• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lithium battery state of charge and state of health prediction based on fuzzy Kalman filtering

    2020-04-21 00:54:22DaniilFadeevZHANGXiaozhouDONGHaiyingLIUHaoZHANGRuiping

    Daniil Fadeev, ZHANG Xiao-zhou, DONG Hai-ying, LIU Hao, ZHANG Rui-ping

    (1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. State Key Laboratory of Large Electric Transmission Systems and Equipment Technology,Tianshui Electric Drive Research Institute Group Co., Ltd., Tianshui 741020, China)

    Abstract: This paper presents a more accurate battery state of charge (SOC) and state of health (SOH) estimation method. A lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model. The model parameters are estimated by searching least square error optimization algorithm. Precisely defined by this method, the model parameters allow to accurately determine the capacity of the battery, which in turn allows to specify the SOC prediction value used as a basis for the SOH value. Application of the extended Kalman filter (EKF) removes the need of prior known initial SOC, and applying the fuzzy logic helps to eliminate the measurement and process noise. Simulation results obtained during the urban dynamometer driving schedule (UDDS) test show that the maximum error in estimation of the battery SOC is 0.66%. Battery capacity is estimate by offline updated Kalman filter, and then SOH will be predicted. The maximum error in estimation of the battery capacity is 1.55%.

    Key words: lithium battery; state of charge (SOC); state of health (SOH); adaptive extended Kalman filter (AEKF)

    0 Introduction

    Rapid transport and economy development inevitably increase global challenges, such as global warming and air pollution. Therefore, in recent years, more and more attention is paid to electric vehicles because of their efficiency and environmental friendliness. The battery is one of the most important and expensive components of an electric vehicle. The development of new technologies related to batteries has an impact over the electric transport industry. Battery management systems (BMS) controls the operation of the battery. In order to ensure a safe operation of the electric vehicle, prevent deep discharge or overcharging of the battery, accurately estimate residual mileage, extend the lifetime, prevent progressively permanent damage to the battery and maximize battery performance, the BMS must have an accurate value of state of charge (SOC). In addition, to improve the reliability of operation and to warn the driver about the future replacement of the battery, the BMS needs the value of state of health (SOH).

    Processes and chemical reactions proceeding inside lithium battery are complex and nonlinear. Work processes are influenced by residual capacity of battery, voltage, temperature, current, aging, internal resistance, self-discharge, charge-discharge cycle number and other factors. Therefore, SOC estimation problem are complex and important, but existing SOC prediction methods have relatively large error.

    Battery SOC can be calculated by the Coulomb counting method or the open circuit voltage method[1-2]. These two methods are simple and easy to apply at practical terms. However, these methods have disadvantages: both of them are open-loop and sensitive to the sensor precision. Moreover, open circuit voltage-SOC curve is flat on wide SOC range that makes it impossible to estimate SOC accurately. Therefore, estimation errors in all of these methods are very high. Some generic methods, such as a neural networks, fuzzy logic and support vector machine, have provided “black box” SOC estimation[3-5]. The main weak points of these methods are their sensitivity to amount and quality of training data. Advanced methods, such as the Kalman filter and sliding observers, are based on linear dynamic systems discretized in the time and estimator[6-7], and only estimate the state from the previous time step and the current measurements. However, these methods highly depend on the model accuracy, and are the most complicated in the aspect of computing. Although the extended Kalman filter (EKF) can provide good estimation results, this method is not suitable for non-Gaussian noise and highly nonlinear systems because of large cumulative estimation error. To improve the accuracy of SOC estimation, the adaptive extended Kalman filter (AEKF) algorithm has been applied. The value of the measurement noise covariance is adaptively adjusted in the estimation process, thus improving the estimation accuracy.

    Some methods have low estimation accuracy, also most of the methods above deal only with SOC and do not take into account battery degradation and its SOH. Nevertheless, accuracy of SOC estimation is heavily influenced by the battery aging condition. Inaccurate calculation of SOC will reduce vehicle performance in case of undercharging or even may cause damage to the battery system due to overcharging. Therefore, the needs of accurate battery states prediction are urgent.

    Therefore, at first, the proposed method improves SOC prediction accuracy by improving accuracy of estimation model parameters. Second-order equivalent circuit model best of all reflects a real battery state and searching model parameters optimization algorithm has relatively good performance. Secondly, through applying of adaptive EKF algorithm, self-adjusted measurement noise removes the demand of prior known initial covariances, thereby improving SOC estimation accuracy. Finally, the accurate SOC value increases SOH prediction algorithm efficiency.

