• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combustion Performance of Fe2O3-containing Nanothermites Prepared by Ball Milling Method

    2020-04-20 08:24:28JIANGAifengXIADebinLIMengruLINKaifengQIANGLiangshengLIJiaheFANRuiqingYANGYulin
    含能材料 2020年4期

    JIANG Ai-feng,XIA De-bin,LI Meng-ru,LIN Kai-feng,QIANG Liang-sheng,LI Jia-he,F(xiàn)AN Rui-qing,YANG Yu-lin

    (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China)

    Abstract:Various preparation methods have been widely explored to improve the combustion performance of nanothermites in recent years.In this work,two kinds of Fe2O3-containing nanothermites were successfully prepared by in-situ ball milling method and conventional ultrasonic blending method respectively.The morphologies and performance of as-prepared products have been fully characterized by thermogravimetric analysis(TGA),X-ray diffraction(XRD),contact angle tests,scanning electron microscopy(SEM),high-speed imaging experiments and infrared temperature measurement.The results show that the Fe2O3-doped nanothermites via in-situ ball milling method exhibit better performance than that made by ultrasonic blending method.The optimal nanothermites with 17%Fe2O3doped amount possess the maximum mass gain percentage of 13.1%per 100℃.Compared with the products made by ultrasonic blending method,the heating voltage and initial combustion temperature of in-situ ball milled nanothermites decrease to 12 V and 600℃,respectively.In addition,the combustion flame of in-situ ball milled nanothermites is more stable and homogeneous than the corresponding one.

    Key words:nanothermites;in-situ ball milling;ultrasonic blending;contact angle;combustion flame

    1 Introduction

    Thermites,commonly composed of metal and metal oxide[1-8],is one major kind of energetic materials(EMs)and extremely attracts researcher’s growing attentions due to their high energy densities,rapid reaction rate,ready availability and wide range of tunability[9-13].Especially,nanothermites assembled with nano-scale particles remarkably reduces the mass diffusion distance and promotes the intimate mixing[14-17]of the fuels and oxidizers,and yields an enhanced performance.For example,Aumann et al.[18]presented that Al/MoO3nanocomposites possess improved energy release rate,which was attributed to the nano-scaled particle sizes.Beside the particle size controlling,the well mixture of fuels and oxidizers should be another key point to the high performanceofthermites.Therefore,variousmethods have been employed to prepare the nanothermites,such as ultrasonic blending method[19-21],physical vapor deposition method(PVD)[22-24]and sol-gel method[25-26].However,these methods are still suffered from the low-yield,high-cost and complicated process disadvantages.

    Ball milling technique[27-29]is an another typical method for preparing the composite samples,in which particles can be refinedviamechanical forces.The products can achieve the overall-increased surface area and controllable structural defects by ball milling method,which enhance the chemical activity.Therefore,the well-mixed thermites with high density could be obtained cost-effectively and massive productively through ball milling method.However,the particle size controlling together with relatively small output is still a big problem for this method.Very recently,aluminum particles with uniform nano-sized by modified ball milling method were successfully prepared[30].

    Based on this experience,a series of Fe2O3-containing nanothermites with different oxide content were successfully prepared byin-situball milling method on a large scale.At the same time,the common ultrasonic blending method has also been utilized to prepare the nanothermites with the same doped amounts for comparison.The mixing uniformity,thermal behavior and hydrophobicity of asprepared products were investigated by a series of measurements and calculations.Additionally,the combustion performances between the composites preparedviatwo methods were also deeply discussed.

    2 Experiments

    2.1 Reagents and Instruments

    The 4A molecular sieve was purchased from Sinopharm Chemical Reagent Co.,Ltd.and treated by calcinating at 400℃for 2 h in a muffle furnace.Dimethyl Sulfoxide(DMSO)was obtained from Aladdin and pre-purifiedviadecompressing distillation technique by refluxing with calcium hydride(CaH2)under a dry nitrogen(N2)atmosphere for 24 h to keep anhydrous and oxygen free.Afterwards,the distilled DMSO solvent mixed with activated 4A molecular sieve under magnetic stirring for 8 h for deeply purified.Micron aluminum powders were received from Anshan Industry Fine Aluminum Powders Company Limited.Ferric oxide(Fe2O3)was purchased from Innochem.CaH2and trimethoxy(vinyl)silane (A171)were obtained from Alfa Aesar.Cyclohexane and ammonium chloride(NH4Cl)were obtained from Aladdin.

