• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption of Cr(VI) from Aqueous Solution by Biochar-clay Derived from Clay and Peanut Shell

    2020-04-14 08:40:22WANGHaiYANGNingcanQIUMuqing
    無機(jī)材料學(xué)報(bào) 2020年3期
    關(guān)鍵詞:王海花生殼高嶺土

    WANG Hai, YANG Ningcan, QIU Muqing

    Adsorption of Cr(VI) from Aqueous Solution by Biochar-clay Derived from Clay and Peanut Shell

    WANG Hai, YANG Ningcan, QIU Muqing

    (School of Life Science, Shaoxing University, Shaoxing 312000, China)

    Heavy metal chromium pollution seriously threatens the environmental safety of soil and water body. The Cr(VI) compound has strong migration ability, enrichment and strong oxidizing ability. These properties make Cr(VI) ions more dangerous and difficult to handle. Adsorption technology is a simple and effective method for treatment of heavy metal pollution. The two clay-biochars are made by mixing biochar derived from peanut shell and two kinds of clays (Kaolin and bentonite) under magnetic stirring conditions. A variety of characterizations suggest that clays uniformly deposit on the surface of biochar. Adsorption experiments indicate that the sorption of Cr(VI) ions from wastewater on Kaolin-biochar is significantly higher than that of bentonite-biochar. Adsorption kinetic of Cr (VI) on two clay-biochars follows satisfactorily the pseudo-second order model due to high correlation coefficient (2>0.999). Adsorption isotherms of Cr(VI) on Biochar@Bentonite are fitted by Langmuir model, whereas the Freundlich model fits better the Cr(VI) sorption on Biochar@Kaolin. These findings are crucial for the potential application of clay-biochar composites for the treatment of the immobilization of heavy metals in environmental remediation.

    adsorption; peanut shell; clay-biochar; Cr(VI)

    At present, heavy metal chromium pollution mainly comes from metallurgy, leather, dye, mining, electroplat-ing and other industries[1]. It seriously threatens the environmental safety of soil and water body. The chromium in the wastewater emitted into the environment mainly exists in two valence states, Cr(III) ion and Cr(VI) ion[2]. Among them, Cr(III) ions in solution have almost no tox-icity. However, Cr(VI) ion is carcinogenic, teratogenic and mutagenic, and highly toxic even at low concen-trations[3]. In addition, the Cr(VI) compound has strong migration ability, enrichment and strong oxidizing ability. These properties make Cr(VI) ions more dangerous and difficult to be treated[4-6]. Therefore, research on pollution control of chromium wastewater becomes a hot spot in the control of environmental pollution[7-9].

    Adsorption technology is a simple and effective me-thod for treatment of heavy metal pollution[10-11]. Among the adsorbent materials, biochar is a kind of highly aromatic and difficult to capacity solid material formed by waste biomaterials under high temperature thermal crac-k-ing under conditions of oxygen deficiency or low oxygen[12-13]. They are mostly composed of loose porous, ordered aromatic rings. They have well-developed pore structure, large specific surface area, dense surface charge and rich in carboxyl, sulfhydryl and phenolic hydroxyl groups[14-16]. As a kind of agricultural and forestry waste, peanut shells are used as fuel, except for a small number of them used to make feed and building materials. This is harmful to the environment, and wastes resources. Based on above advantages, peanut shells are often used to prepare for biochar[17].

    In recent years, various natural clay materials have been used in the adsorption research of heavy metal ions due to their low cost and easy reproducibility[18]. The exp-er-imental results showed that natural clays, such as bentonite, kaolin and diatomaceous earth, have strong adsorption capacity for heavy metal ions because of their negative charge[19]. However, its adsorption capacity for negatively charged Cr(VI) is rela-tively weak. Therefore, it is generally necessary to modify the natural clay to adsorb the Cr(VI) in solution[20-22].

