久久国产| 久久草成人影院| 正在播放国产对白刺激| 搞女人的毛片| 婷婷精品国产亚洲av在线| 国产又爽黄色视频| 亚洲久久久国产精品| 国产成人精品在线电影| 久久人妻福利社区极品人妻图片| 欧美人与性动交α欧美精品济南到| 久久草成人影院| 国产激情欧美一区二区| 国产精品一区二区精品视频观看| 国产成人系列免费观看| 黄色视频,在线免费观看| 黄片大片在线免费观看| 色av中文字幕| 欧美日韩瑟瑟在线播放| 男人舔女人的私密视频| 久久久国产欧美日韩av| 91麻豆精品激情在线观看国产| 精品久久久久久久毛片微露脸| 欧美人与性动交α欧美精品济南到| 精品欧美一区二区三区在线| 亚洲国产日韩欧美精品在线观看 | 国内精品久久久久久久电影| 久9热在线精品视频| 欧美丝袜亚洲另类 | 亚洲精品国产精品久久久不卡| 制服丝袜大香蕉在线| 精品欧美国产一区二区三| 女性生殖器流出的白浆| 91成年电影在线观看| 久久精品国产清高在天天线| 狠狠狠狠99中文字幕| 亚洲人成77777在线视频| 国产又爽黄色视频| av在线天堂中文字幕| av片东京热男人的天堂| 欧美精品啪啪一区二区三区| 村上凉子中文字幕在线| 成在线人永久免费视频| 在线观看免费日韩欧美大片| 欧美大码av| 欧美久久黑人一区二区| 黑人操中国人逼视频| 日韩中文字幕欧美一区二区| 亚洲国产精品999在线| 欧美日本中文国产一区发布| 制服诱惑二区| 免费观看精品视频网站| 精品国产超薄肉色丝袜足j| 美女午夜性视频免费| 在线观看一区二区三区| 日本a在线网址| 国产精品秋霞免费鲁丝片| 国产精品久久电影中文字幕| 欧美精品啪啪一区二区三区| 亚洲美女黄片视频| 国产三级黄色录像| 欧美人与性动交α欧美精品济南到| 亚洲精品国产色婷婷电影| 免费观看精品视频网站| 少妇粗大呻吟视频| 日韩欧美三级三区| 日韩高清综合在线| 日韩有码中文字幕| e午夜精品久久久久久久| 精品久久久久久久久久免费视频| 成人永久免费在线观看视频| 精品人妻1区二区| 18禁国产床啪视频网站| a在线观看视频网站| 大码成人一级视频| 中文字幕高清在线视频| 国产精品1区2区在线观看.| 纯流量卡能插随身wifi吗| 深夜精品福利| 午夜免费激情av| 多毛熟女@视频| 亚洲国产精品合色在线| 女人高潮潮喷娇喘18禁视频| av有码第一页| 一区在线观看完整版| 午夜福利成人在线免费观看| 一边摸一边抽搐一进一出视频| 男女午夜视频在线观看| а√天堂www在线а√下载| 熟女少妇亚洲综合色aaa.| 久热爱精品视频在线9| 精品乱码久久久久久99久播| bbb黄色大片| 亚洲国产日韩欧美精品在线观看 | 欧美激情极品国产一区二区三区| 国产97色在线日韩免费| 久久久久国产精品人妻aⅴ院| 久热这里只有精品99| 午夜福利视频1000在线观看 | 天天添夜夜摸| 色尼玛亚洲综合影院| 日韩中文字幕欧美一区二区| 美女高潮喷水抽搐中文字幕| 啪啪无遮挡十八禁网站| 国产亚洲欧美精品永久| 一级a爱视频在线免费观看| 啦啦啦免费观看视频1| 亚洲九九香蕉| 国产精品亚洲av一区麻豆| 久久久久久久久中文| ponron亚洲| 久久精品影院6| 两性夫妻黄色片| 黑人欧美特级aaaaaa片| 一二三四在线观看免费中文在| 久久人人精品亚洲av| 黑丝袜美女国产一区| 久久香蕉国产精品| 老司机午夜福利在线观看视频| netflix在线观看网站| 日本免费一区二区三区高清不卡 | 日本一区二区免费在线视频| 国产成人免费无遮挡视频| 成人av一区二区三区在线看| 色综合亚洲欧美另类图片| 色播亚洲综合网| 人妻久久中文字幕网| 91在线观看av| 国产亚洲精品第一综合不卡| 露出奶头的视频| 精品无人区乱码1区二区| 日日摸夜夜添夜夜添小说| 在线视频色国产色| 欧美日韩乱码在线| 99久久精品国产亚洲精品| 亚洲精品av麻豆狂野| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产| 视频在线观看一区二区三区| 午夜成年电影在线免费观看| 亚洲一区中文字幕在线| 成人国产一区最新在线观看| 黄频高清免费视频| 欧美中文综合在线视频| 久热爱精品视频在线9| 久久婷婷人人爽人人干人人爱 | 99国产精品一区二区三区| 人人妻人人澡欧美一区二区 | 成年女人毛片免费观看观看9| 波多野结衣巨乳人妻| 午夜激情av网站| 久久亚洲精品不卡| 禁无遮挡网站| 99精品在免费线老司机午夜| 每晚都被弄得嗷嗷叫到高潮| 99在线人妻在线中文字幕| 丝袜人妻中文字幕| 中文字幕久久专区| av中文乱码字幕在线| 国产精品爽爽va在线观看网站 | 欧美av亚洲av综合av国产av| 真人一进一出gif抽搐免费| 啦啦啦观看免费观看视频高清 | 村上凉子中文字幕在线| 久久久久久大精品| tocl精华| 老司机福利观看| 777久久人妻少妇嫩草av网站| 国产熟女xx| 又紧又爽又黄一区二区| 美女免费视频网站| 色综合婷婷激情| 亚洲欧美精品综合久久99| 脱女人内裤的视频| 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲欧美98| 天天一区二区日本电影三级 | 成熟少妇高潮喷水视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产毛片av蜜桃av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产精品久久男人天堂| 一级a爱视频在线免费观看| 国产蜜桃级精品一区二区三区| 这个男人来自地球电影免费观看| 黄片播放在线免费| 午夜福利高清视频| 免费观看人在逋| 99久久综合精品五月天人人| 日本黄色视频三级网站网址| 午夜福利免费观看在线| 欧美另类亚洲清纯唯美| 亚洲 欧美 日韩 在线 免费| 亚洲精品粉嫩美女一区| aaaaa片日本免费| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三| 日韩高清综合在线| 咕卡用的链子| 婷婷六月久久综合丁香| 18禁黄网站禁片午夜丰满| av电影中文网址| 日韩 欧美 亚洲 中文字幕| 久久亚洲真实| 成人18禁高潮啪啪吃奶动态图| 亚洲一区二区三区色噜噜| 老汉色av国产亚洲站长工具| 在线观看日韩欧美| 国产伦一二天堂av在线观看| 一区福利在线观看| 亚洲国产欧美一区二区综合| 精品第一国产精品| 亚洲一区二区三区不卡视频| 午夜精品国产一区二区电影| 久久中文看片网| 啦啦啦 在线观看视频| 成人手机av| 亚洲色图综合在线观看| 色老头精品视频在线观看| 欧美日韩黄片免| 变态另类成人亚洲欧美熟女 | 久99久视频精品免费| 国产精品秋霞免费鲁丝片| av福利片在线| a在线观看视频网站| 99在线人妻在线中文字幕| 97碰自拍视频| 一级a爱片免费观看的视频| 