王浩云,宋 進,潘磊慶,袁培森,郭振環(huán),徐煥良
優(yōu)化BP神經(jīng)網(wǎng)絡(luò)提高高光譜檢測調(diào)理雞肉菌落總數(shù)精度
王浩云1,2,宋 進1,潘磊慶3,袁培森1,郭振環(huán)4,徐煥良1,2※
(1. 南京農(nóng)業(yè)大學(xué)信息科學(xué)技術(shù)學(xué)院,南京 210095;2. 南京農(nóng)業(yè)大學(xué)農(nóng)業(yè)工程博士后流動站,南京 210031;3. 南京農(nóng)業(yè)大學(xué)食品科技學(xué)院,南京 210095;4. 江蘇益客食品集團股份有限公司,宿遷 223800)
針對調(diào)理雞肉菌落總數(shù)在貯藏期間易受到外界因素影響,提出了一種優(yōu)化反向傳播(back propagation,BP)神經(jīng)網(wǎng)絡(luò)的調(diào)理雞肉菌落總數(shù)預(yù)測方法。以貯藏在4℃條件下的調(diào)理雞肉為研究對象,采集其表面400~1 000 nm高光譜信息共計419個波段作為全波段,并利用競爭性自適應(yīng)重加權(quán)(competitive adaptive reweighted sampling,CARS)算法篩選出34個特征波段,分別以全波段和特征波段對應(yīng)的光譜值作為BP神經(jīng)網(wǎng)絡(luò)輸入,采用鳥群算法(bird swarm algorithm,BSA)和免疫算法(immune algorithm,IA)優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的初始權(quán)重和閾值,建立調(diào)理雞肉菌落總數(shù)的BP、BSA-BP、IA-BP、BSA-IA-BP預(yù)測模型。試驗結(jié)果表明:經(jīng)過CARS篩選特征波長的BSA-IA-BP模型預(yù)測效果最佳,預(yù)測集相關(guān)系數(shù)P、均方根誤差、剩余預(yù)測偏差分別為0.93、0.31 lg(CFU/g)、2.68,且模型穩(wěn)定性最好。該研究為基于BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)調(diào)理雞肉菌落總數(shù)快速無損檢測提供了算法支撐和理論基礎(chǔ)。
高光譜;圖像處理;調(diào)理雞肉;菌落總數(shù);鳥群算法;免疫算法
調(diào)理肉制品是以畜禽肉為主要原料,經(jīng)過多種復(fù)雜加工工藝,在冷藏或凍藏條件下貯藏,食用前需經(jīng)簡單加工的風(fēng)味生肉制品。隨著食品冷鏈的完善和人們消費觀念的改變,營養(yǎng)、安全、方便的調(diào)理肉制品越來越受消費者青睞[1]。但是調(diào)理肉制品由于生產(chǎn)工藝復(fù)雜,加工中極易受微生物污染,即使在低溫冷鏈儲運過程中,假單胞菌也會生長繁殖[2]。微生物的大量滋生會導(dǎo)致調(diào)理肉制品腐敗變質(zhì),營養(yǎng)價值受到影響,同時也給消費者健康帶來極大隱患。目前肉品中菌落總數(shù)的測定主要采用平板計數(shù)法[3],該方法測量準確度高,但存在檢測周期長、樣品破壞大等問題。隨著技術(shù)的進步,產(chǎn)生了一批新興技術(shù)如三磷酸腺苷(adenosine triphosphate,ATP)生物發(fā)光技術(shù)[4]、酶聯(lián)免疫法[5]、多聚酶鏈式反應(yīng)[6]等。與傳統(tǒng)平板計數(shù)相比,這些新技術(shù)檢測效率雖有明顯提高,但仍對樣品具有破壞性,無法滿足肉類行業(yè)大批量、實時、在線檢測的要求[7]。
近年來,高光譜成像作為一種快速無損檢測技術(shù),被廣泛應(yīng)用到新鮮雞肉[8]、蝦肉[9]、豬肉[10]的菌落總數(shù)研究中,并獲得較好檢測結(jié)果。這些研究主要針對鮮肉,對調(diào)理雞肉菌落總數(shù)研究較少。另外,肉品腐敗是一個復(fù)雜的過程,其中微生物變化呈非線性增長。研究表明[11-13],對于肉中菌落總數(shù)預(yù)測,非線性模型比線性模型預(yù)測效果更好。對于復(fù)雜非線性關(guān)系,反向傳播(back propagation,BP)神經(jīng)網(wǎng)絡(luò)具有較強泛化和擬合能力[14],但在應(yīng)用中存在收斂速度慢、易陷入局部極小值和過擬合等問題[15]。針對這些問題,Mohamad等[16]提出利用粒子群算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)初始權(quán)重的方法,可以有效提高巖石硬度估測模型的泛化能力和預(yù)測精度。Gu等[17]在建立作物產(chǎn)量與灌溉水量的模型中,采用遺傳算法對BP神經(jīng)網(wǎng)絡(luò)初始參數(shù)進行優(yōu)化,這種方法極大提高了玉米產(chǎn)量預(yù)測精度以及網(wǎng)絡(luò)收斂速度。劉東等[18]采用磷蝦群算法(krill herd algorithm,KHA)對BP神經(jīng)網(wǎng)絡(luò)初始權(quán)重和閾值進行尋優(yōu),建立地下水污染指標含量與污染等級的水質(zhì)預(yù)測模型,模型預(yù)測準確性和可靠性得到顯著提升。但這些優(yōu)化算法存在早熟收斂、局部尋優(yōu)能力弱等缺點[19]。