    The objective of this study is to prepare two clay- biochars and to investigate the effect of water chemical characteristics (, initial solution pH, ionic strength, Cr(VI) concentration and contact time) on Cr(VI) adsorption on two clays-biochars by batch techniques. The highlight of this study is to apply biochar-based composites for decontamination of heavy metals in environmental clean up.

    1 Materials and methods

    1.1 Materials

    Kaolin and bentonite (>99.5% purity) are purchased from Sinopharm Chemical Reagent Co., Ltd. Peanut shell is obtained from vegetable market of Shaoxing city (Zhejiang province, China).

    1.2 Preparation of two clay-biochars

    Two clay-biochars of peanut shell@Kaolin (Biochar @Ka-olin) and peanut shell@Bentonite (Biochar@Ben-tonite) are obtained by mixing biochar derived peanut shell and two kinds of clays under magnetic stirring conditions. Briefly, the peanut shell is firstly washed and then dried at 60 ℃. The pure peanut shell is milled into powders. The peanut shell powder is filled in ceramic crucibles covered with fitted lid. Ceramic crucibles are put in a muffle furnace and burned under oxygen-limited conditions at 250 ℃ for 2 h. Then the biochar derived from peanut shell is cooled to room temperature. The obtained biochar derived from peanut shell is powdered and passed through a 150 μm(100 mesh) screen.

    Then, 30 g biochar, 30 g Kaolin and Bentonite are added to 600 mL deionized water, and reacted for 2 h un-der vigorous stirring condition. Then, the suspensions are centrifuged at 6000 r/min for 10 min. The Bioch-ar@Ka-olinand Biochar@Bentonite are obtained by drying at 105 ℃ overnight and sieved through a 150 μm (100 mesh) screen.

    1.3 Adsorption experiments

    Adsorption experiments are conducted in 250 mL Erlenmeyer flasks containing the clay-biochar and 100 mL Cr(VI) ion solutions with various initial concentrations. The initial pH is adjusted with HCl or NaOH solution. The flasks are placed in a shaker at a constant temperature and 200 r/min. The samples are filtered and analyzed.

    1.4 Characterizations

    The morphology of clay-biochar was observed with SEM (JEOL 6500F, Japan) and TEM (JEM-F200, Japan). XRD analysis was conducted in a D/Max-IIIA Powder X-ray Diffractomer (Rigaku Corp., Japan). NOVA 4200e Surface area and Pore size analyzer (Quantachrome, FL, USA) were used to analyze the surface area and pore size of clay-biochar at a relative pressure of 0.95. XPS (X-ray photoelectron spectrometer, Krato AXIS Ultra DLD, Japan) and the model Axis-HS (Kratos Analytical) were used to determine surface composition. FT-IR spectra of the samples were recorded on a Nexus 670 FT-IR spectrometer (Thermo Nicolet, Madison) in the wavenumber range of 400–4000 cm–1.

    The concentration of Cr(VI) ion is analyzed by atomic absorption spectrophotometry.

    where0(mg/L) andC(mg/L) are the initial and equ-i---librium liquid-phase concentrations of Cr(VI) ion resp-ectively.(L) is the solution volume and(g) is the mass of adsorbent used.

    1.5 Statistical analyses of data

    All experiments were repeated in duplicate, and the data were analyzed by the mean and standard deviation (SD). The value of the SD was calculated by Excel Software. All error estimates given in the text and error bars in figures were standard deviation of means (mean± SD). All statistical significance was noted at=0.05 unless otherwise noted.

    2 Results and discussion

    2.1 Characterization

    The surface area and average pore size of Biochar, Biochar@Kaolin and Biochar@Bentonite are listed in Table 1. As listed in Table 1, the BET specific surface area of Biochar@Kaolin and Biochar@Bentonite are 6.15 and 3.08 m2/g respectively, which is higher than that of biochar (2.79 m2/g). The total pore volume and the average pore width of Biochar@Kaolin and Biochar@ Be-n-tonite are also higher than that of original Biochar. Clay contains a proportion of mineral element, which have small surface areas and rich transitional pores, and the added clay does not block pore openings of the biochar[23].

