• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and optimization of vector coil sensor suited to magnetometric resistivity method

    2020-04-21 00:54:20SONGShuangSUNDeliCHENChaoTENGFei

    SONG Shuang, SUN De-li, CHEN Chao, TENG Fei

    (College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China)

    Abstract: Magnetometric resistivity (MMR) method is a new way to detect dam leakage. The coil sensor is generally used to collect data in geophysical exploration methods. Given the characteristics of accurate vector data requirements and high sensitivity requirement, a three-component MMR air-core coil sensor is designed. Through the analysis of sensor sensitivity and coil structure parameters, the coil structure and turn number are designed. By analyzing the noise source of the sensor, a suitable amplifier is selected to reduce the background noise of the system. Through the analysis of the three-component non-orthogonal angles, the parameters of the non-orthogonal angles of the coils are corrected. Finally, a three-component MMR induction magnetic field sensor is designed. The volume of the sensor is controlled at 0.027 m3. The background noise of X、Y and Z are The three channels have good consistency, and the three-component nonorthogonal angles correction error of three components is controlled within 0.2%.

    Key words: magnetometric resistivity (MMR); three-component air-core coil sensor; noise analysis; high sensitivity; three-component correction

    0 Introduction

    As an important part of water conservancy projects, reservoirs and dams have made important contributions to human production and national economic development. With the increase in the operation time of reservoirs and dams, the hidden danger of them, such as dam break, is becoming more and more serious. Therefore, it has become a consensus to take effective measures to prevent deterioration of the dam. For a long time, the domestic scientific research on dam leakage detection technology has been uninterrupted. But the traditional methods for detecting leakage of dams are direct copies of minerals surveying methods. These methods can not accurately grasp the characteristics of dam leakage. In addition, the numerical results are not reliable enough to scientifically detect dam leakage.

    Magnetometric resistivity method (MMR, Edwards and Nabighian, 1991), a measurement method based on weak magnetism (about 100 milli gamma), can determine the priority flow path of underground water passages followed by measuring the low frequency magnetic field related to underground non-inductive current flow according to the principle that naturally ionized groundwater is more conductive than the soil through which it flows[1]. The longitudinal and transverse positions of leakage flow are determined by measuring the magnetic field generated by current channel. The direction of the magnetic field is determined by Biot-Savart law. If we hold the wire in our right hand, the direction of our thumb is the direction of positive current, and the direction our fingers curl is the direction of the magnetic field, as shown in Fig.1.

    Fig.1Schematicdiagramofcurrentmagneticfieldgenerationrelationshipbetweenquadraticdragandlinearizeddrag

    The horizontal component is maximized when the probe point is above the current source. When the detection point is gradually away from the current source, the horizontal component decreases, the vertical component increases, and the total magnetic field decreases. Therefore, the changes in the horizontal and vertical components of the magnetic field in space can be the direction and position of the water flow. MMR method has features of super-speed, accurate and minimally invasive advantages in ground water mapping and modelling. Till now, MMR method has been widely applied in many different areas throughout the United States, Canada, England, Peru, Sri Lanka, and Argentina[2]. However, it is inaccessible in China.

    The coil sensor is generally used to collect data in geophysical exploration methods[3]. A high sensitivity cooled coil resonance for kHz range is designed for magnetic resonance sounding (MRS) method[4]. And for the MRS method using in a mine or tunnel for advance detecting, an one-meter-side and cooled coil sensor is designed to deploying the sensor use in the narrow underground space[5]. A differential structure air-coil sensor is designed for suited to Helicopter TEM method[6]. And a three-component airs core sensor is designed for ground TEM detection[7]. In conclusion, the key of MMR is to use air-core coil sensors as an important method to measuremagnetic field. Due to its distinctiveness, the features of small volume, lightweight, high sensitivity, low noise level and access to accurate three-component measurements are required for detection air-core coil sensors.

    Based on the practical detection demands of MMR, here we analyze the parameters of coil sensors, such as frequency characteristics, system noise level, etc. Moreover, we corrent three-component magnetic sensor nonorthogonal angles to improve the detection accuracy of the data. According to the practical measurement results, the sensor introduced in this paper can meet the detection requirements of the MMR method.

    1 Principle and analysis

    1.1 Optimization of parameters

    Coils for detecting magnetic fields are mainly divided into air-core coils and magnetic-core coils. Magnetic-core coils have features of small volume, high sensitivity in electromagnetic induction. Meanwhile, MMR must observe not only the distribution of magnetic field intensity in a single, but also the vector magnetic field distribution and magnetic field gradient in space. In order to avoid the crosstalk among magnetic coils, which may intervene in the accuracy of magnetic field signals in three components, a three-component electro-magnetic induction air-core vector coil sensor (VCS) is designed.