    In this paper, the lithium battery equivalent circuit model is represented. Model parameters are estimated in discharging test by least square error optimization algorithm. Based on model parameters and state space equations, AEKF estimates SOC. Then, the battery SOH is predicted by estimating battery capacity Kalman filter. Efficiency of prediction is validated in the urban dynamometer driving schedule (UDDS) test.

    1 Battery modelling

    1.1 Equivalent circuit model

    There are many types of equivalent circuit models used to describe lithiumion battery work, such as Rint model, Thevinin model, the partnership for a new generation of vehicles (PNGV) model, etc. However, because of processes nonlinearity, some of them cannot reflect a real cell process carefully, which leads to comparatively large modeling error[8].

    As shown in Fig.1, every discharge pulse actually leads to nonlinear voltage response, containing the instantaneous part caused by battery resistance and delayed part caused by battery capacity.

    Fig.1 Real process nonlinearity

    The best model reflecting the real state of battery for today is the second-order equivalent model[9], as shown in Fig.2. It consists of the open circuit voltage (OCV)E0, battery ohmic resistanceR0, and two sets of parallel resistor-capacitor combinationR1,C1andR2,C2representing the mass transport effect and the double layer effect, respectively.

    Fig.2 Second-order equivalent circuit model

    According to the model, battery electrical behavior can be expressed by

    v0=E0+v1+v2+iR0,

    (1)

    (2)

    Coulomb-counting SOC definition is[10]

    (3)

    wheres0is the initial SOC,ηis the Coulomb efficiency coefficient andQris the battery rated capacity. Combining Eqs.(1), (2) with (3), we obtain the battery state space equation in discrete form

    (4)

    v0,k=E0,k+v1,k+v2,k+itmkR0+vk,

    (5)

    whereτ1=R1C1,τ2=R2C2, andxk=[sk,v1,k,v2,k]Tare state variables;it,kis the control variable;v0,kis the measurement variable;wk=[w1,k,w2,k,w3,k]Tis the process noise with covarianceQ; andvkis the measurement noise with covarianceR.

    1.2 Model parameters estimation and validation

    Model parameters cannot be taken as constants because of their changes under different battery temperatures and ages. To complete state space equation and apply an EKF algorithm, the model parameters must be estimated. In order to provide better online prediction of SOC, truly estimate the battery capacityQr, and reduce future errors in the following steps, it is essential to estimate the model parameters as accurately as possible. Some researchers use genetic algorithm or nonlinear curve fitting technics for searching parameters at definite space, but these methods require good quality of initial parameter values and searching space. This paper presents a parameter estimation technology based on Matlab parameter estimation tool algorithm. The parameters estimated by nonlinear least squares optimization method namely Levenberg-Marquardt algorithm. The algorithm minimizes the sum square error on the test data, as shown in Fig.3.

    Levenberg-Marquardt (LM) method is a good optimization algorithm, which can adaptively adjust itself to the gradient-descent or Gauss-Newton method depending on the distance from optimal values. In addition, LM algorithm has faster convergence and better efficiency compared to both methods that are mentioned above.

    Nonlinear least squares regression object function is expressed as

    (6)

    The LM algorithm is used to solve the optimization problem of Eq.(6) by adding the parameter correction vector, and then we get

    Δθ=(λI+JTJ)-1JT(Ym-Y),

    (7)

    whereJis the Jacobian matrix,Yis the vector of the predicted voltages,Ymis the vector of the measured voltages, andλis the damping factor.

    Fig.3 Parameter estimation by Levenberg-Marquardt optimization algorithm.

    Parameters estimation algorithm efficiency is validated by discharging test on the simulation data set, and sum square error is about 0.000 1.

    2 SOC estimation with adaptive extended Kalman filter

    Kalman filter is a reducing mean square error mathematic technique commonly used for estimating the system states. One significant disadvantage of Kalman filter is its assumption that covariance of measurement and process noises are known. This peculiarly brings a large error in some cases, such as wrong or unknown initial noise. Therefore, in these conditions, EKF, which can adaptively adjust noise covariance, can reach better estimation performance.

    Generally, EKF uses further state-space framework as

    Xk+1=Axk+Buk+wk,

    (8)

    Yk+1=Cxk+1+Duk+vk,

    (9)

    wherexkis a system state vector,wkis a system process noise,vkis a measurement noise.wkandvkboth are the zero mean Gaussian noise with time-invariant covarianceQkandRk, respectively.Ykis system output estimates.A,B,CandDare matrices, describing dynamics of the system.