    The surface characteristics of Biochar@Kaolin and Biochar@Bentonite are shown in Fig. 1 and Fig. 2. As shown in Fig. 1 and Fig. 2, Biochar@Kaolin and Biochar@Bentonite have rough surface with some fine particles, which indicate that the Kaolin and Bentonite successfully load on the Biochar.

    Table 1 Characterizations of Biochar, Biochar@Kaolin and Biochar@Bentonite

    EDS spectra of the Biochar@Kaolin and Biochar@Be-ntonite before and after the reaction with Cr(VI) are shown in Fig. 3. Biochar@Kaolin and Biochar@Bentonite contain substantial amounts of C, O Si and Al as well as a few of Ca, Na, Fe and K, which are typical of the elemental composition of clay minerals. The presence of Cr(VI) after adsorption experiment indicates that Cr(VI) is effectively removed by Biochar@Kaolin and Biochar@ Bentonite[23]. XRD patterns of Biochar@Kaolin and Biochar@Bentonite samples are shown in Fig. 4. The characteristic peaks at 2=20.64° and 26.40° are identified as () and () plane of expansible phyllosilicates respectively. XRD analysis suggests that the Kaolin and Bentonite successfully load on the surfaces of biochar, which are consistent with the EDS results[24].

    Fig. 1 SEM images of the Biochar@Kaolin and Biochar@Be-ntonite before and after the reaction with Cr(VI)

    FT-IR spectra are used to determine the surface functional groups. FT-IR spectra of Biochar, Kaolin, Bentonite, Biochar@Kaolin and Biochar@Bentonite are depicted in Fig. 5.

    Fig. 2 TEM images of the Biochar@Kaolin and Biochar@Be-ntonite before and after the reaction with Cr(VI)

    Fig. 3 EDS spectra of the Biochar@Kaolin and Biochar@Be-ntonite before and after the reaction with Cr(VI)

    Fig. 4 XRD patterns of Biochar, Biochar@Kaolin and Bioch-ar@Bentonite

    Fig. 5 FT-IR spectra of Biochar, Kaolin, Bentonite, Bioch-ar@Ka-olin and Biochar@Bentonite

    As shown in Fig. 5, the peaks of Biochar@Kaolin and Biochar@Bentonite at approximately 3420, 1400, 1020– 1100 and 520–460 cm–1are assigned to the stretching vibration of the –OH, COO–, –C–O and –C–OH or Si–O group, respectively[25]. The surface of compositions and chemical states of clay-biochar are further investigated by XPS. The C1s XPS spectra of Biochar@Kaolin and Biochar@Bentonite are shown in Fig. 6.

    The C1s XPS spectra of Biochar@Kaolin and Biochar@Bentonite is the major component with peaks at 284.4 eV, which may be assigned to C/N–O, C–O or C–C bonds[26]. These results suggest that Biochar@Kaolin and Biochar@Bentonite contain considerable amounts of oxygen/nitrogen groups on its surface, which is beneficial for binding Cr(VI) ions[21].

    Fig. 6 XPS spectra of Biochar@Kaolin (a) and Biochar@Be-ntonite (b)

    2.2 Effect of pH

    The Cr(VI) removal efficiencies and adsorption capacities of Biochar@Kaolin and Biochar@Bentonite in solution with pH of 1–14 are shown in Fig. 7. As shown in Fig. 7, pH plays an important role in the removal of Cr(VI) in aqueous solution. At pH<7, the removal rate of Cr(VI) ions increase with pH decreasing. Under the acidic solution, the surface of Biochar@Kaolin and Biochar@Bentonite is positively charged, and is beneficial for the adsorption of Cr(VI) ion by electrostatic attraction[25]. At pH>7, the removal rate of Cr(VI) ions increases with pH increasing due to the precipitation of Cr(VI). Previous studies have also shown that precipitation could play an important role in controlling the removal of heavy metal ions from aqueous solution by biochars at high pH[26].