    2.2 Methods

    2.2.1 Sample preparation

    The loading,sampling and covering processes were all operated in a glovebox under high purity N2.The ball milling method was carried out by QM-3SP4 planetary ball-mill in the steel vials and the milling mediums were steel balls with a diameter of 5 mm.The mixture of micron aluminum powders,F(xiàn)e2O3,and NH4Cl,and steel balls with 1∶50 mass ratio,were all added into the steel vials and sealed tightly,then ball milling for 14 h.In addition,the added mass loading of Fe2O3is 1%,5%,9%,13%,17%and 21%of micron aluminum powders,respectively.After ball milling process,all products were washed by purified DMSO for 3 times to remove NH4Cl.

    Then,the mixture of 0.5 mL A171 and 100 mL cyclohexane were added into a two-neck flask as primed solution.Afterwards,10 g ball-milled products were added into well-mixed primed solution and stirring for one hour at 80℃.The separation of solids and liquids were executed by vacuum filtration and washed 3 times by using cyclohexane.Finally,the products were dried in the vacuum drying oven for an hour at room temperature.The ultrasonic blending method was also performed as follows:the mixture of 10 g ball-milled aluminum nanoparticles and 100 mL purified cyclohexane were added to a two-neck flask.Then,various Fe2O3(1%~21%)powders and 0.5 mL A171were added in afterwards.Subsequently,the suspension was continued ultrasonic dispersed for 1 h and the solution was removed via vacuum filtration by cyclohexane washing for 3 times.Finally,the samples were dried with the same conditions.

    2.2.2 Experimental Measurements

    The crystalline of as-prepared composites were performed by X-ray powder diffraction(XRD)analysis(Cu Kα)using a PANalytical Empyrean instru-ment with a range of 10°to 90°.Thermogravimetric analysis(TGA)was detected by SDT Q600 from room temperature to 850oC at the heating rate of 10℃·min-1under air flow.High speed imaging images were measured by Germany Dantec Dynamics high speed camera at a frame rate of 1500 fps and 640×480 resolution.The combustion flames temperature was simultaneously measured by Germany DIAS Infrared Systems under air atmosphere.Samples were treated by ultrasonicating in cyclohexane for 30 min and adhered on a-10 mm long Ni-Cr wire(220 μm).The metal wire was heated by energization and controlled by changing the voltage.Contact angles was conducted via JC2000C from Shanghai Zhongchen.Scanning electron microscope(SEM)were employed by Hitachi SU 8000HSD.

    3 Results and discussion

    3.1 Particles structure

    In order to verify the structures of as-prepared nanothermites by ball milling method,the XRD was conducted and the results shown in Fig.1a.The XRD patterns of samples doped with 1%and 5%Fe2O3mainly shows the aluminum peaks(2θ=38.47°,44.74°,65.13°,78.23°and 82.44°).In addition,the weak diffraction peaks at 2θ=33.12°and 35.61°are presented,which could be attributed to the presence of Fe2O3.When the doped amounts are gradually increased up to 21%,the XRD patterns obviously identified the existence of aluminum and Fe2O3,and the intensity of the Fe2O3diffraction peaks increased by doped amounts.The similar results were also observed in the patterns of nanothermites prepared by ultrasonic blending method (Fig.1b).These resultsexhibitthatFe2O3are successfully doped in aluminum nanoparticles prepared by the two methods.

    3.2 Thermal stability

    Fig.1 X-ray diffraction(XRD)patterns of nanothermites doped with different amounts of Fe2O3via different methods(Note:the peaks marked by red dotted lines represent Al peaks and the unmarked peaks are all Fe2O3peaks)

    In order to compare the oxidation effect of Fe2O3on aluminum nanoparticles prepared byin-situball milling method and ultrasonic blending method,the TGA measurements are conducted(Fig.2).With regard to the nanothermites prepared byin-situball milling method,the initial oxidation temperature of all compisites gradually decreases as the Fe2O3doped amounts increase from 1%to 17%,indicating the addition of Fe2O3is indeed able to accelerate the oxidation rate of aluminum nanoparticles.However,when the doped amount increased to 21%,the initial oxidation temperature is no obvious change and the mass gain slightly decreased.Therefore,the addition of Fe2O3may bring about two ef-fects,decreasing in aluminum content and accelerating the oxidation rate of aluminum nanoparticles.As a consequence,the optimal Fe2O3doped amount of nanothermites prepared byin-situball milling method for accelerating the oxidation rate is 17%.As for the nanothermites prepared by ultrasonic blending method,the optimal product for promoting oxidation of aluminum nanoparticles is the nanothermites doped with 5%Fe2O3(Fig.2b)and the oxidation rate gradually decreases as the doped amounts increase when the Fe2O3doped amounts exceed 9%,indicating that the mixing degree of the nanothermites prepared by the ultrasonic blending method is not so similar as that ofin-situball milling method.