    The process noise for the SOC,v1andv2will be estimated based on dynamic characteristics of the battery of Eq.(3). The duration of one charge-discharge cycle is about 5 000 s. The maximum change is 100% for SOC, and around 2 V forv1andv2. The maximum change per step for SOC is

    (10)

    And forv1andv2, there is

    (11)

    whereT=1 s is filter sampling time.

    Therefore, the process noisewkis expressed as

    wk=

    (12)

    Process noise initial covariance shows how accurate the initial guess is. Assuming that the maximum initial guess error is 40% for SOC and 1 V forv1andv2, we obtain the following initial covariance matrix, which consists of squares of initial guess errors as

    (13)

    The main idea of AEKF is to provide self-adaptation to the system measurement noise covarianceR. The purpose of adaptive approach is to make the theoretical noise covariance stay in step with the actual noise covariance using fuzzy logic. The adaptive approach several steps are as follows:

    Step 1) Theoretical measurement noise

    (14)

    Step 2) Actual measurement noise

    (15)

    whererk=Yk-1-Ckxk-1is EKF residual sequence.

    Step 3) Difference between actual noise and theoretical noise

    ΔN=Ni-Na.

    (16)

    On this step, fuzzy logic is applied. If the difference between the actual and theoretical measurement noise ΔNis greater than zero, noise covarianceRkwill be reduced. Otherwise, when ΔNis smaller than zero,Rkwill be increased. Noise covariance valueRkis controlled and automatically corrected by the adjustment factorα

    Rk=αRk-1.

    (17)

    In order to provide auto-updating measurement, noise covariance fuzzy logic controller with ΔNinput andαoutput were shown in Table 1.

    Table 1 Input and output fuzzy subsets

    According to Eqs.(14)-(17), fuzzy logic rules are formulated as follows:

    1) If ΔNis highly negative, than greatly increaseα.

    2) If ΔNis negative,αslightly increases.

    3) If ΔNis zero,αis unchanged.

    4) If ΔNis positive,αslightly decreases.

    5) If ΔNis highly positive,αgreatly decreases.

    Adaptive fuzzy approach helps more accurate correct system measurement noise and increase EKF performance.

    3 SOH prediction

    During operation, the battery is aging, and its properties begin to deteriorate. The maximum capacity decreases, and the internal resistance increases. Correction of SOH prediction helps to assure safety operation of the electric vehicle and provide knowledge about the battery degradation degree. SOH is a parameter, which reflects the general conditions of the battery and its ability to deliver the specified performance compared with the fresh battery, and it is defined as

    (18)

    Good prediction of SOH is very important. In case of electric vehicles, the ability to achieve the announced range dramatically fades with battery aging. In this paper, SOH ranges from 0 to 100%. Among them, 0% SOH stands for end of life; when the battery capacity reaches 75% of fresh battery capacity, it has to be replaced; and 100% SOH stands for brand new fresh battery conditions, namely

    CEOL=0.75Cnew.

    (19)

    Because parameters estimation error is very small in Fig.3, the measurement capacity by integrating the current over a charge or discharge cycle (Coulomb counting) method is assumed to be reliable. Since the degradation rate of battery capacityCiis not known in advance, it has been set to a random walk in state transition as

    Ci+1=Ci+wc,

    (20)

    whereiis the number of charge-discharge cycles,wcis the process noise. The measurement equation is expressed as

    (21)

    (22)

    Then, offline event-based Kalman filter is applied.

    4 Simulation results

    In order to prove the effectiveness of the method above, a simulation was performed. Simulation object is the lithium battery with a rated voltage of 3.7 V and a rated capacity of 4.4 Ah. Battery height is 146 mm, weight is 85 mm and thickness is 3 mm. Firstly, the battery equivalent circuit model parameters were estimated based on the data obtained from the discharge test. Discharge pulse test consists of ten short discharge impulses, on condition that the time between pulses is at least 4 times longer than one pulse duration. This testing method allows getting the voltage nonlinearities caused by mass transport and double layer effects (Fig.1) more accurately. The model parameters were optimized according to the reference terminal voltage signal until the sum square error reaches 0.000 1 (Fig.3).

    In order to take into account the temperature influence, model parameters were estimated three times at different temperatures (5, 25, 40 ℃). The resulting parameters were entered in look up tables for each element of the equivalent circuit model.

    Then, the battery SOC was estimated by AEKF, using the measured current, voltage, temperature and estimated model parameters. During the UDDS test, the battery alternates between charging and discharging cycles, as shown inFig.4.