為了提升BP神經(jīng)網(wǎng)絡(luò)預(yù)測性能,本文提出一種利用鳥群算法(bird swarm algorithm,BSA)和免疫算法(immune algorithm,IA)優(yōu)化菌落總數(shù)BP模型的方法。以調(diào)理雞肉為研究對象,采集其表面光譜信息,使用競爭性自適應(yīng)重加權(quán)(competitive adaptive reweighted sampling,CARS)算法提取特征波段,將全波段和特征波段對應(yīng)光譜值作為BP模型的輸入,菌落總數(shù)作為BP模型的輸出,通過多種方法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)初始參數(shù),建立調(diào)理雞肉菌落總數(shù)預(yù)測模型。
試驗樣本來自江蘇益客食品集團股份有限公司,將新鮮包裝好的“骨肉相連”調(diào)理雞肉在無菌環(huán)境下分為一份3串,每份質(zhì)量約為110 g,并用自封袋密封包裝后編號置于4 ℃冰箱冷藏,每隔1 d進行取樣。在第19天時,樣品微生物含量已超過國標GB16869-2005,并散發(fā)明顯腐敗性氣味,失去商品價值,因此貯藏時間總共為19 d。為保證試驗結(jié)論更具有代表性,進行了3批次重復(fù)試驗,每批采集80個樣本,共計240個樣本。
平板計數(shù)瓊脂(plate count agar,PCA)培養(yǎng)基:胰蛋白胨5.0 g,酵母浸粉2.5 g,葡萄糖1.0 g,瓊脂15.0 g,蒸餾水1L,pH值7.0±0.2;
成像光譜儀(ImSpectorV-10E,美國Specim公司),CCD攝像機(ICL-B1620,美國Imperx公司),可調(diào)諧光源(3 900ER,美國Illumination Technologies公司),圖像采集軟件(Spectra Image,臺灣Isuzu公司),恒溫恒濕箱(HWS-150,寧波賽福實驗儀器有限公司),紫外超凈臺(SW-CJ-2FD,蘇州蘇凈安泰有限公司),振蕩培養(yǎng)箱(BS-1E,常州國華電器有限公司)。
1.3.1 高光譜信息采集
采用線性掃描模式獲取高光譜反射圖像,主要設(shè)置參數(shù)為相機鏡頭距樣本30.0 cm,光源功率為90 W且光源以45°對準樣本,曝光時間為1.8 ms,輸送速度為6.8 mm/s。消除前后噪聲波段后,高光譜有效波長范圍為400~1 000 nm,共419個波段。
1.3.2 菌落總數(shù)測定
采集調(diào)理雞肉樣品高光譜圖像后,在無菌環(huán)境下,迅速提取純調(diào)理雞肉(去除木棒),并對樣品進行常溫勻質(zhì)化處理,隨機取3次勻質(zhì)后的樣品進行菌落含量測定,最終將3次測定結(jié)果平均值作為該樣品菌落總數(shù)含量。菌落總數(shù)測定方法參照GB 4789.2—2010《食品微生物學(xué)檢驗—菌落總數(shù)測定》[20]方法。
1.4.1 感興趣區(qū)域提取
圖1a為樣品黑白校正后的高光譜圖像。對校正后的高光譜圖像,選取圖1b中標記的整個區(qū)域作為感興趣區(qū)域,并利用ENVI 4.8人工提取該區(qū)域的高光譜數(shù)據(jù),計算感興趣區(qū)域內(nèi)所有像素點光譜的平均值,作為該樣本的光譜信息,如圖2為調(diào)理雞肉平均反射光譜曲線。
圖1 感興趣區(qū)域選擇
圖2 240份調(diào)理雞肉平均反射光譜曲線
1.4.2 預(yù)處理
本文采用求導(dǎo)、歸一化、多元散射校正預(yù)處理方法,消除光譜基線漂移以及由于樣品表面形狀差異而造成的光散射現(xiàn)象[21]。以交叉驗證集相關(guān)系數(shù)CV和交叉驗證集均方根誤差(root mean square error of cross validation,RMSECV)為評判指標[22]挑選出最佳預(yù)處理方法。
1.4.3 特征波長提取
由于高光譜圖像存在較大的數(shù)據(jù)冗余[23],本文采用CARS算法提取光譜特征,選擇具有代表性和區(qū)分性的特定波長。CARS算法主要依據(jù)達爾文進化論的“適者生存”原則[24],將每個波長當作獨立的變量,利用自適應(yīng)重加權(quán)采樣技術(shù)篩選出偏最小二乘回歸(partial least squares regression,PLSR)模型中回歸系數(shù)絕對值大的變量,刪除回歸系數(shù)絕對值小的變量,通過多次重復(fù)篩選得到一系列的波長變量子集,并采用十折交叉驗證選出PLSR模型中RMSECV最小的變量子集,即為最優(yōu)特征波長組合。
1.5.1 BSA算法
BSA算法于2016年由Meng等[25]提出,是一種全新的智能優(yōu)化算法,主要思想來源于鳥類覓食、警戒和遷徙3種群體行為。BSA中覓食行為與粒子群算法類似,因此BSA算法在具有粒子群算法收斂速度快的同時,還具有求解精度高、魯棒性強等[26]特點。BSA算法將待優(yōu)化參數(shù)包含在鳥群個體所在的空間位置中,通過適應(yīng)度函數(shù)對個體所處空間位置優(yōu)劣進行評價,并依據(jù)鳥群搜尋食物過程中覓食行為、警戒行為和遷徙行為等策略不斷更新個體位置,直到獲取最佳個體空間位置。
1.5.2 IA算法