    Fig.2 TGA curves of nanothermites doped with different amounts of Fe2O3via two methods

    To compare and theoretically analyze the rising rate of the TGA curves of nanothermites obtained from two methods,fitting functions were employed by Origin software[31]and the results are shown in Fig.3,F(xiàn)ig.4 and Table 1.The fitting functions ofinsituball-milled nanothermites and ultrasonic-blended nanothermites were set tof(Bx)andf(Sx),respectively,and the fitting curves derivatives were set torespectively.Given that the curves fitting and calculation processes of different doped amounts of Fe2O3are similar,so the TGA curves of doped 17%Fe2O3ball-milled composite and doped 5%Fe2O3ultrasonic-blended composite were selected and investigated.The functions of the fitting curves are presented as follows:

    Fig.3 TGA fitting curves of nanothermites doped with different amounts of Fe2O3prepared by in-situ ball milling method.

    Fig.4 TGA fitting curves of nanothermites doped with different amounts of Fe2O3prepared by ultrasonic blending method.

    Table 1 Maximum rising rate(850℃)of TGA fitting curves derivatives of nanothermites prepared by in-situ ball milling method and ultrasonic blending method %

    For the purpose of obtaining the rising rates of the fitting curves,the derivative functions of abovementioned functions are calculated as follows:

    Therefore,the maximum rising rate of TGA fitting curves were calculated at 850℃and the oxidation rates of all samples were reflected by mass gain percentage per 100℃.Obviously,the maximum mass gain percentage per 100℃of optimalin-situball-milled nanothermites was 13.1%.The maximum mass gain percentage per 100℃of ultrasonicblended nanothermites was only 12.2%,indicating the two fitting curves with 5%and 9%doped composites shown similar oxidation rates.However,the mass gain of the 5%doped composite is higher than that of 9%,illustrating the oxidation degree of nanothermites doped with 5%Fe2O3is more complete than that of nanothermites doped with 9%Fe2O3.

    As a consequence,the optimal doped amounts of nanothermites prepared by the two methods were 17%and 5%for ball-milled and ultrasonic-blended composites,respectively,and thein-situball-milled nanothermites possess higher oxidation rate in comparison with the ultrasonic-blended nanothermites,which is consistent with the results presented by TGA curves.

    3.3 Microscopic morphology

    To exhibit the particles size,element distribution and microscopic morphology of nanothermites prepared by the two methods,scanning electron microscope(SEM)and mapping scanning of energy dispersive spectrometer(EDS)analysis were conducted and the results are presented in Fig.5.

    Fig.5 Microscopic morphology and element distribution of in-situ ball-milled and ultrasonic-blended nanothermites:(a)Element distribution of in-situ ball-milled nanothermites doped with 17%Fe2O3from EDS mapping;(b)Element distribution of ultrasonic-blended nanothermites doped with 17%Fe2O3from EDS mapping;(c)corresponding SEM images of in-situ ball-milled nanothermites doped with 17%Fe2O3;(d)corresponding SEM images of ultrasonic-blended nanothermites doped with 5 Fe2O3;(e)Schematic diagram of in-situ ball-milled nanothermites doped with 17%Fe2O3 and(f)Schematic diagram of ultrasonic-blended nanothermites doped with 5%Fe2O3.

    Obviously,aluminum and iron elements in the prepared nanothermites are both displayed clearly,(Fig.5a and Fig.5b),which is in agreement with the XRD results.The enlarged SEM image and schematic diagram ofin-situball-milled nanothermites doped with 17%Fe2O3are shown in Fig.5c and Fig.5e,illustrating the ball-milled particles are indeed nanosized particles and spherical.However,the self-agglomeration phenomenon can be observed in the enlarged SEM image and schematic diagram of ultrasonic-blended nanothermites,indicating uneven mixing of Al and Fe2O3particles(Fig.5d and Fig.5f)and greatly reduced mixing intimacy.As a consequence,Al and Fe2O3particles of ball-milled nanothermites dispersed more uniformly than that of ultrasonic-blended nanothermites.

    3.4 Hydrophobicity

    The hydrophobicity of nanothermites prepared by two methods were investigated and the contact angles were detected and the results presented in Fig.6.

    Fig.6 Contact angles of nanothermites doped different amounts of Fe2O3via different methods.

    Clearly,the contact angles of nanothermites obtained from ball milling method,ultrasonic blending method and pristine Fe2O3are 113.01°,96.54°and 17.93°,respectively.The result could be ascribed to the exposure of Fe2O3nanoparticles to the surrounding atmosphere and water,stemming from the uneven mixing of Al and Fe2O3particles.In contrast,the contact angle ofin-situball-milled nanothermites doped with 17%Fe2O3(113.01°)is much larger than that of the ultrasonic-blended composite,indicating thatin-situball-milled composites possess better hydrophobicity than that os ultrasonic-blended composites.Therefore,in-situball-milled nanothermites are more conducive to preservation in comparison to ultrasonic blended nanothermites.[32]

    3.5 Combustion performance

    To obtain the real-time flame temperature and combustion phenomena of nanothermites prepared by the two methods,infrared temperature measurement and high-speed imaging experiments were conducted on two compisites.