    Fig.4 UDDS test procedure

    Battery discharged by random amplitude current pulses (from 1 to 10A), which imitates real city driving condition until it reaches 30% SOC, then turns to charging. Battery charges until it reaches 90% SOC, then again turns to discharge. During the test, AEKF estimates battery SOC based on measured voltage, circuit and model parameters according to procedure mentioned in Section 2. The experiment was conducted 15 times under the different conditions. Different randomly generated in UDDS test procedure current pulses statistically validate archived results. Simulation results show that AEKF reaches the best quality, as shown in Fig.5.

    Fig.5 SOC prediction results

    In average, the maximum error SOC value estimated by AEKF is 0.655% compared with the maximum error (1.49%) in the Coulomb counting estimation and the maximum error (1.155%) in the EKF estimation, respectively, as listed in Table 2.

    Table 2 Compression of estimation methods

    After successfully obtaining model parameters and SOC, the battery continues to operate according to the UDDS test until its capacity reaches 75% of the new battery capacity (end of life). At the time battery SOH considers to be 0. In this simulation, the battery’s end of life is achieved after 813 charge-discharge cycles.

    Battery capacity is rated by offline Kalman filter of Eqs.(20)-(21) based on the model parameters at the end of every cycle. Capacity prediction maximum error is 1.55%, as shown in Fig.6. Then, according to the relationship between capacity and SOH is predicted, as listed in Table 3.

    Table 3 Relationship between battery capacity and SOH

    Fig.6 Capacity estimation results

    5 Conclusion

    In this paper, an SOC and SOH prediction algorithm based on fuzzy Kalman filtering has been developed. The nonlinear model that takes into account the temperature of the battery and consists of two resistance-capacity circuit and open circuit voltage has been built. Model parameters have been estimated by optimization algorithm according to the test data. Battery SOC has been estimated by AEKF and validated under the close to real driving test cycle. Based on KF estimated battery capacity, SOH value has been predicted. Simulation results show that the proposed algorithm is reliable because of its high accuracy in predicting the parameters of both SOC and SOH. Moreover, the supposed algorithm does not need the exact initial condition.