IA是模仿生物免疫機制,設(shè)計出的一種新型智能搜索算法,繼承了生物免疫系統(tǒng)全局搜索能力、多樣性保持機制以及并行分布式搜索機制等特點[27]。IA算法尋優(yōu)的過程是通過算子來實現(xiàn)的,主要包括:親和度評價算子、抗體濃度評價算子、激勵度計算算子、免疫選擇算子、克隆算子、變異算子、克隆抑制算子等[28]。其主要原理是將待優(yōu)化參數(shù)、問題分別當抗體和抗原,利用親和度函數(shù)來評價抗體的質(zhì)量,并通過克隆、變異和抑制等免疫操作對抗體進行不斷優(yōu)化,直到獲得最優(yōu)抗體。
1.5.3 改進的BSA-IA-BP模型
BSA算法收斂速度快,但在尋優(yōu)后期極易陷入局部最優(yōu)[29],而IA算法具有較強的尋優(yōu)能力。因此本文在BSA算法迭代過程中引入IA算法的免疫操作,對個體產(chǎn)生突變,增加群體多樣性,擴大搜尋范圍,以擺脫局部極值。BSA-IA-BP主要步驟為:
1)確定BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),輸入為不同波段光譜值,輸出為菌落總數(shù)。
2)BSA、IA參數(shù)初始化,包括種群規(guī)模、迭代次數(shù)、飛行頻率FQ、覓食概率、克隆抗體數(shù)、變異概率和常量參數(shù)、、1、2、。
3)隨機初始化種群中個體位置X={x,2,…,x},為BP神經(jīng)網(wǎng)絡(luò)權(quán)重和閾值個數(shù)之和。根據(jù)公式(1)計算個體適應(yīng)度,將種群中最小適應(yīng)度作為群體最佳適應(yīng)度Gbest初始值,并記錄群體最佳位置。同時,將每個隨機個體適應(yīng)度作為個體最佳適應(yīng)度Pbesti初始值,并記錄相應(yīng)位置。采用絕對誤差作為適應(yīng)度函數(shù)(),M與P分別為菌落總數(shù)真實值和預(yù)測值,為訓(xùn)練樣本數(shù),函數(shù)公式如下:
4)迭代開始,根據(jù)BSA遷徙、覓食和警戒規(guī)則更新位置,并計算個體適應(yīng)度。
5)將個體適應(yīng)度值按升序排序,前/2個個體記為P1,后/2個個體記為P2。
6)保留P1,對P2群體進行克隆、變異等免疫操作得到P3。
7)合并群體P1和P3,重新計算個體適應(yīng)度,若群體適應(yīng)度最小值小于Gbest,則更新Gbest及最優(yōu)個體位置;同時比較每個個體當前適應(yīng)度與先前自身最佳適應(yīng)度大小,若當前個體適應(yīng)度比Pbesti小,則更新Pbesti及相應(yīng)個體位置。
8)判斷是否達到最大迭代次數(shù),若迭代結(jié)束轉(zhuǎn)至步驟9);否則轉(zhuǎn)回步驟3)。
9)輸出Gbest及其所對應(yīng)個體,并將最優(yōu)個體代入BP神經(jīng)網(wǎng)絡(luò)中進行訓(xùn)練和預(yù)測。BSA-IA-BP建模流程圖如圖3所示。
圖3 BSA-IA-BP模型流程圖
由圖4可知:隨著貯藏時間的增加,調(diào)理雞肉中的菌落總數(shù)呈S型變化趨勢,存在明顯的對數(shù)期和遲緩期。調(diào)理雞肉的初始菌落總數(shù)為4.65 lg(CFU/g),在貯藏3 d內(nèi),菌落總數(shù)增幅僅為0.52 lg(CFU/g),在第9天時,菌落總數(shù)的增幅達到最大值2.63 lg(CFU/g)。由于在貯藏初期,調(diào)理雞肉中微生物需要對新環(huán)境做適應(yīng)性調(diào)整,增長速度緩慢,經(jīng)過3 d適應(yīng)期后,菌落數(shù)呈對數(shù)式增長。根據(jù)國家標準[30],當樣本中菌落總數(shù)超過6.00 lg(CFU/g)時為腐敗等級,因此在第5天左右,調(diào)理雞肉中的菌落總數(shù)已達到腐敗的標準。
圖4 調(diào)理雞肉中菌落總數(shù)變化
圖5為調(diào)理雞肉第3天、第7天、第11天、第15天、第19天高光譜圖像的均值特征曲線,圖中每條特征曲線均由當天所有樣本的特征曲線求取平均得到。
由圖5可知,在485、660、760、980 nm波長附近存在明顯吸收峰。結(jié)合調(diào)理雞肉中的化學(xué)成分及其光學(xué)特性,可以發(fā)現(xiàn)在485 nm左右為高鐵肌紅蛋白(metMb)分子上氧化血紅素的吸收峰[31],980 nm左右為水吸收峰[32],760 nm左右為血紅蛋白質(zhì)以及肌紅蛋白質(zhì)的吸收峰[33]。隨著貯藏時間的延長,光譜的反射值有上升的趨勢,可能由于調(diào)理雞肉腐敗程度加深,內(nèi)部水分溢出,自由水對可見近紅外光的吸收減少,導(dǎo)致光譜反射值增加[34]。
圖5 不同貯藏時間樣本的光譜均值特征曲線
2.3.1 樣本集劃分
采用SPXY(sample set partitioning based on joint X-Y distance,SPXY)算法將240個調(diào)理雞肉樣本按照2:1比例劃分為校正集和預(yù)測集。利用IBM SPSS Statistics R24工具對劃分的樣本進行統(tǒng)計,結(jié)果如表1所示,校正集的范圍均大于預(yù)測集,且平均值和標準差相近,說明樣本的劃分較為合理。
表1 菌落總數(shù)結(jié)果統(tǒng)計
2.3.2 預(yù)處理