    Fig.7 Images of real-time infrared temperature measurementofnanothermitesprepared via differentmethods.(Note:The cross symbols(+)represent the tracked automatically highest temperature points.)

    As shown in Fig.7,the initial heating voltage is 12 V and the initial heating temperature is around 600℃.For thein-situball-milled composite,the temperature slowly increases to approximately 630℃,indicating the passivation agent starts to rupture and partial aluminum nanoparticles of nanothermites begin to be oxidized.Then the temperature rapidly increases over 900℃ within 0.4 s,pointing to the oxidation of massive aluminum nanoparticles of nanothermites and heat release.Hereafter,the temperature continued to increase up to about 1170℃and the combustion flame is stable.In con-trast,as for the ultrasonic-blended compoiste,it is difficult to be ignited at 12 V voltage,so higher voltage(15 V)was applied for the ignition.At this time,the composite rapidly reacts and the temperature rises up to nearly 1100℃.With the rapid increase of temperature,the nanothermites prepared by ultrasonic blending method exist the phenomenon of particle sputtering and the temperature dropped rapidly or even fell below 1000℃.This is because the aluminum nanoparticles and the Fe2O3contained in nanothermites prepared by ultrasonic blending method are seriously self-aggregated,resulting in inhomogeneous mixing and unstable combustion.Consequently,the initial combustion temperature of the nanothermites prepared byin-situball milling method is lower than that of the nanothermites preparedviaultrasonic blending method,and the combustion flame is more homogeneous and stable.

    4 Conclusions

    (1)The Fe2O3powders and aluminum particles of nanothermites preparedviaball milling method are mixed more evenly,nevertheless,the nanothermites prepared by ultrasonic blending method exist clearly distinguished respective agglomerated aluminum particles and Fe2O3particles.

    (2)The contact angle of the nanothermites prepared byin-situball milling method is 113.01°,which is significantly larger than that of corresponding ultrasonic blending method(96.54°).With the optimal doped Fe2O3amount(17%)byin-situball milling,the maximum mass gain percentage per 100℃ is 13.1%,which is larger than that for ultrasonic-blended doped 5%Fe2O3product(12.2%).

    (3)Thein-situball milled nanothermites could be ignited at lower heating voltage(12 V)and lower initial combustion temperature(~600℃)than those of ultrasonic-blended nanothermites(15 V and~700℃),and the combustion flame is more stable and homogeneous.This investigation is expected to promote the development of nanothermites.