    中文字幕精品亚洲无线码一区| 一级黄片播放器| 极品教师在线免费播放| 高清日韩中文字幕在线| 91午夜精品亚洲一区二区三区 | 国产一级毛片七仙女欲春2| 内地一区二区视频在线| 国产美女午夜福利| av在线天堂中文字幕| 久久精品国产清高在天天线| 人人妻,人人澡人人爽秒播| 国产熟女欧美一区二区| 中文字幕久久专区| 日本撒尿小便嘘嘘汇集6| 国产精品久久视频播放| 哪里可以看免费的av片| 深夜a级毛片| 小说图片视频综合网站| 波多野结衣巨乳人妻| 99热这里只有是精品50| xxxwww97欧美| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av香蕉五月| 我的老师免费观看完整版| 韩国av一区二区三区四区| 国产综合懂色| 51国产日韩欧美| 色精品久久人妻99蜜桃| 听说在线观看完整版免费高清| 少妇丰满av| 国产乱人视频| 99视频精品全部免费 在线| 18+在线观看网站| 亚洲在线自拍视频| 精品99又大又爽又粗少妇毛片 | 又紧又爽又黄一区二区| 中文资源天堂在线| 国产大屁股一区二区在线视频| aaaaa片日本免费| 国产精华一区二区三区| 国产伦人伦偷精品视频| 久久精品国产清高在天天线| 亚洲国产精品sss在线观看| 午夜福利在线观看免费完整高清在 | 免费人成在线观看视频色| 欧美另类亚洲清纯唯美| 亚洲人成伊人成综合网2020| 国产精品嫩草影院av在线观看 | 99热这里只有是精品在线观看| 国产人妻一区二区三区在| 18禁裸乳无遮挡免费网站照片| 免费人成视频x8x8入口观看| 嫩草影院精品99| 亚洲国产欧美人成| 91麻豆精品激情在线观看国产| 动漫黄色视频在线观看| 欧美一级a爱片免费观看看| 一本久久中文字幕| 久久午夜福利片| 国产高清有码在线观看视频| 我要看日韩黄色一级片| 亚洲性夜色夜夜综合| 五月玫瑰六月丁香| 日本 av在线| 男人舔女人下体高潮全视频| 一级a爱片免费观看的视频| 五月伊人婷婷丁香| 欧美日韩精品成人综合77777| 亚洲自拍偷在线| 国产爱豆传媒在线观看| 国内精品美女久久久久久| 女同久久另类99精品国产91| 国产高清不卡午夜福利| 麻豆成人av在线观看| 国产精品亚洲一级av第二区| 一个人看的www免费观看视频| 日本熟妇午夜| 天天一区二区日本电影三级| 中文字幕高清在线视频| 亚洲成av人片在线播放无| 天堂影院成人在线观看| 午夜福利成人在线免费观看| 亚洲avbb在线观看| 女的被弄到高潮叫床怎么办 | 欧美日韩黄片免| 九九在线视频观看精品| 99视频精品全部免费 在线| 老熟妇乱子伦视频在线观看| 久久久久国产精品人妻aⅴ院| 伊人久久精品亚洲午夜| 亚洲最大成人中文| 亚洲国产精品合色在线| 日韩,欧美,国产一区二区三区 | 人妻丰满熟妇av一区二区三区| 九色国产91popny在线| 免费在线观看日本一区| 成人精品一区二区免费| 欧美日本视频| 成人欧美大片| 日韩一区二区视频免费看| 国内精品久久久久精免费| 十八禁国产超污无遮挡网站| 亚洲不卡免费看| 欧美潮喷喷水| 真人做人爱边吃奶动态| 欧美高清成人免费视频www| 中文字幕av在线有码专区| 麻豆一二三区av精品| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品亚洲一级av第二区| 国产白丝娇喘喷水9色精品| 老司机深夜福利视频在线观看| 黄色配什么色好看| 免费av不卡在线播放| 国产高潮美女av| 国产三级中文精品| 中文字幕av成人在线电影| 欧美日本亚洲视频在线播放| 在线观看一区二区三区| 国产主播在线观看一区二区| 国产精品av视频在线免费观看| 久久精品国产清高在天天线| 亚洲精品色激情综合| 欧美日韩中文字幕国产精品一区二区三区| 综合色av麻豆| 国产精品精品国产色婷婷| 色综合站精品国产| 露出奶头的视频| av在线天堂中文字幕| 精品免费久久久久久久清纯| 一区二区三区四区激情视频 | 午夜日韩欧美国产| 国产激情偷乱视频一区二区| 午夜视频国产福利| 国产激情偷乱视频一区二区| 久久久精品大字幕| 久久国产精品人妻蜜桃| 十八禁国产超污无遮挡网站| 午夜免费成人在线视频| 国内少妇人妻偷人精品xxx网站| 老熟妇仑乱视频hdxx| 国产一级毛片七仙女欲春2| 日韩中文字幕欧美一区二区| 国产熟女欧美一区二区| 国产精品亚洲一级av第二区| 精品一区二区三区视频在线观看免费| 又紧又爽又黄一区二区| 欧美区成人在线视频| 日韩中文字幕欧美一区二区| 999久久久精品免费观看国产| av.