    2.3 Effect of SO42–ion in solution

    The effect of SO42–ion on the removal of Cr(VI) by the Biochar@Kaolin and Biochar@Bentonite is shown in Fig. 8. No effect of SO42–on the removal of Cr(VI) ions by Biochar@Kaolin, whereas the removal rates of Cr(VI) on Biochar@Bentonite decreased with the increase of SO42–ions concentration. These may be attributed to the fact that there are much Na+and Ca2+ions exit on the surface of Biochar@Bentonite, but none of charged ions on the surface of Biochar@Kaolin. For specific adsorption sites, Cr(VI) ions are preferentially adsorbed over the SO42–ions. When the specific adsorption sites are saturated, the exchange reactions of dominate and competition for these sites between Cr(VI) ions and SO42–ions are important[27-28].

    Fig. 7 Effect of pH on the removal of Cr (VI) by the Bioch-ar@Ka-olin (a) and Biochar@Bentonite (b)

    Fig. 8 Effect of SO42– on the removal of Cr (VI) by the Bioch-ar@Kaolin (a) and Biochar@Bentonite (b)

    2.4 Sorption kinetics

    Fig. 9(a) shows the adsorption data of Cr(VI) on different kinds of adsorbents. The sorption shows a rapid initial uptake followed by smooth increase. Kinetics studies are carried out and a number of well-known sorption models are applied in order to better understand the processes governing the adsorption of Cr(VI) ions to the Biochar@Kaolin and Biochar@Bentonite[29].

    In this study, the pseudo-first order and pseudo-second order kinetic models are used to predict the kinetic data. The pseudo-second order rate law bases on the assumption that the rate of solute sorption is directly proportional to the square of the number of vacant binding sites. The pseudo-first order and pseudo-second order[30-31]are described as Eq. (2) and (3):

    Wheree(mg/g) is the amount of adsorbed solute at equilibrium conditions,q(mg/g) is the amount of adso-rbed solute at the time(min),2(min–1) and1(min–1) are the constants of pseudo-second order and pseudo-first order kinetic model respectively.

    The plots of two models for Cr(VI) ions adsorbed onto the biochar, Biochar@Kaolin and Biochar@Bentonite are shown in Fig. 9. The corresponding calculated parameters are listed in Table 2.

    The sorption kinetics of Cr(VI) on biochar, Biochar@Kaolin and Biochar@Bentonite are satisfactorily fitted by pseudo-second order model due to the higher correlation coefficient value (2>0.98). It indicates that the chemisorption is involved in covalent interaction due to the sharing and exchange of electrons between Cr(VI) ions, and the adsorbent is likely the primary rate-limiting step involved in Cr(VI) ions sorption on surfaces of adsorbent[32-34].

    2.5 Sorption isotherms

    Langmuir isotherm model describes the correlation between the amounts of solute adsorbed on adsorbent (mg/g)the solute concentration in the solution (mg/L) at equilibrium condition. This model assumes that at equilibrium, monolayer sorption of solute occurs at fixed number of homogeneously distributed sorption sites over the adsorbent surface, and these sites also have equal affinity for the adsorbate. The non-linear equations describing the Langmuir isotherm model is given as follows[35-36]:

    Where Ce (mg/g) is the solute aqueous concentration at equilibrium, qe (mg/g) is the amount of solute adsorbed per unit weight of adsorbent at equilibrium, Qmax is the maximum amount of solute adsorbed per unit weight of adsorbent (mg/g) to form a single layer, and KL (L/mg) is the isotherm constant.