    Single-component coils are constructed by winding coils at the square coil frame. Since the square’s magnetic flux area is the larger than the circle under the same volume. The simplified model is shown in Fig.2(a), and the cross-section diagram is shown in Fig.2(b).

    Fig.2 Schematic diagram of a single coil sensor structure

    In Fig.2,Dis the outer side length of coil,dis the inner side length of coil, andHis the height of coil.

    VCS can be in the form of inductance series resistance with equivalent effect. In order to improve the sensitivity at specific frequencies and suppress wideband electromagnetic noise level, the resonant frequency of adjusting coils withLCtuning structure is adopted. The circuit equivalent structure of coils is shown in Fig.3.

    In Fig.3,Ris the coil internal resistance,Lis the coil self-inductance,Crepresents the coil distributed capacitance and the resonance capacitance, andUsis signal voltage.

    The side length (D) and the number of turns (N) of air-core coils can directly influence the quality of magnetic induction signals, even detection accuracy. As a result, further studies shall be carried out to determineD,NandHto achieve the optimal volume, sensitivity, and signal-to-noise ratioθSNR.

    Fig.3 Air-core coil equivalent circuit

    ` The thermal noise of coils is the main component of coil noise, and it is expressed as

    (1)

    wherekBis a Boltzmann constant, with the value of 1.380 649×10-23J/K;QLCrefers to the quality factor ofLCresonant coil;Trefers to the temperature value, andRrefers to the value of direct-current resistance of coils.

    The direct-current resistance of air-core coils (R) is mainly related to the length and materials. The conductor of winging coils is made of copper conductor with the outer diameter of 0.48 mm and the inner diameter of the copper core being 0.34 mm. Based on Ohm’s law, we can know that

    (2)

    whereρr=1.75×10-8Ω·m refers to the conductivity of copper at room temperature, anddcopperis the diameter of copper core.

    Based on the Faraday’s law of electromagnetic induction, the output signal of single-component coil at the effect of different magnetic fields is

    (3)

    wherea=(D+d)/2 is the average side length of coils,φrefers to the magnetic flux passing through the air-core coils, dB/dtrefers to the changing magnitude of magnetic flux. In terms of coils,θSNRcan be shown as

    (4)

    1.2 Analysis of equivalent noise

    The magnetic field signals collected by the sensor should be further amplified by the pre-operational amplifier circuit. The overall measurement background noise of the sensor is mainly composed of voltage noiseVnoiseand current noiseInoisegenerated by the pre-operational amplifier, and system thermal noiseTnoise, namely

    (5)

    whereZis the impedance of the coil.

    Therefore, the voltage noise and current noise of the selected pre-operational amplifier will directly influence the sensitivity of measuring signals.

    Table 1 Values of L and R corresponding to N

    Due to its volume restriction, coils should be wound at a non-magnetic skeleton with the length being 49.64 mm and height being 10 cm. Thus the influence of the number of turns onLandRis important to the VCS. The values of the parameters based on the practical measurement are listed in Table 1.

    Fig.4 Schematic diagram of two pre-amplifier structures

    (6)

    where ?V/?Bis the transfer coefficient of the resonant circuit, and based on Faraday’s law of electromagnetic induction, the transfer coefficient of the resonant circuit can be calculated by

    (7)

    Thus field sensitivityBndetected by this system can be calculated based on Eqs.(6) and (7) as

    (8)

    The pre-amplifier consisting of LT1028 and AD745 in the form of Fig.5(a) and pre-amplifier consisting of LT1028 in the form of Fig.5(b) are matched as the system noise and detection sensitivity of air-core coil sensors, respectively, as shown in Fig.5.

    As shown in Fig.5, the two-stage amplifying circuit consisting of LT1028 in parallel is featured with lower background noise and higher system sensitivity, and two-stage amplifying in parallel can ensure the reliability of post-processing signals. As a result, this form is selected as the pre-amplifier circuit of the system. As shown in Fig.5, whenN>1 400, system sensitivity can completely meet the detection needs of MMR, and the increase of the number of turns will no longer increase the sensitivity obviously, therefore, we chooseN=1 400.