采用標準正態(tài)變量變換、多元散射校正、一階導(dǎo)數(shù)、二階導(dǎo)數(shù)4種方法對高光譜信息進行預(yù)處理,其中一階導(dǎo)數(shù)和二階導(dǎo)數(shù)均用Savitzky-Golay求導(dǎo),選擇的平滑窗口為15,多項式次數(shù)為2。為了對每種預(yù)處理方法效果進行定量分析,采用PLSR對預(yù)處理的光譜信息進行建模,并結(jié)合留一法對模型進行交叉驗證,通過CV和RMSECV確定最優(yōu)預(yù)處理方法。本文中PLSR主成分個數(shù)求取方法:當主成分數(shù)為時,將所有樣本分為兩部分,其中一個樣本作為測試集,其他剩余樣本作為訓(xùn)練集,利用訓(xùn)練集建立主成分數(shù)為的PLSR模型,計算預(yù)測集的預(yù)測值與真實值誤差平方和,并循環(huán)將每個樣本作為一次預(yù)測集,將所有樣本預(yù)測值與真實值誤差平方和進行求和,得到總誤差PRESS。同時利用所有樣本集在主成分為-1的情況下,建立PLSR模型,計算每個樣本預(yù)測值與真實值誤差平方和,并對所有樣本誤差平方和求和得到SS-1。當PRESS與SS-1比值小于0.952時,確定當前主成分有意義。主成分數(shù)從2開始進行迭代,直到當前主成分沒有意義或達到終止條件,最終輸出主成分分個數(shù)。如表2所示,為不同預(yù)處理方法下PLSR建模效果。
表2 不同預(yù)處理方法下的PLSR建模結(jié)果
由表2可得,與原始高光譜信息建立的模型相比,經(jīng)過標準正態(tài)變量變換、多元散射校正、一階導(dǎo)數(shù)與二階導(dǎo)數(shù)等預(yù)處理后,模型CV均有上升,同時RMSECV均有下降,說明這4種預(yù)處理方法能有效去除原始光譜中的噪聲信息,其中二階導(dǎo)數(shù)預(yù)處理效果較好,模型的CV為0.91,RMSECV為0.41 lg(CFU/g)。根據(jù)CV、RMSECV結(jié)果,確定二階導(dǎo)數(shù)為最佳預(yù)處理方法。后文所使用的光譜數(shù)據(jù),均經(jīng)過二階導(dǎo)數(shù)預(yù)處理。
圖6為CARS算法篩選特征變量過程,蒙特卡羅采樣次數(shù)為50。從圖6a中可以發(fā)現(xiàn),隨著采樣次數(shù)增加,所選擇特征波長數(shù)量越少,且減少的速度由快到慢,體現(xiàn)特征波長選擇過程具有從粗到細的特點。圖6b為交叉驗證RMSECV的變化趨勢,隨著采樣次數(shù)增加,RMSECV總體變化趨勢表現(xiàn)為先減小后增加,在第24次采樣時,RMSECV值最小,說明在前24次采樣中剔除了與菌落總數(shù)無關(guān)的波長變量,而在后26次采樣中可能剔除了與菌落總數(shù)有關(guān)的關(guān)鍵變量。圖6c中最小RMSECV對應(yīng)的采樣次數(shù)已用星號標出,圖中每條曲線代表各光譜變量回歸系數(shù)隨著采樣次數(shù)的變化趨勢。由RMSECV最小,得到34個特征波長,分別為408.03、426.91、522.09、562.99、614.36、654.70、731.72、746.32、749.25、760.94、762.41、763.87、777.04、787.29、790.22、797.55、815.13、853.24、854.71、857.64、876.68、885.46、891.32、892.78、930.77、940.98、949.72、971.54、980.25、983.15、987.50、990.40、993.30、999.09 nm。
對預(yù)處理后的光譜信息,分別建立基于全波段和CARS篩選特征波段的BP、BSA-BP、IA-BP、BSA-IA-BP預(yù)測模型。并根據(jù)測試集中預(yù)測值與實測值相關(guān)系數(shù)、均方根誤差(root mean square error,RMSE),以及剩余預(yù)測偏差(residual predictive deviation,RPD)對模型預(yù)測性能進行評價[35]。
模型具體參數(shù):迭代次數(shù)=800,群體規(guī)模=100,飛行頻率FQ=10,克隆抗體數(shù)=10,變異概率P=0.7,相似度閾值δ=0.2,==1,=1.5,=1.5,1=2=1;BP神經(jīng)網(wǎng)絡(luò)最大訓(xùn)練次數(shù)104,學(xué)習(xí)率0.01,訓(xùn)練目標最小誤差0.001,最小性能梯度10-5,隱藏層數(shù)1,其節(jié)點數(shù)參照公式(2):
圖6 CARS算法變量篩選流程
式中n為隱藏層節(jié)點數(shù);n為輸入層節(jié)點數(shù);n為輸出層節(jié)點數(shù);本文取1。根據(jù)上述參數(shù)設(shè)置,利用MATLAB 2016b進行仿真。
圖7a和7b,分別為全波段和特征波段下,IA-BP、BSA-BP、BSA-IA-BP模型最優(yōu)個體適應(yīng)度值的變化曲線。從圖7a和7b可以看出,3個模型在迭代初期,個體最優(yōu)適應(yīng)度下降的趨勢都比較明顯,在迭代到一定次數(shù)后,BSA-IA-BP模型的個體最優(yōu)適應(yīng)度值一直保持在三者中最低狀態(tài),而BSA-BP模型的個體最優(yōu)適應(yīng)度一直處于三者中最高。在迭代后期,BSA-BP模型有可能陷于局部最優(yōu),無法搜尋到更佳位置。因此,說明IA算法可以提高BSA算法搜索能力,避免陷入局部最優(yōu)。