    青草久久国产| 日韩高清综合在线| 人人妻,人人澡人人爽秒播| 老熟妇仑乱视频hdxx| 国产精品影院久久| 日韩精品免费视频一区二区三区| 99re在线观看精品视频| 欧美黑人精品巨大| 一进一出好大好爽视频| 岛国视频午夜一区免费看| 亚洲熟妇中文字幕五十中出| 国产黄a三级三级三级人| 亚洲av电影在线进入| 听说在线观看完整版免费高清| av视频在线观看入口| 高清毛片免费观看视频网站| 国产真实乱freesex| 日本一区二区免费在线视频| 人妻久久中文字幕网| 欧美中文综合在线视频| 搞女人的毛片| 在线观看一区二区三区| 亚洲五月天丁香| 婷婷丁香在线五月| 国产黄片美女视频| 香蕉av资源在线| 亚洲国产精品成人综合色| 国产av又大| 欧美zozozo另类| www日本在线高清视频| 亚洲国产高清在线一区二区三| 日韩欧美精品v在线| 国产三级在线视频| 香蕉av资源在线| 国产精品自产拍在线观看55亚洲| 在线观看免费日韩欧美大片| 久久精品综合一区二区三区| 国产成人影院久久av| 国产精品亚洲av一区麻豆| 在线播放国产精品三级| 伦理电影免费视频| 不卡av一区二区三区| 日本成人三级电影网站| 欧美一区二区精品小视频在线| 精品久久久久久,| 国产私拍福利视频在线观看| 国产精品日韩av在线免费观看| 男女之事视频高清在线观看| 一本久久中文字幕| 日本一区二区免费在线视频| 中文在线观看免费www的网站 | 精品一区二区三区视频在线观看免费| 每晚都被弄得嗷嗷叫到高潮| 成人三级黄色视频| 欧美黄色片欧美黄色片| 国产亚洲精品久久久久5区| 天天添夜夜摸| 久久精品91无色码中文字幕| 女警被强在线播放| 精品日产1卡2卡| xxx96com| 亚洲专区字幕在线| 黄色 视频免费看| 美女大奶头视频| 99热只有精品国产| 成在线人永久免费视频| 久久精品91无色码中文字幕| 精品一区二区三区四区五区乱码| 国产精品久久电影中文字幕| 久久人妻av系列| 亚洲国产欧美网| 国产精品影院久久| а√天堂www在线а√下载| 亚洲第一欧美日韩一区二区三区| 亚洲一区中文字幕在线| 91麻豆精品激情在线观看国产| 亚洲五月天丁香| 级片在线观看| 久久久久久九九精品二区国产 | 熟妇人妻久久中文字幕3abv| 久久这里只有精品中国| 午夜精品在线福利| 麻豆一二三区av精品| 此物有八面人人有两片| 亚洲一码二码三码区别大吗| 国产精品 欧美亚洲| 变态另类成人亚洲欧美熟女| 黄色视频不卡| 美女 人体艺术 gogo| 午夜日韩欧美国产| 精华霜和精华液先用哪个| 国产伦人伦偷精品视频| 国产人伦9x9x在线观看| 18禁观看日本| 狠狠狠狠99中文字幕| 欧美极品一区二区三区四区| 精品少妇一区二区三区视频日本电影| 天堂动漫精品| 性欧美人与动物交配| 成人一区二区视频在线观看| 亚洲成人精品中文字幕电影| 亚洲黑人精品在线| 亚洲欧美日韩高清在线视频| 亚洲精品一区av在线观看| 午夜亚洲福利在线播放| 国产高清videossex| 夜夜看夜夜爽夜夜摸| 国产高清视频在线观看网站| 99久久国产精品久久久| 曰老女人黄片| 亚洲精品色激情综合| 精品熟女少妇八av免费久了| 一本综合久久免费| 男人舔女人的私密视频| 黄色视频不卡| 老司机午夜十八禁免费视频| 亚洲午夜精品一区,二区,三区| 黄色女人牲交| 两性夫妻黄色片| 可以在线观看毛片的网站| 全区人妻精品视频| 少妇被粗大的猛进出69影院| 日日摸夜夜添夜夜添小说| 成人国产综合亚洲| 国产精品免费视频内射| 亚洲片人在线观看| 丝袜美腿诱惑在线| 日本一区二区免费在线视频| 丁香六月欧美| 久久久久久九九精品二区国产 | 亚洲精品国产一区二区精华液| 中文字幕高清在线视频| 国产精品亚洲一级av第二区| 国产精品香港三级国产av潘金莲| 又粗又爽又猛毛片免费看| 男女下面进入的视频免费午夜| 黄色视频,在线免费观看| 可以在线观看的亚洲视频| 蜜桃久久精品国产亚洲av| 成人永久免费在线观看视频| 91字幕亚洲| www.999成人在线观看| 一边摸一边抽搐一进一小说| 女人被狂操c到高潮| 亚洲中文日韩欧美视频| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩无卡精品| 亚洲精品国产精品久久久不卡| 久久久久九九精品影院| 色综合欧美亚洲国产小说| 亚洲午夜理论影院| 亚洲国产高清在线一区二区三| 国产精品av视频在线免费观看| 欧美黑人巨大hd| 日本一本二区三区精品| 国内少妇人妻偷人精品xxx网站 | 成人国语在线视频| 夜夜看夜夜爽夜夜摸| 