变态另类成人亚洲欧美熟女 | 青草久久国产| 亚洲七黄色美女视频| 两人在一起打扑克的视频| 久久 成人 亚洲| 两个人看的免费小视频| 欧美一级毛片孕妇| 老司机午夜十八禁免费视频| 欧美一级毛片孕妇| 91麻豆av在线| 精品不卡国产一区二区三区| 长腿黑丝高跟| 天堂影院成人在线观看| 亚洲精品在线观看二区| 免费观看人在逋| 中文字幕最新亚洲高清| 日韩欧美国产一区二区入口| 久久人妻熟女aⅴ| 欧美国产日韩亚洲一区| 国产精品综合久久久久久久免费 | 视频在线观看一区二区三区| 又黄又粗又硬又大视频| 欧美黑人精品巨大| 精品无人区乱码1区二区| 精品国产亚洲在线| 午夜免费激情av| 老司机在亚洲福利影院| 俄罗斯特黄特色一大片| 一边摸一边抽搐一进一小说| 国产高清videossex| 97人妻精品一区二区三区麻豆 | 免费久久久久久久精品成人欧美视频| 丁香欧美五月| 亚洲成国产人片在线观看| 亚洲全国av大片| a级毛片在线看网站| 免费一级毛片在线播放高清视频 | 欧美黑人欧美精品刺激| 亚洲精品国产区一区二| 一级a爱片免费观看的视频| 亚洲国产精品sss在线观看| 国产亚洲av嫩草精品影院| 国产aⅴ精品一区二区三区波| 国产精品久久电影中文字幕| 每晚都被弄得嗷嗷叫到高潮| 亚洲av成人av| 久久中文字幕一级| 伦理电影免费视频| 少妇粗大呻吟视频| av视频在线观看入口| 亚洲欧美日韩高清在线视频| 91字幕亚洲| 亚洲七黄色美女视频| 人妻久久中文字幕网| 亚洲欧美日韩另类电影网站| 色综合站精品国产| 久久人妻av系列| 亚洲欧美日韩无卡精品| 国产精品久久视频播放| 在线观看舔阴道视频| 国产免费av片在线观看野外av| 18禁黄网站禁片午夜丰满| 久久久久国产精品人妻aⅴ院| 久久狼人影院| 18禁裸乳无遮挡免费网站照片 | 给我免费播放毛片高清在线观看| 国产亚洲欧美98| 久久香蕉精品热| av有码第一页| 亚洲欧洲精品一区二区精品久久久| 亚洲国产精品sss在线观看| 欧美日韩一级在线毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 美女高潮到喷水免费观看| 欧美中文综合在线视频| 99国产极品粉嫩在线观看| 国产av又大| 免费无遮挡裸体视频| 国产三级黄色录像| 在线播放国产精品三级| 一进一出抽搐gif免费好疼| 一级,二级,三级黄色视频| 超碰成人久久| 免费高清视频大片| aaaaa片日本免费| 亚洲午夜精品一区,二区,三区| 国产精品av久久久久免费| 精品一区二区三区av网在线观看| 午夜影院日韩av| 国产极品粉嫩免费观看在线| 在线观看66精品国产| 日韩欧美免费精品| 欧美最黄视频在线播放免费| 久久精品国产清高在天天线| 免费在线观看黄色视频的| 可以在线观看毛片的网站| 成人特级黄色片久久久久久久| 18禁美女被吸乳视频| 窝窝影院91人妻| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费日韩欧美大片| 久久精品亚洲精品国产色婷小说| 琪琪午夜伦伦电影理论片6080| 国产日韩一区二区三区精品不卡| 91成人精品电影| 欧美日韩亚洲综合一区二区三区_| 91大片在线观看| 两个人免费观看高清视频| 老司机午夜福利在线观看视频| 国产精品久久久久久亚洲av鲁大| 麻豆国产av国片精品| 国产精品亚洲一级av第二区| 