    Fig.5 AD745, LT1028, parallel LT1028 system theoretical noise and sensitivity

    2 Three-component nonorthogonal angles correction

    Due to the restriction of processing technology, these three axes of the VCS will not completely be orthogonal[8-9]. Details are as follows: each component of the VCS has offset voltage drift, and the sensitivities of different axis and their matching pre-operational amplifier are different, which results in a large error of the measured magnetic field data. In order to acquire more accurate data, non-orthogonal angles correction shall be carried out on the three-component sensor. Till now, the common error correction methods mainly include least square method, ellipsoid fitting method, and neural network method. In this paper, the ellipsoid fitting method has been used to correct the collected data of ACS.

    Non-orthogonal angle errors of the three-component sensor can mainly be divided into errors of non-orthogonal angles, sensitivity of each axis, offset voltage drift and measuring noise. Among these, the measuring noise can be silenced via superposition.

    For the error model shown in Fig.6, supposing that the standard coordinate system isO-XYZand the non-orthogonal coordinate system to be measured isO-X′Y′Z, with coincidentZ-axis, andXOZandX′OZbeing coplanar,α,βandγare non-orthogonal angles, to be explicit,αrefers to the included angle betweenOX-axis andX′-axis,γrefers to the included angle betweenY′-axis andXOYplane,βrefers to the included angle betweenOY′ projection andOY-axis on theXOYplane.

    Fig.6 Schematic diagram of measurement error

    The non-orthogonal mathematical model of the VCS is built as

    (9)

    The three-axis sensitivity error model caused by varying sensitivity of the VCS and different amplification factors of pre-amplifier circuit can be shown with

    (10)

    wherekX,kYandkZrefer to the sensitivities of VCS’sX-axis,Y-axis andZ-axis, respectively.

    Meanwhile, since the zero position of the sensor cannot be set accurately, the zero drift error mathematical model caused by analog circuit drifting and A/D card drifting can be given by

    (11)

    wherebX,bYandbZrepresent the zero drift errors ofX-axis,Y-axis andZ-axis, respectively. In conclusion, the measured data correction model of the VCS is

    B=KAB0+b+n,

    (12)

    whereB=[XYZ]Trefers to the measured data when there are errors,nrefers to the measurement noise andB0is the practical output of VCS. The general formula of ellipsoid is given by

    F(ξ,h)=ax2+by2+cz2+2dxy+2exz+2fyz+

    2px+2qy+2rz+g,

    (13)

    whereξ=[a,b,c,d,e,f,p,q,r,g]Trefers to the parameter vector of ellipsoid, andh=[x2,y2,z2,2xy,2xz,2yz,2x,2y,2z,1]Trefers to the operational vector of measured data.

    Correction is performed by using the ellipsoid fitting method to select the optimal parameter of ellipsoid based on the minimum quadratic sum of the distance from the data to the ellipsoidal surface. Thus the minimum value is obtained after introducing related dataξinto

    ‖F(xiàn)(ξ,h)‖2=(Hξ)T(Hξ)=ξTHTHξ,

    (14)

    whereHrefers to the combination of measured data, namely

    (15)

    According to the analytical geometry, more limitations are required to determine if it is an ellipsoid. Assuming that

    I=a+b+c,

    J=ab+bc+ac-d2-e2-f2,

    (16)

    when meeting the requirement of

    4J2-I2>0,

    (17)

    the curved surface shown in Eq.(14) will be ellipsoidal surface.

    Based on Eq.(12), assuming thatK′=KA, and errors (n) have been eliminated by multiple times of superposition, then

    (18)

    When the sum of three-dimensional theoretical vector isBb, based on Eq.(18), we can know

    (19)

    The vector form of optimal ellipsoidal surface obtained via ellipsoid fitting method can be written as

    (X-X0)TM(X-X0)=1,

    (20)

    whereMrefers to the parameter matrix,Xrefers to the coordinates of points on an ellipsoidal surface, andX0refers to the coordinates of points in the center of ellipsoid. Based on Eqs.(18) and (19), we can work out

    (21)

    (22)

    thus we obtain the practical output of the VCS as

    B0=(K′)-1(B-b).

    (23)

    3 Experiment and discussion

    All experimental measurements are performed inside a magnetic shielding room built with high permeability and inductivity materials. Correspondingly, this room provides the experiment with a sufficient shielding factor (i.e., 40 dB) from both electric and magnetic field noises.

    Fig.7 Theoretical system noise

    After that, we conducted the assembly three-component data acquisition test. The sinusoidal AC magnetic field with the frequency being 380 Hz and magnitude being 10 000 nT is generated by using a Helmholtz coil at the shielding enclosure environment, as shown in Fig.8.