90打野战视频偷拍视频| 亚洲天堂国产精品一区在线| 嫩草影视91久久| 一a级毛片在线观看| 男人的好看免费观看在线视频 | 久久久久久久精品吃奶| 亚洲中文日韩欧美视频| 男女做爰动态图高潮gif福利片| 18禁裸乳无遮挡免费网站照片| 国产精品野战在线观看| 少妇被粗大的猛进出69影院| 桃色一区二区三区在线观看| 国产一区二区三区视频了| 亚洲性夜色夜夜综合| 欧美另类亚洲清纯唯美| 一区二区三区激情视频| 听说在线观看完整版免费高清| √禁漫天堂资源中文www| 我的老师免费观看完整版| 叶爱在线成人免费视频播放| 黄色丝袜av网址大全| 91九色精品人成在线观看| 亚洲国产精品999在线| 99riav亚洲国产免费| 一区二区三区国产精品乱码| 午夜免费观看网址| 首页视频小说图片口味搜索| 久久婷婷成人综合色麻豆| 日本免费a在线| 中文在线观看免费www的网站 | 法律面前人人平等表现在哪些方面| 三级国产精品欧美在线观看 | 欧美色欧美亚洲另类二区| 国产精品1区2区在线观看.| 黄色视频不卡| 亚洲男人的天堂狠狠| 两个人的视频大全免费| 麻豆av在线久日| 在线国产一区二区在线| 天堂动漫精品| svipshipincom国产片| 一区二区三区高清视频在线| 这个男人来自地球电影免费观看| 特级一级黄色大片| 床上黄色一级片| 欧美成人免费av一区二区三区| 国产亚洲av高清不卡| 麻豆国产97在线/欧美 | 小说图片视频综合网站| 90打野战视频偷拍视频| 色av中文字幕| 男人舔女人的私密视频| 亚洲黑人精品在线| 人人妻人人看人人澡| 一区福利在线观看| 亚洲人成伊人成综合网2020| 亚洲成人免费电影在线观看| 日本a在线网址| 欧美久久黑人一区二区| 精华霜和精华液先用哪个| 成人手机av| 欧美乱色亚洲激情| 亚洲激情在线av| 久99久视频精品免费| 一本大道久久a久久精品| 国产欧美日韩一区二区三| 久99久视频精品免费| 两性午夜刺激爽爽歪歪视频在线观看 | 又紧又爽又黄一区二区| 亚洲国产欧美人成| 亚洲欧洲精品一区二区精品久久久| 亚洲精品国产一区二区精华液| 亚洲欧美精品综合一区二区三区| 亚洲中文av在线| 亚洲avbb在线观看| 三级国产精品欧美在线观看 | 国产黄色小视频在线观看| 国产av一区在线观看免费| 好男人电影高清在线观看| 亚洲精华国产精华精| 国产精品野战在线观看| 91麻豆精品激情在线观看国产| aaaaa片日本免费| 精品福利观看| 国产精品精品国产色婷婷| 亚洲欧洲精品一区二区精品久久久| 久久欧美精品欧美久久欧美| 十八禁人妻一区二区| 看片在线看免费视频| 日韩成人在线观看一区二区三区| 一级作爱视频免费观看| 高潮久久久久久久久久久不卡| 成人国产一区最新在线观看| 成在线人永久免费视频| 亚洲欧洲精品一区二区精品久久久| aaaaa片日本免费| 中文字幕av在线有码专区| 999精品在线视频| 国产精品,欧美在线| 男女视频在线观看网站免费 | 日韩欧美 国产精品| 99精品欧美一区二区三区四区| 给我免费播放毛片高清在线观看| 久久人妻av系列| 不卡一级毛片| 欧美一区二区国产精品久久精品 | 欧美精品啪啪一区二区三区| 久久这里只有精品中国| 高清毛片免费观看视频网站| 亚洲精品av麻豆狂野| 国产精品影院久久| 大型av网站在线播放| 亚洲第一电影网av| 国产精品久久久久久久电影 | 麻豆成人av在线观看| 亚洲,欧美精品.| 黄色片一级片一级黄色片| 又黄又爽又免费观看的视频| 天堂动漫精品| 性欧美人与动物交配| 亚洲精品一卡2卡三卡4卡5卡| 九九热线精品视视频播放| 精品久久久久久久久久久久久| 人妻夜夜爽99麻豆av| 九色成人免费人妻av| 亚洲人成伊人成综合网2020| 精品一区二区三区av网在线观看| 两性夫妻黄色片| 波多野结衣巨乳人妻| 成人国产一区最新在线观看| 在线观看美女被高潮喷水网站 | 久久久久久久午夜电影| 亚洲色图 男人天堂 中文字幕| 国产av麻豆久久久久久久| 亚洲精品一区av在线观看| av视频在线观看入口| 国产av麻豆久久久久久久| 黄色女人牲交| 成年免费大片在线观看| 亚洲午夜精品一区,二区,三区| 99精品欧美一区二区三区四区| 美女 人体艺术 gogo| 久久久久国产精品人妻aⅴ院| 在线免费观看的www视频| 久久这里只有精品19| 婷婷亚洲欧美| 美女高潮喷水抽搐中文字幕| bbb黄色大片| 日韩精品中文字幕看吧| 18禁国产床啪视频网站| 国产精品美女特级片免费视频播放器 | 老鸭窝网址在线观看| 日本一本二区三区精品| 亚洲国产看品久久| 欧美极品一区二区三区四区| 国产一区在线观看成人免费| 国内精品久久久久久久电影| 97碰自拍视频| 精品无人区乱码1区二区| 免费在线观看影片大全网站| 最近在线观看免费完整版| 精品少妇一区二区三区视频日本电影| 亚洲国产欧美一区二区综合| 亚洲欧美日韩东京热| 国产精品av久久久久免费| 中文字幕av在线有码专区| 变态另类丝袜制服| 免费一级毛片在线播放高清视频| 亚洲中文av在线| 午夜精品一区二区三区免费看| 欧美午夜高清在线| 最近最新中文字幕大全电影3| 国产蜜桃级精品一区二区三区| 亚洲av电影不卡..