在线天堂| 国产午夜福利久久久久久| 一区二区三区激情视频| 人妻夜夜爽99麻豆av| 此物有八面人人有两片| 国产精品福利在线免费观看| 成人三级黄色视频| 国产精品一及| 国产精品,欧美在线| 亚洲av日韩精品久久久久久密| 搡老妇女老女人老熟妇| а√天堂www在线а√下载| 丝袜美腿在线中文| 久久天躁狠狠躁夜夜2o2o| 国产欧美日韩一区二区精品| 一级黄片播放器| 干丝袜人妻中文字幕| x7x7x7水蜜桃| 国产av一区在线观看免费| 精品一区二区三区av网在线观看| 久久久精品大字幕| 波多野结衣巨乳人妻| 国产免费男女视频| 白带黄色成豆腐渣| 成人特级黄色片久久久久久久| 国产精品综合久久久久久久免费| 嫩草影视91久久| 老熟妇乱子伦视频在线观看| 成人国产一区最新在线观看| www日本黄色视频网| 欧美激情久久久久久爽电影| 色综合色国产| 一个人看的www免费观看视频| 国产亚洲精品久久久久久毛片| 亚洲成人免费电影在线观看| 国产熟女欧美一区二区| 99久久久亚洲精品蜜臀av| 在线观看av片永久免费下载| 亚洲精品日韩av片在线观看| 99久久中文字幕三级久久日本| 欧美性猛交黑人性爽| 亚洲七黄色美女视频| 春色校园在线视频观看| 亚洲国产色片| aaaaa片日本免费| 99热这里只有精品一区| 黄色欧美视频在线观看| 波多野结衣巨乳人妻| h日本视频在线播放| 麻豆成人av在线观看| 亚洲专区中文字幕在线| 欧美bdsm另类| 深夜精品福利| a级毛片免费高清观看在线播放| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区视频在线| 久久99热6这里只有精品| 天堂影院成人在线观看| 在线国产一区二区在线| 日本黄大片高清| 一区福利在线观看| 嫩草影院精品99| 国产精品久久久久久av不卡| 51国产日韩欧美| 在线播放国产精品三级| 日韩大尺度精品在线看网址| 欧美激情久久久久久爽电影| 日韩精品青青久久久久久| 婷婷六月久久综合丁香| 嫩草影院精品99| 成年人黄色毛片网站| 国产单亲对白刺激| 中文在线观看免费www的网站| 国产精品野战在线观看| 欧美日韩瑟瑟在线播放| 免费在线观看影片大全网站| 色噜噜av男人的天堂激情| 久久精品影院6| 亚洲黑人精品在线| 日韩 亚洲 欧美在线| 国内久久婷婷六月综合欲色啪| 国产色婷婷99| 国产精品乱码一区二三区的特点| 永久网站在线| av天堂在线播放| 国产精品av视频在线免费观看| 我要搜黄色片| 亚洲国产色片| 午夜久久久久精精品| 久久久久久久久久成人| 亚洲中文字幕一区二区三区有码在线看| 人人妻人人澡欧美一区二区| 高清日韩中文字幕在线| 欧美一区二区国产精品久久精品| 一夜夜www| 在线观看午夜福利视频| 一进一出抽搐动态| 啦啦啦啦在线视频资源| 男女那种视频在线观看| 国产精品99久久久久久久久| 永久网站在线| 男女下面进入的视频免费午夜| 亚洲av日韩精品久久久久久密| 日韩av在线大香蕉| 韩国av在线不卡| 日本一本二区三区精品| 看十八女毛片水多多多| 自拍偷自拍亚洲精品老妇| 亚洲国产欧洲综合997久久,| 99国产精品一区二区蜜桃av| 国产视频内射| 国产精品一区二区免费欧美| 亚洲av第一区精品v没综合| 嫁个100分男人电影在线观看| 国产亚洲欧美98| 啦啦啦观看免费观看视频高清| 两性午夜刺激爽爽歪歪视频在线观看| 男女啪啪激烈高潮av片| 色综合站精品国产| 桃色一区二区三区在线观看| 国产在线精品亚洲第一网站| 18+在线观看网站| 999久久久精品免费观看国产| 久久人人精品亚洲av| 国产黄a三级三级三级人| 在线观看午夜福利视频| 久久99热6这里只有精品| 人妻丰满熟妇av一区二区三区| 伦理电影大哥的女人| 日韩精品青青久久久久久| 国产一区二区在线av高清观看| 少妇人妻精品综合一区二区 | 国产在线精品亚洲第一网站| 成人高潮视频无遮挡免费网站| 国产高潮美女av| 丰满的人妻完整版| 少妇人妻一区二区三区视频| 国产av不卡久久| 夜夜爽天天搞| 成年女人毛片免费观看观看9| 亚洲,欧美,日韩| 波多野结衣高清无吗| 九色成人免费人妻av| 男插女下体视频免费在线播放| 直男gayav资源| 不卡视频在线观看欧美| 亚洲成人久久性| 欧美黑人欧美精品刺激| 夜夜爽天天搞| 蜜桃亚洲精品一区二区三区| 亚洲国产日韩欧美精品在线观看| 亚洲一区二区三区色噜噜| 免费看光身美女| 婷婷精品国产亚洲av在线| 久久精品影院6| 亚洲欧美日韩高清专用| 中文在线观看免费www的网站| 