    Using the designed vector coil sensor to collect 30 sets of data from random placement angle, the values of data model are shown in imaginary line in Fig.9(a). It can be seen that the uncompensated data error is up to 500 nT. The non-orthogonal three-axis parameters after substituting 30 sets of data into Eq.(15) for error correction are as follows. The nonorthogonal-angles areα=1.997 1°;β=1.750 9°;γ=2.657 7°. The sensitivity compensation factors arekX=0.996 5;kY=0.996 7;kZ=1.004 0. The three-axis zero drift errors arebX=109.50 nT;bY=125.09 nT;bZ=-79.69 nT.

    Fig.8 Three-component nonorthogonality data acquisition

    Fig.9 Sampling site

    The compensated data is shown in Fig.9(b), with the compensated sensor measurement error controlled within 20 nT and the accuracy being up to 0.2%, which achieves the high-accuracy collection of MMR detection data.

    Finally, we conducted field validation test in a small reservoir on the outskirts of Changchun City. The detection target is a spillway with a radius of 25 cm. We chose the origin point being above the spillway tunnel and the measuring line perpendicular to the flow direction of the spillway tunnel. Every 0.5 m is a measuring point and there are 31 points to be collected totally. A high-power transmitter was used as the transmitting part. The dipole excitation source was placed at both sides of the dam, and the transmitter and source wires are 100 m from the test area to reduce the influence of the magnetic field generated by the wires on the detection results.

    Fig.10 Environmental noises in the experiment

    Fig.11 Signal amplitudes of origin point

    Fig.12 shows the variation trends. We can clearly see that the horizontal (Y-axis) magnetic field component reaches the maximum directly above the spillway tunnel (the electric current), and the vertical (Z-axis) component is zero. As the distance changes, the horizontal component decreases and the vertical component increases. The total magnetic field decreases as the distance increases. Since theX-axis component is parallel to the priority flow path, the signal is the minimum. The results show that there is a priority flow path at the origin, which proves that the sensor meets the design requirements.