IA-BP、BSA-BP、BSA-IA-BP模型中BP網(wǎng)絡(luò)的初始權(quán)重和閾值,取自迭代800次后最優(yōu)個體。普通BP模型中的初始權(quán)重和閾值,選自迭代前使得所有訓(xùn)練樣本適應(yīng)度總和最小的一個隨機個體。為了客觀進行評價,采取10次獨立重復(fù)訓(xùn)練,將10次仿真結(jié)果平均值作為最終參考依據(jù),如表3所示,利用IBM SPSS Statistics R24對不同模型10次預(yù)測效果進行分析。
圖7 不同波段數(shù)模型的適應(yīng)度曲線
表3 不同模型預(yù)測效果
由表3可知,在BP、IA-BP、BSA-BP、BSA-IA-BP 4種模型中,BSA-IA-BP模型預(yù)測精度和收斂速度最佳。其中特征波段下的BSA-IA-BP模型預(yù)測精度最高,預(yù)測集相關(guān)系數(shù)P為0.93,均方根誤差為0.31 lg(CFU/g),剩余預(yù)測偏差RPD為2.68;全波段下的BSA-IA-BP模型迭代次數(shù)最少為2。說明通過IA算法產(chǎn)生突變個體,能有效增強BSA算法尋優(yōu)能力,避免陷入局部最優(yōu),在一定程度上提高模型預(yù)測精度和收斂速度。根據(jù)多次運行結(jié)果,BSA-IA-BP模型所有評價指標標準差均較低,其C和P都不超過0.01,說明BSA-IA改進算法能提高BP模型穩(wěn)定性。表中建模時間僅為建立BP模型時間,不考慮前期優(yōu)化BP初始參數(shù)所消耗時間,從表中可以看出,經(jīng)過BSA-IA優(yōu)化BP初始參數(shù)后,BP建模效率最高,特別是在全波段下,效果最為明顯。
另外,通過特征波段和全波段進行對比,特征波段總的預(yù)測效果要優(yōu)于全波段,其中全波段下BSA-IA-BP模型的C、P、迭代次數(shù)分別為0.97、0.86、2,特征波段下BSA-IA-BP模型的C、P、迭代次數(shù)分別為0.97、0.93、7。經(jīng)過特征提取后,BSA-IA-BP模型校正集的相關(guān)系數(shù)沒有多大提升,而預(yù)測集的相關(guān)系數(shù)有了顯著的提升,收斂速度也變慢。在試驗中當樣本總數(shù)少于全波段數(shù)量時,通過提取特征波段可以克服預(yù)測模型收斂速度快、過擬合等情況。
為了實現(xiàn)調(diào)理雞肉菌落總數(shù)含量快速、無損、準確預(yù)測,本文以調(diào)理雞肉為研究對象,采集其表面可見近紅外光譜信息,利用CARS(competitive adaptive reweighted sampling)算法提取特征波段,并通過多種算法優(yōu)化BP(back propagation)神經(jīng)網(wǎng)絡(luò)初始權(quán)重和閾值,建立基于全波段和特征波段菌落總數(shù)的BP、IA-BP(immune algorithm-back propagation)、BSA-BP(bird swarm algorithm-back propagation)、BSA-IA-BP(bird swarm algorithm-immune algorithm-back propagation)模型,結(jié)果表明:
1)通過引入IA(immune algorithm)算法的免疫操作,在迭代穩(wěn)定后,BSA-IA-BP訓(xùn)練樣本適應(yīng)度總和明顯低于BSA-BP。說明BSA-IA(bird swarm algorithm-immune algorithm)融合算法搜索能力得到提升,可以有效避免BSA(bird swarm algorithm)算法后期陷入局部最優(yōu)。
2)4種模型中,BSA-IA-BP模型預(yù)測精度高,收斂速度快,且具有較好的穩(wěn)定性。其中特征波段下的BSA-IA-BP模型預(yù)測精度最好,校正集相關(guān)系數(shù)C為0.97,預(yù)測集相關(guān)系數(shù)P、均方根誤差以及剩余預(yù)測偏差RPD(residual predictive deviation)分別為0.93、0.31 lg(CFU/g)、2.68。經(jīng)過多次試驗,C和P標準差不超過0.01。綜上,利用高光譜技術(shù),對貯藏期間調(diào)理雞肉中菌落總數(shù)含量進行無損檢測具有一定的可行性,為今后實現(xiàn)調(diào)理雞肉線上快速無損檢測提供思路和方法。
[1] 高可蒙,梅林,薛秀恒,等. 無磷保水劑對冷凍調(diào)理豬肉的影響[J]. 食品科學(xué),2015,36(6):257-261.
Gao Kemeng, Mei Lin, Xue Xiuheng, et al. Influence of non-phosphate additive on water-holding capacity of frozen prepared pork[J]. Food Science, 2015, 36(6): 257-261. (in Chinese with English abstract)
[2] Li Miaoyun, Li Yuanhui, Huang Xianqing, et al. Evaluating growth models ofspp. in seasoned prepared chicken stored at different temperatures by the principal component analysis (PCA)[J]. Food Microbiology, 2014, 40: 41-47.