少妇高潮的动态图| 亚洲精品成人久久久久久| 最近视频中文字幕2019在线8| 国产中年淑女户外野战色| 午夜精品一区二区三区免费看| 国产老妇女一区| 亚洲av.av天堂| 成人无遮挡网站| 久久草成人影院| 看黄色毛片网站| 熟女电影av网| 久久精品国产自在天天线| 69人妻影院| 久久精品国产99精品国产亚洲性色| 国产在线男女| 国产免费一级a男人的天堂| 久久久久久伊人网av| 久久久国产成人免费| 国产在线男女| 午夜免费成人在线视频| 深爱激情五月婷婷| 亚洲人与动物交配视频| 日日夜夜操网爽| 999久久久精品免费观看国产| 久久精品国产清高在天天线| 亚洲va在线va天堂va国产| 观看免费一级毛片| 精品一区二区三区视频在线观看免费| 日日撸夜夜添| 亚洲欧美清纯卡通| 亚洲av成人精品一区久久| 在线观看免费视频日本深夜| 最新中文字幕久久久久| 亚洲黑人精品在线| 亚洲av电影不卡..在线观看| 日韩,欧美,国产一区二区三区 | 欧美+日韩+精品| 久久久午夜欧美精品| 露出奶头的视频| 无人区码免费观看不卡| 国产av麻豆久久久久久久| 12—13女人毛片做爰片一| 五月玫瑰六月丁香| 国产精品美女特级片免费视频播放器| av黄色大香蕉| 国产高清不卡午夜福利| 国产蜜桃级精品一区二区三区| 亚洲精华国产精华精| 欧洲精品卡2卡3卡4卡5卡区| 日韩,欧美,国产一区二区三区 | av在线蜜桃| 欧美精品国产亚洲| 成年人黄色毛片网站| 日本一本二区三区精品| 永久网站在线| 色综合站精品国产| 男人狂女人下面高潮的视频| 又黄又爽又免费观看的视频| 久久亚洲精品不卡| videossex国产| 成人美女网站在线观看视频| 动漫黄色视频在线观看| 天堂√8在线中文| 日日干狠狠操夜夜爽| 亚洲欧美激情综合另类| 老女人水多毛片| 中文资源天堂在线| 亚洲av中文av极速乱 | 亚洲第一电影网av| 精品一区二区三区视频在线观看免费| 美女高潮喷水抽搐中文字幕| 久久午夜亚洲精品久久| 九色国产91popny在线| 在线天堂最新版资源| 丰满人妻一区二区三区视频av| 免费观看的影片在线观看| 日韩大尺度精品在线看网址| 欧美一区二区精品小视频在线| 亚洲精品国产成人久久av| 熟女人妻精品中文字幕| 搡老熟女国产l中国老女人| 搡老岳熟女国产| 亚洲五月天丁香| 最近最新中文字幕大全电影3| 亚洲中文字幕日韩| 十八禁网站免费在线| 国产精品嫩草影院av在线观看 | 欧美最新免费一区二区三区| 亚洲av免费在线观看| 成人性生交大片免费视频hd| 中文资源天堂在线| 少妇被粗大猛烈的视频| 国产精品久久视频播放| 亚洲人成网站高清观看| 国产三级中文精品| 搡老妇女老女人老熟妇| 亚洲久久久久久中文字幕| 成人特级黄色片久久久久久久| 床上黄色一级片| 欧美3d第一页| 欧美最新免费一区二区三区| 亚洲18禁久久av| 一区二区三区四区激情视频 | av在线观看视频网站免费| 两个人视频免费观看高清| 黄色丝袜av网址大全| 午夜福利18| 美女cb高潮喷水在线观看| 国产精品99久久久久久久久| 99在线人妻在线中文字幕| 亚洲avbb在线观看| 欧美最新免费一区二区三区| 少妇的逼好多水| 亚洲avbb在线观看| 又粗又爽又猛毛片免费看| 午夜亚洲福利在线播放| 国产av一区在线观看免费| 不卡一级毛片| 狂野欧美激情性xxxx在线观看| 亚洲一区高清亚洲精品| 伦理电影大哥的女人| 国产av不卡久久| 国产v大片淫在线免费观看| 中文亚洲av片在线观看爽| 精品久久国产蜜桃| 免费看日本二区| 欧美三级亚洲精品| 露出奶头的视频| 91麻豆av在线| 亚洲国产高清在线一区二区三| 丰满乱子伦码专区| 欧美成人免费av一区二区三区| 在线观看免费视频日本深夜| 亚洲国产欧美人成| 亚洲av不卡在线观看| 动漫黄色视频在线观看| or卡值多少钱| 亚洲国产精品久久男人天堂| 国产一区二区三区视频了| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品久久男人天堂| 精品人妻偷拍中文字幕| 天美传媒精品一区二区| 国产在线精品亚洲第一网站| 黄片wwwwww| 中文字幕精品亚洲无线码一区| 在线a可以看的网站| 欧美性猛交黑人性爽| 国语自产精品视频在线第100页| 午夜免费成人在线视频| 日韩高清综合在线| 老司机深夜福利视频在线观看| 成人特级av手机在线观看| 国产色婷婷99| 国产精品国产三级国产av玫瑰| 欧美丝袜亚洲另类 | 美女黄网站色视频| 国产视频内射| 国产亚洲精品久久久久久毛片| 黄色视频,在线免费观看| 精品久久久久久久久久免费视频| www日本黄色视频网| 美女 人体艺术 gogo| av.