    Fig.12 Variation trends

    4 Conclusion

    精品国产一区二区三区久久久樱花| 国产亚洲欧美在线一区二区| 黄片小视频在线播放| 欧美人与性动交α欧美软件| 国产成人免费无遮挡视频| 啦啦啦在线免费观看视频4| 免费在线观看日本一区| 午夜免费鲁丝| 亚洲精品av麻豆狂野| 欧美性长视频在线观看| 精品一区二区三卡| 天堂中文最新版在线下载| 精品国产一区二区久久| 黑人操中国人逼视频| 国产精品久久久久久精品古装| 久久精品国产亚洲av香蕉五月 | 51午夜福利影视在线观看| 精品久久久久久电影网| 亚洲精品av麻豆狂野| 久久婷婷成人综合色麻豆| 精品亚洲成a人片在线观看| 午夜福利欧美成人| 中文字幕另类日韩欧美亚洲嫩草| 女性生殖器流出的白浆| 18禁黄网站禁片午夜丰满| 我的亚洲天堂| 中文字幕制服av| 国产欧美日韩精品亚洲av| 青草久久国产| 啦啦啦在线免费观看视频4| 国产成人欧美| 亚洲精品粉嫩美女一区| 男人操女人黄网站| 啦啦啦中文免费视频观看日本| 黄色成人免费大全| 精品乱码久久久久久99久播| 免费观看a级毛片全部| 亚洲国产中文字幕在线视频| 精品卡一卡二卡四卡免费| 久久久久久人人人人人| videosex国产| 无人区码免费观看不卡 | 肉色欧美久久久久久久蜜桃| 色综合欧美亚洲国产小说| 欧美人与性动交α欧美软件| 日韩成人在线观看一区二区三区| 亚洲七黄色美女视频| 美女主播在线视频| 91精品国产国语对白视频| 女人被躁到高潮嗷嗷叫费观| avwww免费| 国产免费福利视频在线观看| 免费av中文字幕在线| 美女国产高潮福利片在线看| 国产91精品成人一区二区三区 | 男人舔女人的私密视频| 日韩熟女老妇一区二区性免费视频| 午夜精品久久久久久毛片777| 50天的宝宝边吃奶边哭怎么回事| 每晚都被弄得嗷嗷叫到高潮| 视频区欧美日本亚洲| 日本一区二区免费在线视频| 一区二区三区国产精品乱码| 日韩制服丝袜自拍偷拍| 精品免费久久久久久久清纯 | www日本在线高清视频| 午夜免费成人在线视频| 成年人免费黄色播放视频| 国产av又大| 高潮久久久久久久久久久不卡| 老汉色∧v一级毛片| 国产一区二区三区综合在线观看| 国产精品秋霞免费鲁丝片| 中文字幕av电影在线播放| 一级黄色大片毛片| 水蜜桃什么品种好| 一区二区三区激情视频| 人妻一区二区av| 后天国语完整版免费观看| 日日爽夜夜爽网站| 无遮挡黄片免费观看| 免费女性裸体啪啪无遮挡网站| 日韩中文字幕视频在线看片| 国产视频一区二区在线看| 亚洲国产看品久久| 日韩人妻精品一区2区三区| 一级毛片电影观看| 久久久久久久国产电影| 大陆偷拍与自拍| 亚洲免费av在线视频| 超碰成人久久| 蜜桃在线观看..| 国产成人影院久久av| 两个人看的免费小视频| 黑人巨大精品欧美一区二区蜜桃| 国产福利在线免费观看视频| 性少妇av在线| 欧美人与性动交α欧美精品济南到| 操出白浆在线播放| 免费观看a级毛片全部| 99热国产这里只有精品6| 久久人妻av系列| 国产亚洲一区二区精品| 91成年电影在线观看| 女人精品久久久久毛片| 免费在线观看视频国产中文字幕亚洲| 日韩 欧美 亚洲 中文字幕| 夜夜爽天天搞| 男女高潮啪啪啪动态图| 999久久久精品免费观看国产| 欧美黑人欧美精品刺激| 99久久精品国产亚洲精品| 超碰成人久久| 欧美变态另类bdsm刘玥| 国产麻豆69| 咕卡用的链子| 日韩欧美一区二区三区在线观看 | 超色免费av| av国产精品久久久久影院| 韩国精品一区二区三区| 丝袜美腿诱惑在线| 亚洲综合色网址| 国产精品98久久久久久宅男小说| h视频一区二区三区| 国产精品av久久久久免费| tocl精华| 老司机午夜十八禁免费视频| 国产免费视频播放在线视频| 国产一区二区三区视频了| 成人免费观看视频高清| 欧美另类亚洲清纯唯美| 12—13女人毛片做爰片一| 亚洲中文av在线| 一本—道久久a久久精品蜜桃钙片| 老司机在亚洲福利影院| 人人妻人人爽人人添夜夜欢视频| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区mp4| 精品少妇黑人巨大在线播放| 亚洲第一欧美日韩一区二区三区 | 丝袜美腿诱惑在线| 正在播放国产对白刺激| 新久久久久国产一级毛片| 国产福利在线免费观看视频| 免费一级毛片在线播放高清视频 | 在线播放国产精品三级| av线在线观看网站| 男女下面插进去视频免费观看| 国产日韩一区二区三区精品不卡| 国产亚洲精品第一综合不卡| 