[3] Han Fangkai, Huang Xingyi, Mahunu G K. Exploratory review on safety of edible raw fish per the hazard factors and their detection methods[J]. Trends in Food Science & Technology, 2017, 59: 37-48.
[4] Yan Shoulei, Miao Suna, Deng Shaoya, et al. ATP bioluminescence rapid detection of total viable count in soy sauce[J]. Luminescence, 2012, 27(1): 34-38.
[5] Mandli J, El Fatimi I, Seddaoui N, et al. Enzyme immunoassay (ELISA/immunosensor) for a sensitive detection of pork adulteration in meat[J]. Food Chemistry, 2018, 255: 380-389.
[6] Dolan A, Burgess C M, Fanning S, et al. Application of quantitative reverse-transcription PCR (qRT-PCR) for the determination of the total viable count (TVC) on meat samples[J]. Journal of Applied Microbiology, 2010, 109(1): 91-98.
[7] Hameed Saima, Xie Lijuan, Ying Yibin. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review[J]. Trends in Food Science & Technology, 2018, 81: 61-73.
[8] Ye Xujun, Lino Kanako, Zhang Shuhuai. Monitoring of bacterial contamination on chicken meat surface using a novel narrowband spectral index derived from hyperspectral imagery data[J]. Meat Science, 2016, 122: 25-31.
[9] Yu Xinjie, Yu Xin, Wen Shiting, et al. Using deep learning and hyperspectral imaging to predict total viable count (TVC) in peeled Pacific white shrimp[J]. Journal of Food Measurement and Characterization, 2019, 13(3): 2082-2094.
[10] Tao Feifei, Peng Yankun, Li Yongyu. Feature extraction method of hyperspectral scattering images for prediction of total viable count in pork meat[J]. International Journal of Agricultural and Biological Engineering, 2015, 8(4): 95-105.
[11] Li Huanhuan, Kutsanedzie F, Zhao Jiewen, et al. Quantifying total viable count in pork meat using combined hyperspectral imaging and artificial olfaction techniques[J]. Food Analytical Methods, 2016, 9(11): 3015-3024.
[12] Siripatrawan U, Makino Y. Simultaneous assessment of multiple quality attributes and shelf life of packaged bratwurst during storage using hyperspectral imaging[J]. Meat Science, 2018, 146: 26-33.
[13] Tao Feifei, Peng Yankun, Gomes C L, et al. A comparative study for improving prediction of total viable count in beef based on hyperspectral scattering characteristics[J]. Journal of Food Engineering, 2015, 162: 38-47.