在线观看| 色噜噜av男人的天堂激情| 欧美中文日本在线观看视频| 搡老岳熟女国产| 亚洲免费av在线视频| 亚洲 国产 在线| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看| 在线观看免费午夜福利视频| 嫩草影视91久久| 日本一区二区免费在线视频| 一区二区三区高清视频在线| 国产成人aa在线观看| 午夜视频精品福利| 国产成人一区二区三区免费视频网站| 亚洲av成人不卡在线观看播放网| 中文字幕精品亚洲无线码一区| 成人av一区二区三区在线看| 一进一出抽搐动态| 婷婷精品国产亚洲av在线| 无人区码免费观看不卡| 成人国产一区最新在线观看| 老司机午夜十八禁免费视频| 色在线成人网| 老司机午夜福利在线观看视频| 精品久久久久久,| 欧美3d第一页| 丁香欧美五月| www.精华液| 亚洲欧美日韩无卡精品| 亚洲av电影不卡..在线观看| 久久精品国产亚洲av香蕉五月| 国产精品久久电影中文字幕| 一进一出好大好爽视频| 两个人看的免费小视频| 国产av不卡久久| 精品国内亚洲2022精品成人| 亚洲中文av在线| 精品久久久久久久人妻蜜臀av| 女生性感内裤真人,穿戴方法视频| 国产激情欧美一区二区| 亚洲无线在线观看| 好看av亚洲va欧美ⅴa在| 国产精品av久久久久免费| 国产亚洲精品一区二区www| 丝袜美腿诱惑在线| 久久久久国产精品人妻aⅴ院| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 18美女黄网站色大片免费观看| 一级黄色大片毛片| 欧美乱妇无乱码| 999精品在线视频| 99精品久久久久人妻精品| 午夜福利高清视频| e午夜精品久久久久久久| 久久久国产欧美日韩av| 校园春色视频在线观看| 久久99热这里只有精品18| 黄色丝袜av网址大全| 国产精品一及| 亚洲 欧美一区二区三区| 久久久久久国产a免费观看| 真人做人爱边吃奶动态| 亚洲九九香蕉| 亚洲国产精品合色在线| 久久久久国内视频| 999久久久精品免费观看国产| 一本一本综合久久| 日韩精品青青久久久久久| 97超级碰碰碰精品色视频在线观看| 村上凉子中文字幕在线| 国产激情久久老熟女| 国产免费av片在线观看野外av| 一本精品99久久精品77| 亚洲男人天堂网一区| 日韩欧美在线二视频| 18禁黄网站禁片免费观看直播| 国产成人aa在线观看| 国产精品久久久久久久电影 | 亚洲美女黄片视频| 麻豆国产97在线/欧美 | 色老头精品视频在线观看| 亚洲无线在线观看| 亚洲人成伊人成综合网2020| 国产成人精品久久二区二区免费| 香蕉av资源在线| 亚洲欧美精品综合久久99| 日韩精品青青久久久久久| 99riav亚洲国产免费| 手机成人av网站| 日韩欧美免费精品| 成人精品一区二区免费| 中文字幕人妻丝袜一区二区| 日本三级黄在线观看| 亚洲欧美日韩无卡精品| 亚洲成人久久爱视频| 一区二区三区激情视频| 免费搜索国产男女视频| 欧美绝顶高潮抽搐喷水| 亚洲中文av在线| 免费在线观看日本一区| 日本在线视频免费播放| 精品日产1卡2卡| 午夜视频精品福利| 桃红色精品国产亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 视频区欧美日本亚洲| 国内精品久久久久精免费| 男女做爰动态图高潮gif福利片| 国产亚洲欧美98| 亚洲中文字幕一区二区三区有码在线看 | 国产精品影院久久| 日本一区二区免费在线视频| 不卡一级毛片| 99riav亚洲国产免费| 国产乱人伦免费视频| а√天堂www在线а√下载| 国产亚洲精品综合一区在线观看 | 人妻丰满熟妇av一区二区三区| 他把我摸到了高潮在线观看| 久久伊人香网站| av欧美777| 亚洲avbb在线观看| 18禁黄网站禁片免费观看直播| 国产视频内射| www.