高清毛片免费观看视频网站 | 视频区图区小说| 少妇猛男粗大的猛烈进出视频| 丝袜喷水一区| 成人手机av| 男男h啪啪无遮挡| 国产一区有黄有色的免费视频| 免费看十八禁软件| 午夜福利视频精品| 一进一出好大好爽视频| 十分钟在线观看高清视频www| 黄色视频在线播放观看不卡| 亚洲av电影在线进入| 777米奇影视久久| 国产亚洲av高清不卡| 国产亚洲欧美在线一区二区| 99精品久久久久人妻精品| 久久影院123| 久久久久网色| 亚洲国产毛片av蜜桃av| 日本a在线网址| 最新美女视频免费是黄的| 18禁观看日本| 亚洲一区二区三区欧美精品| 午夜91福利影院| 国产精品久久久人人做人人爽| 麻豆国产av国片精品| 91九色精品人成在线观看| 亚洲精品久久成人aⅴ小说| 国产av又大| 久久精品亚洲精品国产色婷小说| 精品少妇黑人巨大在线播放| 国产成人欧美在线观看 | 亚洲男人天堂网一区| 日本wwww免费看| 国产精品久久久久久精品电影小说| 亚洲成av片中文字幕在线观看| 老司机午夜十八禁免费视频| 欧美日韩黄片免| 亚洲av电影在线进入| 黑人猛操日本美女一级片| 久久久久久人人人人人| 久久99一区二区三区| 我的亚洲天堂| 80岁老熟妇乱子伦牲交| 日韩大片免费观看网站| 每晚都被弄得嗷嗷叫到高潮| 一边摸一边抽搐一进一小说 | 大型黄色视频在线免费观看| 国产成人影院久久av| netflix在线观看网站| 日韩欧美一区二区三区在线观看 | 国产亚洲午夜精品一区二区久久| 十八禁高潮呻吟视频| 这个男人来自地球电影免费观看| 久久精品亚洲熟妇少妇任你| 色94色欧美一区二区| 国产亚洲午夜精品一区二区久久| 91成人精品电影| 日韩大码丰满熟妇| 午夜日韩欧美国产| 99re6热这里在线精品视频| 2018国产大陆天天弄谢| 久久中文字幕一级| 亚洲色图综合在线观看| av视频免费观看在线观看| 女警被强在线播放| 天堂俺去俺来也www色官网| 日韩视频一区二区在线观看| 国产成人av激情在线播放| 精品亚洲成国产av| 欧美日韩一级在线毛片| 国产精品亚洲一级av第二区| 亚洲av电影在线进入| 国产片内射在线| 精品亚洲乱码少妇综合久久| 最黄视频免费看| a级毛片黄视频| 女性生殖器流出的白浆| 精品第一国产精品| 两个人免费观看高清视频| 国产成人一区二区三区免费视频网站| 天堂俺去俺来也www色官网| 香蕉丝袜av| 黄色a级毛片大全视频| 日韩成人在线观看一区二区三区| 日韩有码中文字幕| 在线观看www视频免费| 亚洲av第一区精品v没综合| 亚洲 欧美一区二区三区| 国产淫语在线视频| 人人妻人人澡人人看| 欧美激情久久久久久爽电影 | 高清欧美精品videossex| 人妻一区二区av| 777米奇影视久久| 三上悠亚av全集在线观看| 电影成人av| 精品久久久精品久久久| 国产亚洲欧美在线一区二区| 日本av手机在线免费观看| 巨乳人妻的诱惑在线观看| 一区二区三区精品91| 啦啦啦在线免费观看视频4| 黑人巨大精品欧美一区二区蜜桃| 日韩熟女老妇一区二区性免费视频| 欧美日韩成人在线一区二区| 中文字幕最新亚洲高清| 国产伦人伦偷精品视频| 十分钟在线观看高清视频www| 又黄又粗又硬又大视频| 十八禁高潮呻吟视频| 亚洲七黄色美女视频| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| 国产xxxxx性猛交| 最近最新免费中文字幕在线| 淫妇啪啪啪对白视频| 国产一区二区三区视频了| 99re6热这里在线精品视频| 操出白浆在线播放| 美国免费a级毛片| 久久精品熟女亚洲av麻豆精品| 99riav亚洲国产免费| 亚洲色图综合在线观看| 97在线人人人人妻| 国产福利在线免费观看视频| 高清在线国产一区| www日本在线高清视频| 成年版毛片免费区| 国产精品一区二区在线观看99| 操美女的视频在线观看| 在线观看舔阴道视频| 日韩精品免费视频一区二区三区| 一区二区三区精品91| 99国产精品99久久久久| 精品视频人人做人人爽| 国产欧美日韩一区二区精品| 丰满少妇做爰视频| 男女无遮挡免费网站观看| 最新的欧美精品一区二区| 亚洲午夜理论影院| 久久狼人影院| 桃红色精品国产亚洲av| 亚洲av成人一区二区三| 久久精品aⅴ一区二区三区四区| 亚洲精华国产精华精| 啦啦啦中文免费视频观看日本| 少妇精品久久久久久久| av网站免费在线观看视频| 淫妇啪啪啪对白视频| 国产深夜福利视频在线观看| 99国产精品免费福利视频| e午夜精品久久久久久久| 国产一区二区三区视频了| 麻豆av在线久日| 亚洲va日本ⅴa欧美va伊人久久| 91成年电影在线观看| 精品国内亚洲2022精品成人 | 国产成人系列免费观看| 国产精品亚洲av一区麻豆| 天天躁夜夜躁狠狠躁躁| 免费在线观看黄色视频的| 丰满饥渴人妻一区二区三| 老鸭窝网址在线观看| 免费在线观看视频国产中文字幕亚洲| 国产精品.