[14] 石惠嫻,孟祥真,游煜成, 等. 植物工廠地源熱泵系統(tǒng)熱負荷BP神經(jīng)網(wǎng)絡(luò)預(yù)測及驗證[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(2):196-202.
Shi Huixian, Meng Xiangzhen, You Yucheng, et al. Prediction and verification on heating load of ground source heat pump heating system based on BP neural network for plant factory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 196-202. (in Chinese with English abstract)
[15] Wang Jian, Wen Yanqing, Ye Zhenyun, et al. Convergence analysis of BP neural networks via sparse response regularization[J]. Applied Soft Computing, 2017, 61: 354-363.
[16] Mohamad E T, Armaghani D J, Momeni E, et al. Rock strength estimation: a PSO-based BP approach[J]. Neural Computing and Applications, 2018, 30(5): 1635-1646.
[17] Gu Jian, Yin Guanghua, Huang Pengfei, et al. An improved back propagation neural network prediction model for subsurface drip irrigation system[J]. Computers & Electrical Engineering, 2017, 60: 58-65.
[18] 劉東,李帥,付強,等. 基于KHA優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的地下水水質(zhì)綜合評價方法[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(9):275-284.
Liu Dong, Li Shuai, Fu Qiang, et al. Comprehensive evaluation method of groundwater quality based on BP network optimized by Krill Herd Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 275-284. (in Chinese with English abstract)
[19] 孔祥鑫, 周煒, 王曉丹. 基于改進磷蝦群算法的SVDD參數(shù)優(yōu)化[J]. 計算機工程與應(yīng)用, 2017, 53(22): 137-142,216.
Kong Xiangxin, Zhou Wei, Wang Xiaodan. Parameter optimization for SVDD based on improved krill herd algorithm[J]. Computer Engineering and Applications, 2017, 53(22): 137-142, 216. (in Chinese with English abstract)
[20] 中華人民共和國衛(wèi)生部. 食品微生物學(xué)檢驗—菌落總數(shù)測定:GB 4789.2-2010[S]. 北京:中國標準出版社,2010.
[21] Siedliska A, Baranowski P, Zubik M, et al. Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging[J]. Postharvest Biology and Technology, 2018, 139: 115-126.
[22] 邵園園,王永賢,玄冠濤,等. 高光譜成像快速檢測殼聚糖涂膜草莓可溶性固形物[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(18):245-254.
Shao Yuanyuan, Wang Yongxian, Xuan Guantao, et al. Rapid detection of soluble solids content in strawberry coated with chitosan based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 245-254. (in Chinese with English abstract)
[23] Xu J L, Riccioli C, Sun D W. Development of an alternative technique for rapid and accurate determination of fish caloric density based on hyperspectral imaging[J]. Journal of Food Engineering, 2016, 190: 185-194.
[24] Zheng Kaiyi, Feng Tao, Zhang Wen, et al. Variable selection by double competitive adaptive reweighted sampling for calibration transfer of near infrared spectra[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 191: 109-117.
[25] Meng Xianbing, Gao X Z, Lu Lihua, et al. A new bio-inspired optimisation algorithm: Bird Swarm Algorithm[J]. Journal of Experimental and Theoretical Artificial Intelligence, 2016, 28(4): 673-687.
[26] Xiang Ling, Deng Zeqi, Hu Aijun. Forecasting short-term wind speed based on IEWT-LSSVM model optimized by bird swarm algorithm[J]. IEEE Access, 2019, 7: 59333-59345.
[27] Timmis J, Hone A, Stibor T, et al. Theoretical advances in artificial immune systems[J]. Theoretical Computer Science, 2008, 403(1): 11-32.
[28] 張衛(wèi)祥,齊玉華. 基于人工免疫算法的軟件輸出域覆蓋測試[J]. 南京大學(xué)學(xué)報:自然科學(xué),2018,54(4):742-750.
Zhang Weixiang, Qi Yuhua. Software testing for output domain coverage based on artificial immune algorithm[J]. Journal of Nanjing University: Natural Science, 2018, 54(4): 742-750. (in Chinese with English abstract)
[29] Yang Han, Chen Tao, Huang Nanjing. An adaptive bird swarm algorithm with irregular random flight and its application[J]. Journal of Computational Science, 2019, 35: 57-65.
[30] 中國國家標準化管理委員會,中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局. GB16869-2005 鮮、凍禽產(chǎn)品[S]. 北京:中國標準出版社,2006.
[31] Hawkins S A, Bowker B, Zhuang H, et al. Post-mortem chemical changes in poultry breast meat monitored with visible-near infrared spectroscopy[J]. Journal of Food Research, 2014, 3(3): 57-65.
[32] Bowker B, Hawkins S, Zhuang H. Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy[J]. Poultry Science, 2014, 93(7): 1834-1841.
[33] 朱啟兵,肖盼,黃敏,等. 基于特征融合的豬肉新鮮度高光譜圖像檢測[J]. 食品與生物技術(shù)學(xué)報,2015,34(3):246-252.