自偷自拍.com| 成人av在线播放网站| 久久精品91蜜桃| www.www免费av| 亚洲专区国产一区二区| 日本一二三区视频观看| 国产黄片美女视频| 最近最新中文字幕大全免费视频| 国产熟女xx| 一夜夜www| 亚洲欧美精品综合一区二区三区| 国产真实乱freesex| 亚洲乱码一区二区免费版| 欧美日韩亚洲国产一区二区在线观看| 99精品欧美一区二区三区四区| 久久久久久久久中文| 最近最新中文字幕大全免费视频| 久久精品91蜜桃| x7x7x7水蜜桃| 国产精品av视频在线免费观看| 精品国产乱子伦一区二区三区| 91成年电影在线观看| 亚洲欧美日韩东京热| 午夜免费激情av| 91字幕亚洲| 老司机福利观看| 丰满人妻一区二区三区视频av | 非洲黑人性xxxx精品又粗又长| 18禁黄网站禁片免费观看直播| 国产成人av教育| 午夜福利欧美成人| 亚洲欧美日韩高清在线视频| 久久精品综合一区二区三区| 亚洲国产精品合色在线| 在线观看免费日韩欧美大片| 日本五十路高清| 欧美国产日韩亚洲一区| 亚洲中文av在线| 色老头精品视频在线观看| 成年人黄色毛片网站| 国产男靠女视频免费网站| 亚洲欧美精品综合久久99| 搡老岳熟女国产| 亚洲欧美精品综合久久99| 丰满人妻一区二区三区视频av | 丝袜美腿诱惑在线| 国产精品亚洲一级av第二区| 亚洲人成伊人成综合网2020| 99久久精品热视频| 中文字幕高清在线视频| 中亚洲国语对白在线视频| 午夜视频精品福利| 欧美极品一区二区三区四区| 九色成人免费人妻av| 日本熟妇午夜| 后天国语完整版免费观看| 亚洲欧美日韩无卡精品| 亚洲人成网站高清观看| 欧美日韩乱码在线| 亚洲中文字幕一区二区三区有码在线看 | 人妻久久中文字幕网| 十八禁网站免费在线| 超碰成人久久| 亚洲欧美日韩高清专用| 国产精品久久久av美女十八| 淫妇啪啪啪对白视频| 免费观看人在逋| 在线观看www视频免费| av片东京热男人的天堂| 久久精品国产清高在天天线| 韩国av一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 精品电影一区二区在线| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久久黄片| 窝窝影院91人妻| 亚洲无线在线观看| 可以免费在线观看a视频的电影网站| 麻豆一二三区av精品| 女生性感内裤真人,穿戴方法视频| 啦啦啦韩国在线观看视频| 十八禁网站免费在线| 啦啦啦观看免费观看视频高清| 黄片小视频在线播放| 精品国产乱子伦一区二区三区| 久久精品综合一区二区三区| 国产熟女xx| 国产高清有码在线观看视频 | 国产精品久久久久久亚洲av鲁大| e午夜精品久久久久久久| 97人妻精品一区二区三区麻豆| 亚洲avbb在线观看| 他把我摸到了高潮在线观看| 亚洲av成人精品一区久久| 国产午夜精品久久久久久| 久久久久免费精品人妻一区二区| 一个人免费在线观看电影 | 在线观看www视频免费| 午夜精品久久久久久毛片777| 嫩草影视91久久| 欧美黄色淫秽网站| 久久亚洲精品不卡| 最近最新中文字幕大全电影3| 88av欧美| 精品久久久久久久人妻蜜臀av| 久久中文字幕人妻熟女| 老司机在亚洲福利影院| 国产成人影院久久av| 国产精品综合久久久久久久免费| 成年免费大片在线观看| 在线观看一区二区三区| 久久人妻av系列| 亚洲国产欧美人成| 国产免费男女视频| 亚洲精华国产精华精| 人妻夜夜爽99麻豆av| 亚洲一区高清亚洲精品| 国产蜜桃级精品一区二区三区| 日日爽夜夜爽网站| 黄频高清免费视频| 精品国产亚洲在线| av片东京热男人的天堂| 男人舔女人下体高潮全视频| 精品久久久久久久久久久久久| 一二三四社区在线视频社区8| 人人妻人人看人人澡| 亚洲精品久久成人aⅴ小说| 日韩高清综合在线| 欧美三级亚洲精品| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻人人澡欧美一区二区| 国产成人欧美在线观看| 国产蜜桃级精品一区二区三区| 中文字幕久久专区| a级毛片a级免费在线| 色老头精品视频在线观看| 91国产中文字幕| 伊人久久大香线蕉亚洲五| 91麻豆av在线| 国产精品,欧美在线| 国产精品野战在线观看| 性色av乱码一区二区三区2| 亚洲专区国产一区二区| 一级作爱视频免费观看| 亚洲成人精品中文字幕电影| www.熟女人妻精品国产| 日韩三级视频一区二区三区| 国产精品亚洲美女久久久| 中亚洲国语对白在线视频| 人妻夜夜爽99麻豆av| xxxwww97欧美| 国产av一区二区精品久久| 免费观看精品视频网站| 亚洲九九香蕉| 精品不卡国产一区二区三区| 操出白浆在线播放| 欧美在线黄色| 国内精品久久久久精免费|