久久久| 久久久久久久久免费视频了| 国产精品二区激情视频| 精品一区二区三区av网在线观看 | 欧美黄色淫秽网站| 丝瓜视频免费看黄片| 99精品久久久久人妻精品| 另类精品久久| 日本av免费视频播放| 亚洲欧美激情在线| 国产黄频视频在线观看| 亚洲中文字幕日韩| 国产精品成人在线| 999精品在线视频| 青草久久国产| 黄色 视频免费看| 国产精品成人在线| 蜜桃国产av成人99| 中文字幕人妻熟女乱码| 久久久久久久大尺度免费视频| 日本av免费视频播放| 欧美人与性动交α欧美精品济南到| av不卡在线播放| 免费高清在线观看日韩| netflix在线观看网站| 性高湖久久久久久久久免费观看| 中文字幕高清在线视频| 亚洲人成77777在线视频| 在线观看免费高清a一片| 欧美日本中文国产一区发布| 99精品在免费线老司机午夜| 一二三四社区在线视频社区8| 91老司机精品| 亚洲精品美女久久av网站| 久久人妻av系列| 他把我摸到了高潮在线观看 | 亚洲精品美女久久av网站| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品一二三| 成人国产av品久久久| 2018国产大陆天天弄谢| 国产亚洲精品一区二区www | 日韩视频在线欧美| 国产精品美女特级片免费视频播放器 | 成年人免费黄色播放视频| 国产精品 欧美亚洲| 久久亚洲精品不卡| 一级毛片电影观看| 国产精品免费一区二区三区在线 | 中文字幕高清在线视频| 国产免费现黄频在线看| 咕卡用的链子| 肉色欧美久久久久久久蜜桃| 热99国产精品久久久久久7| 狠狠狠狠99中文字幕| 老司机亚洲免费影院| 亚洲av日韩在线播放| 久久精品亚洲熟妇少妇任你| 母亲3免费完整高清在线观看| 国产精品一区二区精品视频观看| 最新的欧美精品一区二区| 日韩一区二区三区影片| 一区在线观看完整版| 超碰97精品在线观看| 久久午夜亚洲精品久久| 大型黄色视频在线免费观看| 国产成人免费观看mmmm| 精品国产一区二区三区四区第35| 欧美中文综合在线视频| 久久久精品免费免费高清| 高清在线国产一区| www.999成人在线观看| 精品一区二区三区av网在线观看 | 亚洲欧洲精品一区二区精品久久久| 一进一出好大好爽视频| 淫妇啪啪啪对白视频| 国产在线视频一区二区| 99久久99久久久精品蜜桃| 亚洲精品国产精品久久久不卡| 国精品久久久久久国模美| 十八禁网站免费在线| 久久久久精品国产欧美久久久| 午夜免费成人在线视频| 纵有疾风起免费观看全集完整版| 高清在线国产一区| 天天躁狠狠躁夜夜躁狠狠躁| 熟女少妇亚洲综合色aaa.| 两个人免费观看高清视频| 搡老乐熟女国产| 91精品三级在线观看| 一级毛片女人18水好多| 国产午夜精品久久久久久| 大片免费播放器 马上看| 精品国产一区二区三区久久久樱花| 又黄又粗又硬又大视频| 一级片免费观看大全| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| 亚洲美女黄片视频| 亚洲欧洲日产国产| 亚洲第一青青草原| 啦啦啦在线免费观看视频4| 久久天堂一区二区三区四区| 一夜夜www| 18在线观看网站| 在线观看舔阴道视频| 国产伦理片在线播放av一区| 亚洲第一欧美日韩一区二区三区 | 天天影视国产精品| 汤姆久久久久久久影院中文字幕| 亚洲伊人久久精品综合| 女同久久另类99精品国产91| 在线看a的网站| 王馨瑶露胸无遮挡在线观看| 十八禁网站网址无遮挡| 欧美日韩国产mv在线观看视频| 51午夜福利影视在线观看| 九色亚洲精品在线播放| tocl精华| 新久久久久国产一级毛片| 亚洲伊人久久精品综合| 建设人人有责人人尽责人人享有的| 久久性视频一级片| 18禁观看日本| 777米奇影视久久| 国产免费av片在线观看野外av| 黄片播放在线免费| 午夜福利在线免费观看网站| 夜夜骑夜夜射夜夜干| 纵有疾风起免费观看全集完整版| 在线观看www视频免费| 99久久国产精品久久久| 天天影视国产精品| 久久人妻av系列| 五月开心婷婷网| 国产亚洲精品一区二区www | svipshipincom国产片| 亚洲男人天堂网一区| 