    (a) Adsorption data; (b) Pseudo-first order kinetic; (c) Pseudo- second order

    Table 2 Pseudo-first order kinetic and pseudo-second order kinetic parameters of Cr(VI) ions removal by Biochar, Biochar@Kaolin and Biochar@Bentonite

    The Freundlich isotherm model assumes that the sorption process on a heterogeneous surface is in the form of multilayers, where adsorption sites have varied affinity for the adsorbate. The non-linear forms of the Freundlich isotherm model can be presented as[37-38]:

    Wheree(mg/g) is the solute aqueous concentration at equilibrium,e(mg/g) is the amount of solute adsorbed per unit weight of adsorbent at equilibrium,F((mg/g)1/n) and 1/are the isotherm constants.

    According to experimental data, the adsorption isotherms parameters of Cr(VI) ion removal by biochar, Biochar@Kaolin and Biochar@Bentonite at different temperatures can be calculated and listed in Table 3.

    According to the value of2, the simulations of the Langmuir model fits the adsorption data well and can therefore be used to describe the Cr(VI) ions adsorption behavior at different temperatures for Biochar@Bento-nite. It also indicates that the adsorption process is homogeneous adsorption. The Cr(VI) ion from aqueous solution adsorption on the Biochar@Bentonite is monol-ayer adsorption. The maximum adsorption capacities of Biochar@Bentonite are calculated to be 20.54, 23.64 and 27.23 mg/g at 20, 30 and 40 ℃,respectively. For Biochar@Kaolin, the Freundlich adsorption model shows a better fit to the sorption data at different temperatures. It is also suggested that the sorption process on a heterogeneous surface is in the form of multilayers adsorption.

    3 Conclusions

    Two clay-biochars were successfully developed in this study. The batch experiments indicate that clay-biochar composite has high adsorption ability to Cr(VI) ion from aqueous solution (20.54, 23.64 and 27.23 mg/g at 20, 30 and 40 ℃, respectively). The adsorption kinetics can be satisfactorily fitted by pseudo-second order model. The adsorption isotherms of Cr(VI) on Biochar@Bent-onite can be fitted by Langmuir model, whereas the Freundlich model fits better the Cr(VI) sorption on Biochar@Kaolin at different temperatures. These observations indicate that biochar-based composites can be regarded as the promising adsorbents for immobilization of heavy metals in environmental cleanup.

    Table 3 Parameters of adsorption isotherms for Cr(VI) ions removal by Biochar, Biochar@Kaolin and Biochar@Bentonite at 20, 30 and 40 ℃, respectively

    [1] Aleksandra B, Patryk O, Ryszard D. Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water., 2015, 196: 540–549.

    [2] Jiang S S, Huang L B, Tuan A H,Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions.,2016, 142: 64–71.

    [3] Lyu H, Tang J, Huang Y,Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite., 2017, 322: 516–524.

    [4] Pan J J, Jiang J, Xu R K, Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4combined with peanut straw biochar., 2014, 101: 71–76.

    [5] ZHU K R, CHEN C L, LU S H,MOFs-induced encapsulation of ultrafine Ni nanoparticles into 3D N-doped grapheme-CNT frameworks as a recyclable catalyst for Cr(VI) reduction with formic acid., 2019, 148: 52–63.

    [6] WEN T, WANG J, YU S J,Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(V), Cr(VI), humic acid and dyes., 2017, 5: 4371–4380.

    [7] GAO Y, CHEN C L, TAN X L,, Polyaniline-modified 3D- flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI)., 2016,476: 62–70.

    [8] Hu B W, Hu Q Y, Xu D,The adsorption of U(VI) on carbonaceous nanofibers: a combined batch, EXAFS and modeling techniques., 2017, 175: 140–146.

    [9] ZHU K R, CHEN C L, XU H,Cr(VI) reduction and immobilization by core-double-shell structured magnetic polydopamine@ zeolitic ldazolate framevorks-8 microspheres.., 2017, 5: 6795–6802.