欧美日本中文国产一区发布| 久久久久九九精品影院| 超碰成人久久| 久久久国产精品麻豆| 精品久久久久久久久久免费视频| 亚洲精品中文字幕在线视频| 亚洲av电影在线进入| 校园春色视频在线观看| 大型黄色视频在线免费观看| 亚洲一码二码三码区别大吗| 国产在线精品亚洲第一网站| 波多野结衣高清无吗| 久久久久久久精品吃奶| 久久影院123| 国产av在哪里看| 女性生殖器流出的白浆| 午夜精品在线福利| 久久人妻av系列| 村上凉子中文字幕在线| 亚洲中文av在线| 午夜福利成人在线免费观看| 国产亚洲精品久久久久久毛片| 欧美激情极品国产一区二区三区| 狂野欧美激情性xxxx| 成人国产综合亚洲| 亚洲精品粉嫩美女一区| 三级毛片av免费| 香蕉久久夜色| 久久国产精品男人的天堂亚洲| 黄片大片在线免费观看| 国产熟女xx| 国产精品av久久久久免费| 免费在线观看视频国产中文字幕亚洲| 人成视频在线观看免费观看| 亚洲熟女毛片儿| 真人一进一出gif抽搐免费| 色哟哟哟哟哟哟| 别揉我奶头~嗯~啊~动态视频| 欧美亚洲日本最大视频资源| 久久久国产成人免费| 嫩草影视91久久| 黄色片一级片一级黄色片| 韩国精品一区二区三区| 国产区一区二久久| 欧美在线黄色| 91大片在线观看| 老汉色av国产亚洲站长工具| 黑人操中国人逼视频| 欧美日韩乱码在线| 黄色成人免费大全| 亚洲五月婷婷丁香| 少妇粗大呻吟视频| 日韩一卡2卡3卡4卡2021年| 一边摸一边抽搐一进一出视频| 久久精品91无色码中文字幕| 丝袜在线中文字幕| 两人在一起打扑克的视频| www.自偷自拍.com| 在线av久久热| 国产免费av片在线观看野外av| 9色porny在线观看| 淫秽高清视频在线观看| 国产熟女xx| 视频区欧美日本亚洲| 丝袜美足系列| 久久精品人人爽人人爽视色| 色尼玛亚洲综合影院| 在线观看免费视频网站a站| www国产在线视频色| 91成人精品电影| 亚洲男人天堂网一区| АⅤ资源中文在线天堂| 久久久久国产一级毛片高清牌| 日本黄色视频三级网站网址| 俄罗斯特黄特色一大片| 亚洲 欧美一区二区三区| 少妇被粗大的猛进出69影院| 女人被狂操c到高潮| 国产精品综合久久久久久久免费 | 久久精品国产99精品国产亚洲性色 | 99久久久亚洲精品蜜臀av| 桃红色精品国产亚洲av| 久热爱精品视频在线9| 人成视频在线观看免费观看| 国产精品乱码一区二三区的特点 | 久久精品亚洲精品国产色婷小说| 国产精品爽爽va在线观看网站 | 一卡2卡三卡四卡精品乱码亚洲| 午夜免费成人在线视频| 国产欧美日韩一区二区精品| 午夜精品国产一区二区电影| 成人国语在线视频| 午夜免费观看网址| 精品高清国产在线一区| 性色av乱码一区二区三区2| 精品福利观看| 午夜精品久久久久久毛片777| 91成人精品电影| 国产精品永久免费网站| 99国产精品免费福利视频| 国产亚洲精品av在线| 亚洲人成77777在线视频| 日韩精品中文字幕看吧| 在线观看免费日韩欧美大片| 99国产极品粉嫩在线观看| 免费久久久久久久精品成人欧美视频| 免费高清视频大片| 熟妇人妻久久中文字幕3abv| 桃红色精品国产亚洲av| av中文乱码字幕在线| 国产精品久久电影中文字幕| 久久久水蜜桃国产精品网| 中文字幕精品免费在线观看视频| a在线观看视频网站| 大型黄色视频在线免费观看| 欧美另类亚洲清纯唯美| 久久精品影院6| 一本大道久久a久久精品| 