Zhu Qibing, Xiao Pan, Huang Ming, et al. Feature fusion for detection of pork freshness based on hyperspectral imaging technology[J]. Journal of Food Science and Biotechnology, 2015, 34(3): 246-252. (in Chinese with English abstract)
[34] 謝安國. 冷凍冷藏過程中豬肉的光譜特性研究及其品質(zhì)的快速檢測[D]. 廣州:華南理工大學(xué),2016.
Xie Anguo. Spectral Characteristics of Pork Meat During the Freezing Process and Cold Storage and Rapid Detection of Product Quality[D]. Guangzhou: South China University of Technology, 2016. (in Chinese with English abstract)
[35] Qiao T, Ren J, Craigie C, et al. Quantitative prediction of beef quality using visible and nir spectroscopy with large data samples under industry conditions[J]. Journal of Applied Spectroscopy, 2015, 82(1): 137-144.
Improving hyperspectral detection accuracy of total bacteria in prepared chicken using optimized BP neural network
Wang Haoyun1,2, Song Jin1, Pan Leiqing3, Yuan Peisen1, Guo Zhenhuan4, Xu Huanliang1,2※
(1.,,210095,; 2.,,210031,; 3.,210095,; 4.,223800,)
Meat spoilage is a relatively complicated process, in which microorganisms increase nonlinearly. As a non-linear model, BP neural network has strong generalization ability and fitting ability, but there are some shortcomings in the application, such as slow convergence speed, easy to fall into local minima and overfitting. Thus an optimized BP neural network was proposed. Prepared chicken was stored in a refrigerator at 4 ℃, and 240 samples were collected. After obtaining 400-1000 nm hyperspectral images of each prepared chicken sample, sub-samples were randomly selected from each homogenized sample to determine the total bacteria. Then, the spectral data was preprocessed by different methods such as differentiation, standard normalized variate, and multiplicative scatter correction. The PLSR model was cross-validated by the leave-one-out method, and the best preprocessing method was determined based on RMSECV(root mean square error of cross validation). After that, based on the pre-processed spectral information, 34 characteristic bands were extracted by CARS (competitive adaptive reweighted sampling) algorithm. Finally, the spectral values corresponding to the full-band and filtered characteristic bands were used as the input of the BP (back propagation) neural network, and the total bacteria was used as the output of the BP neural network. Bird swarm algorithm (BSA) and immune algorithm (IA) optimization were used to optimize the initial weight and threshold of the BP neural network. The prediction models of the total bacteria were established by using BP, BSA-BP, IA-BP, and BSA-IA-BP. The results showed that: 1) by introducing the IA algorithm’s immune operation, after iterative stabilization, the total fitness of BSA-IA-BP was significantly lower than BSA-BP based on training samples. This showed that the search ability of the BSA-IA fusion algorithm was improved, which could effectively prevent the BSA algorithm from falling into a local optimum in the later stage. At the same time, among the four models of BP, IA-BP, BSA-BP, and BSA-IA-BP, the BSA-IA-BP model had the best prediction accuracy and convergence speed. Among them, the BSA-IA-BP model in the characteristic band had the highest prediction accuracy. TheP(the correlation coefficient), RMSEP(the root mean square error) and RPD (the residual predictive deviation) of the prediction set was 0.93, 0.31 lg(CFU/g), 2.68, respectively. 2) By comparing the characteristic band and the full band, the overall prediction effect of the characteristic band was better than the full band, which indicating that the CARS algorithm could effectively delete the wavelengths, reduced redundant information interference, and improved the model prediction efficiency. In general, the use of hyperspectral technology for non-destructive testing of the total bacteria in prepared chicken was feasible, which can provide technical support for the online testing of prepared chicken.
hyperspectral; image processing; prepared chicken; total bacteria; bird swarm algorithm; immune algorithm
2019-10-13
2020-02-06
江蘇省重點研發(fā)計劃(L201704);中央高?;究蒲袠I(yè)務(wù)費專項資金資助項目(No.KJQN201732,No.KYZ201914);國家自然科學(xué)基金項目(No.31601545);大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃專項計劃(S20190025)
王浩云,副教授,主要從事農(nóng)業(yè)物聯(lián)網(wǎng)、溫室智能控制和無損檢測研究。Email:wanghy@njau.edu.cn
徐煥良,教授,博導(dǎo),主要從事農(nóng)業(yè)物聯(lián)網(wǎng)關(guān)鍵技術(shù)研究及應(yīng)用。Email:huanliangxu@njau.edu.cn
10.11975/j.issn.1002-6819.2020.05.035
TS217
A
1002-6819(2020)-05-0302-08
王浩云,宋 進,潘磊慶,袁培森,郭振環(huán),徐煥良. 優(yōu)化BP神經(jīng)網(wǎng)絡(luò)提高高光譜檢測調(diào)理雞肉菌落總數(shù)精度[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(5):302-309. doi:10.11975/j.issn.1002-6819.2020.05.035 http://www.tcsae.org
Wang Haoyun, Song Jin, Pan Leiqing, Yuan Peisen, Guo Zhenhuan, Xu Huanliang. Improving hyperspectral detection accuracy of total bacteria in prepared chicken using optimized BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 302-309. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.05.035 http://www.tcsae.org