美女福利国产在线| 最近最新中文字幕大全免费视频| 午夜两性在线视频| 一进一出抽搐动态| 无遮挡黄片免费观看| 免费av中文字幕在线| 一本一本久久a久久精品综合妖精| 免费在线观看日本一区| 国产有黄有色有爽视频| 少妇 在线观看| 亚洲天堂av无毛| av天堂在线播放| 国产亚洲欧美精品永久| 中文字幕人妻丝袜一区二区| 精品卡一卡二卡四卡免费| 满18在线观看网站| 亚洲精品在线美女| 女人精品久久久久毛片| 热99久久久久精品小说推荐| 久久 成人 亚洲| 男女之事视频高清在线观看| 黄网站色视频无遮挡免费观看| 国产国语露脸激情在线看| 巨乳人妻的诱惑在线观看| 成人18禁高潮啪啪吃奶动态图| 日韩三级视频一区二区三区| 欧美人与性动交α欧美软件| 欧美日韩成人在线一区二区| 亚洲精品在线观看二区| 免费av中文字幕在线| 在线天堂中文资源库| 无限看片的www在线观看| 久久精品成人免费网站| 91字幕亚洲| 久久久国产一区二区| 欧美黑人欧美精品刺激| 一区二区三区乱码不卡18| 麻豆av在线久日| 亚洲全国av大片| 欧美成人免费av一区二区三区 | 大陆偷拍与自拍| 97人妻天天添夜夜摸| 亚洲人成电影观看| 巨乳人妻的诱惑在线观看| 久久影院123| 亚洲人成77777在线视频| 精品福利观看| 亚洲人成电影免费在线| 波多野结衣av一区二区av| 欧美大码av| 老司机影院毛片| 不卡av一区二区三区| 国产福利在线免费观看视频| 久久久久网色| 男女免费视频国产| 久久精品亚洲熟妇少妇任你| 久久中文字幕一级| 无限看片的www在线观看| 极品教师在线免费播放| 91九色精品人成在线观看| 成在线人永久免费视频| 无限看片的www在线观看| 男女免费视频国产| 成年版毛片免费区| 亚洲精品自拍成人| 一级黄色大片毛片| 亚洲国产av影院在线观看| 久久久精品免费免费高清| 久久国产亚洲av麻豆专区| 国产精品久久久久久人妻精品电影 | 91av网站免费观看| 亚洲精品在线美女| 老司机午夜福利在线观看视频 | 丰满人妻熟妇乱又伦精品不卡| 国产三级黄色录像| 国产精品一区二区精品视频观看| av福利片在线| 午夜福利欧美成人| 日日爽夜夜爽网站| 久久免费观看电影| 99国产极品粉嫩在线观看| 国产片内射在线| 天天添夜夜摸| 女同久久另类99精品国产91| 夜夜夜夜夜久久久久| 国产日韩欧美在线精品| www.精华液| 宅男免费午夜| 精品国内亚洲2022精品成人 | 精品一品国产午夜福利视频| 久久久久精品国产欧美久久久| 国产不卡av网站在线观看| 亚洲午夜理论影院| 久久久久国内视频| 亚洲伊人色综图| 91大片在线观看| 精品国产一区二区三区久久久樱花| 亚洲三区欧美一区| 国产成人欧美在线观看 | 精品熟女少妇八av免费久了| 欧美黑人精品巨大| 午夜福利视频精品| a在线观看视频网站| 日韩成人在线观看一区二区三区| 亚洲精品久久午夜乱码| 亚洲黑人精品在线| 99久久人妻综合| 最新美女视频免费是黄的| 狠狠婷婷综合久久久久久88av| www.自偷自拍.com| 午夜成年电影在线免费观看| 老司机影院毛片| 激情视频va一区二区三区| 可以免费在线观看a视频的电影网站| www.999成人在线观看| 激情在线观看视频在线高清 | 黑人操中国人逼视频| 在线观看免费日韩欧美大片| 免费少妇av软件| 免费在线观看日本一区| 一级片免费观看大全| 国产男靠女视频免费网站| 天堂8中文在线网| 国产成人精品久久二区二区91| 亚洲全国av大片| av天堂久久9| 51午夜福利影视在线观看| 午夜精品国产一区二区电影| 久久久久精品国产欧美久久久| 欧美激情高清一区二区三区| 成人av一区二区三区在线看| 国产精品免费大片| 精品国产一区二区三区久久久樱花| 国产无遮挡羞羞视频在线观看| 人妻久久中文字幕网| 91成年电影在线观看| 精品国产亚洲在线| 美女扒开内裤让男人捅视频| 黑丝袜美女国产一区| 999精品在线视频| 黑人猛操日本美女一级片| 香蕉丝袜av| 午夜精品国产一区二区电影| 搡老乐熟女国产| 狠狠狠狠99中文字幕| 亚洲av成人不卡在线观看播放网| 9色porny在线观看| av网站免费在线观看视频| 涩涩av久久男人的天堂| av国产精品久久久久影院| 久久久久国内视频| 国产真人三级小视频在线观看| 成人精品一区二区免费| 成人手机av| 男女无遮挡免费网站观看| 欧美日韩国产mv在线观看视频| 免费观看a级毛片全部| 国产精品国产av在线观看| 中文字幕精品免费在线观看视频| 中文欧美无线码| 两个人免费观看高清视频|