    [10] WEN T, WANG J, LI X,Production of a generic magnetic Fe3O4nanoparticles decorated tea waste composites for highly efficient sorption of Cu(II) and Zn(II)., 2017, 5: 3656–3666.

    [11] Hu B W, Qiu M Q, Hu Q Y,Decontamination of Sr(II) on magnetic polyaniline/graphene oxide composites: evidence from experimental, spectroscopic, and modeling investigation.., 2017, 5: 6924–6931.

    [12] Qiu M Q, Wang M, Zhao Q Z,XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate., 2018, 201: 764–771.

    [13] Hu B W, Guo X J, Zheng C,Plasma-enhanced amidoxime/ magnetic graphene oxide for efficient enrichment of U(VI) investigated by EXAFS and modeling techniques., 2019, 357: 66–74.

    [14] Wang S, Gao B, Zimmerman A R,Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite., 2015, 175: 391–395.

    [15] GU P C, SONG S, ZHANG S,Enrichment of U(VI) on polyaniline modified MXene composites studied by batch experiment and mechanism investigation., 2018, 76: 701–708.

    [16] HU B W, CHEN G H, JIN C G,Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchorednanoscale zero-valent iron., 2017, 336: 214–221.

    [17] SUN B, CHAI J L, CHAI Z Q,A surfactant-free microemulsion consisting of water, ethanol, and dichloromethane and its template effect for silica synthesis., 2018, 526: 9–17.

    [18] LI L, HUANG S Y, WEN T,Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U(VI)., 2019, 543: 225–236.

    [19] Wang H, Gao B, Wang S,Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4treated hickory wood., 2015, 197: 356–362.

    [20] Zhu X, Tsang D C, Chen F,Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry., 2015, 36: 3094–3102.

    [21] Shi S Q, Yang J K, Liang S,Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2particles., 2018, 628-629: 499–508.

    [22] Yao Y, Gao B, Fang J,Characterization and environmental applications of clay-biochar composites., 2014, 242: 136–143.

    [23] Chen T, Zhou Z, Xu S,Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge., 2015, 190: 388–394.

    [24] ZHU K R, GAO Y, TAN X L,Polyaniline-modified Mg/Al layered double hydroxide composites and their application in efficient removal of Cr(VI)., 2016, 4: 4361–4369.

    [25] Dong H, Deng J, Xie Y,Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution., 2017, 332: 79–86.

    [26] Zhang L, Fu F L, Tang B. Adsorption and redox conversion behaviors of Cr(VI) on goethite/carbon microspheres and akagan-eite/carbon microspheres composites., 2019, 356: 151–160.

    [27] Liu W, Sun W L, Han Y F,Adsorption of Cu(II) and Cd(II) on titanate nanomaterials synthesizedhydrothermal method under different NaOH concentrations: role of sodium content, Colloids Surf, A-physicochem., 2014, 452: 138–147.

    [28] Pan J J, Jiang J, Xu R K. Adsorption of Cr(III) from acidic solutions by crop straw derived biochars., 2013, 25: 1957–1965.

    [29] Xiao R, Wang J J, Li R H,Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite., 2018, 208: 408–416.

    [30] Choudhary B, Paul D. Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar., 2018, 6: 2335–2343.

    [31] Reguyal F, Sarmah A K, Gao W. Synthesis of magnetic biochar from pine sawdustoxidative hydrolysis of FeCl2for the removal sulfamethoxazole from aqueous solution., 2017, 321: 868–878.

    [32] Gan C, Liu Y, Tan X,Effect of porous zincebiochar nanocomposites on Cr(VI) adsorption from aqueous solution., 2015, 5: 35107–35115.

    [33] Almeida C, Debacher N, Downs A,Removal of methylene blue from colored effluents by adsorption on montmorillonite clay., 2009, 332: 46–53.

    [34] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum., 1918, 40: 1361–1403.