在线天堂| 91久久精品国产一区二区成人| 国产在线精品亚洲第一网站| 亚洲一区二区三区色噜噜| 精品久久国产蜜桃| 在线看三级毛片| 一区二区三区激情视频| 偷拍熟女少妇极品色| 国产aⅴ精品一区二区三区波| 91午夜精品亚洲一区二区三区 | 久久久久久久久中文| 国产蜜桃级精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 变态另类成人亚洲欧美熟女| 狂野欧美激情性xxxx在线观看| 国产综合懂色| 免费看a级黄色片| 日韩高清综合在线| 日韩,欧美,国产一区二区三区 | 国产伦精品一区二区三区视频9| 国产成人aa在线观看| 欧美最新免费一区二区三区| 亚洲最大成人av| 国产aⅴ精品一区二区三区波| 国产三级在线视频| 99久久精品国产国产毛片| 搞女人的毛片| 国产国拍精品亚洲av在线观看| 极品教师在线视频| 成人av一区二区三区在线看| 亚洲黑人精品在线| 亚洲中文日韩欧美视频| 国产91精品成人一区二区三区| 成人二区视频| 91久久精品电影网| 久久亚洲真实| 亚洲成av人片在线播放无| 美女高潮喷水抽搐中文字幕| 老司机福利观看| 日韩一本色道免费dvd| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 亚洲熟妇中文字幕五十中出| 亚洲av不卡在线观看| 亚洲av中文av极速乱 | 成人高潮视频无遮挡免费网站| 男女边吃奶边做爰视频| 天堂影院成人在线观看| 国产一区二区三区av在线 | 久久香蕉精品热| 日本免费a在线| 联通29元200g的流量卡| 九九久久精品国产亚洲av麻豆| 国产亚洲欧美98| 成人av一区二区三区在线看| 久久天躁狠狠躁夜夜2o2o| 欧美+日韩+精品| 久久精品综合一区二区三区| 国产大屁股一区二区在线视频| 成人三级黄色视频| 18禁黄网站禁片午夜丰满| 女同久久另类99精品国产91| 日本爱情动作片www.在线观看 | 乱码一卡2卡4卡精品| 亚洲成人中文字幕在线播放| 很黄的视频免费| 亚洲成人久久性| 俺也久久电影网| 亚洲欧美日韩东京热| 成年女人永久免费观看视频| 九色国产91popny在线| 国产一区二区三区av在线 | 亚洲国产色片| 在线天堂最新版资源| 91久久精品国产一区二区成人| 欧美人与善性xxx| 狂野欧美激情性xxxx在线观看| 美女被艹到高潮喷水动态| 美女黄网站色视频| 日韩欧美在线二视频| 一级a爱片免费观看的视频| 在线看三级毛片| 亚洲专区中文字幕在线| 麻豆国产av国片精品| 一区二区三区激情视频| videossex国产| 白带黄色成豆腐渣| 一夜夜www| 国产伦一二天堂av在线观看| 久久精品综合一区二区三区| 人妻丰满熟妇av一区二区三区| 免费电影在线观看免费观看| 久久久久精品国产欧美久久久| 日韩精品有码人妻一区| 91精品国产九色| 色在线成人网| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久亚洲av鲁大| 99精品久久久久人妻精品| 身体一侧抽搐| 真人一进一出gif抽搐免费| 久久香蕉精品热| 最后的刺客免费高清国语| 免费av不卡在线播放| 日韩av在线大香蕉| 欧美不卡视频在线免费观看| 少妇猛男粗大的猛烈进出视频 | 日韩,欧美,国产一区二区三区 | 在线观看美女被高潮喷水网站| 欧美日本视频| 亚洲性夜色夜夜综合| 亚洲性久久影院| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| av视频在线观看入口| 少妇高潮的动态图| 欧美黑人巨大hd| h日本视频在线播放| 亚洲精品影视一区二区三区av| 国产乱人伦免费视频| 性插视频无遮挡在线免费观看| 麻豆成人av在线观看| 午夜免费激情av| 日本黄大片高清| 国产精品美女特级片免费视频播放器| 国产乱人视频| 色视频www国产| av国产免费在线观看| 成人亚洲精品av一区二区| 久久精品国产亚洲av香蕉五月| 亚洲图色成人| 美女高潮喷水抽搐中文字幕| 人妻丰满熟妇av一区二区三区| АⅤ资源中文在线天堂| 国产精品野战在线观看| 亚洲精品国产成人久久av| 尾随美女入室| av视频在线观看入口| 亚洲av二区三区四区| 美女cb高潮喷水在线观看| 国产精品一区二区性色av| 亚洲国产色片| 婷婷精品国产亚洲av在线| 免费看av在线观看网站| 黄片wwwwww|