久久天躁狠狠躁夜夜2o2o| 国产一级毛片七仙女欲春2 | 黄片播放在线免费| or卡值多少钱| 在线观看66精品国产| 操出白浆在线播放| 亚洲第一av免费看| 亚洲在线自拍视频| videosex国产| 欧美不卡视频在线免费观看 | 电影成人av| 国产精品综合久久久久久久免费 | 999久久久国产精品视频| 精品欧美一区二区三区在线| 亚洲成av片中文字幕在线观看| 国产亚洲精品一区二区www| 在线观看午夜福利视频| 久久久久亚洲av毛片大全| 熟女少妇亚洲综合色aaa.| 长腿黑丝高跟| 亚洲国产精品合色在线| www.www免费av| 久久久久亚洲av毛片大全| 精品欧美一区二区三区在线| 亚洲第一青青草原| 久久精品国产综合久久久| 中国美女看黄片| 国产精品久久久久久亚洲av鲁大| 国产精品久久电影中文字幕| 日韩三级视频一区二区三区| 亚洲一区中文字幕在线| 欧美日韩福利视频一区二区| 亚洲片人在线观看| 真人做人爱边吃奶动态| 母亲3免费完整高清在线观看| 午夜福利高清视频| 欧美中文综合在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品在线美女| 国产国语露脸激情在线看| 国产不卡一卡二| 成人18禁高潮啪啪吃奶动态图| 精品久久久久久久毛片微露脸| 欧美不卡视频在线免费观看 | 亚洲狠狠婷婷综合久久图片| 激情在线观看视频在线高清| 日韩有码中文字幕| av在线播放免费不卡| 一级毛片女人18水好多| 欧美激情高清一区二区三区| 欧美日韩黄片免| aaaaa片日本免费| 1024香蕉在线观看| 午夜福利影视在线免费观看| 欧美成狂野欧美在线观看| 国产精品久久久av美女十八| 91大片在线观看| 欧美激情高清一区二区三区| 亚洲精品中文字幕在线视频| 成人亚洲精品av一区二区| 美女高潮到喷水免费观看| 九色亚洲精品在线播放| 亚洲欧美激情综合另类| av视频免费观看在线观看| 黑人操中国人逼视频| 在线观看免费日韩欧美大片| 美女免费视频网站| 日日爽夜夜爽网站| 亚洲一码二码三码区别大吗| 亚洲专区中文字幕在线| 可以在线观看的亚洲视频| 国产av一区二区精品久久| 成人18禁在线播放| 国产av精品麻豆| 亚洲 欧美 日韩 在线 免费| 91麻豆av在线| 色综合站精品国产| 国产视频一区二区在线看| 亚洲成国产人片在线观看| 国产一区二区三区综合在线观看| 精品福利观看| 97超级碰碰碰精品色视频在线观看| 午夜福利,免费看| 757午夜福利合集在线观看| 可以在线观看的亚洲视频| 一进一出好大好爽视频| 欧美乱码精品一区二区三区| 午夜精品在线福利| av在线播放免费不卡| 色综合婷婷激情| 91国产中文字幕| 日韩 欧美 亚洲 中文字幕| 精品高清国产在线一区| 大香蕉久久成人网| 一a级毛片在线观看| 亚洲av片天天在线观看| 国产亚洲av嫩草精品影院| 日韩 欧美 亚洲 中文字幕| 国产成人精品久久二区二区免费| 久久久久久久久久久久大奶| 女人高潮潮喷娇喘18禁视频| 久久影院123| 日日干狠狠操夜夜爽| 欧美+亚洲+日韩+国产| 久久热在线av| 成在线人永久免费视频| 老汉色∧v一级毛片| 亚洲国产精品久久男人天堂| 久久中文字幕一级| 女人被躁到高潮嗷嗷叫费观| 午夜成年电影在线免费观看| 久久人妻福利社区极品人妻图片| 少妇粗大呻吟视频| 亚洲欧洲精品一区二区精品久久久| 精品免费久久久久久久清纯|