    [35] ZHANG B G, WANG S, DIAO M H,Microbial community responses to vanadium distributions in mining geological environments and bioremediation., 2019, 124: 601–615.

    [36] Inyang M, Gao B, Yao Y,Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass., 2012, 110: 50–56.

    [37] SHI J X, ZHANG B G, QIU R,Microbial chromate reduction coupled to anaerobic oxidation of elemental sulfur or zerovalent iron., 2019, 53: 3198–3207.

    [38] ZHANG B G, CHENG Y T, SHI J X,Insights into interactions between vanadium (V) bio-reduction and pentachlorophenol dechlorination in synthetic groundwater., 2019, 375: 121965.

    花生殼生物炭–黏土吸附水中的Cr(VI)

    王海, 陽檸燦, 邱木清

    (紹興文理學(xué)院 生命科學(xué)學(xué)院, 紹興 312000)

    重金屬鉻的污染會(huì)嚴(yán)重威脅到土壤和水體的環(huán)境安全, 而水中的六價(jià)鉻化合物則具有很強(qiáng)的遷移性、富集性和氧化性等特性, 更具有危害性且難以處理。吸附法是一種能簡單、高效地處理含重金屬污水的處理技術(shù)。在磁力攪拌條件下采用花生殼生物炭分別與高嶺土和膨潤土混合制備而成兩種生物炭–黏土材料, 并分別對(duì)這兩種生物炭–黏土的表面特性進(jìn)行表征。結(jié)果發(fā)現(xiàn)所選用的兩種黏土均能不規(guī)則地負(fù)載在生物炭的表面。吸附實(shí)驗(yàn)結(jié)果顯示, 生物炭–高嶺土(Biochar@Kaolin)吸附鉻(VI)的能力顯著高于生物炭–膨潤土(Biochar@Bentonite)。從吸附動(dòng)力學(xué)方程的分析可以看出, 合成的兩種生物炭負(fù)載黏土吸附水中的鉻(VI)均符合偽二級(jí)動(dòng)力學(xué)方程。從吸附等溫線分析中可以得到, Biochar@Bentonite吸附鉻(VI)的過程符合Langmuir模型, 而Biochar@Kaolin吸附鉻(VI)的過程符合Freundlich模型。研究結(jié)果顯示, 采用生物炭–黏土的復(fù)合材料修復(fù)環(huán)境中的重金屬污染具有廣闊的應(yīng)用前景。

    吸附; 花生殼; 黏土–生物炭; 鉻(VI)

    TQ174

    A

    1000-324X(2020)03-0301-08

    10.15541/jim20190350

    date:2019-07-15;

    date: 2019-09-25

    NationalNatural Science Foundation of China (21876115); Public Welfare Program of Zhejiang Natural Science (LGF19C030001)

    WANG Hai(1981–), male, associate professor. E-mail: wanghai@usx.edu.cn

    王海(1981–), 男, 副教授. E-mail: wanghai@usx.edu.cn

    Corresponding author:QIU Muqing, associate professor. E-mail: qiumuqing@126.com

    邱木清, 男, 副教授. E-mail: qiumuqing@126.com

    猜你喜歡
    王海花生殼高嶺土
    花生殼磁性生物炭對(duì)水體中Cr(Ⅵ)的吸附研究
    An integrated spectroscopic strategy to trace the geographical origins of emblic medicines:Application for the quality assessment of natural medicines
    高嶺土加入量對(duì)Al2O3-SiC質(zhì)修補(bǔ)料熱震性能的影響
    山東冶金(2019年1期)2019-03-30 01:35:02
    我猜你是開玩笑的
    中外文摘(2018年17期)2018-11-21 10:46:29
    我 猜 你 是 開 玩 笑 的
    愛你(2018年16期)2018-11-14 20:46:38
    花生殼及其在畜牧業(yè)中的應(yīng)用
    廣東飼料(2016年8期)2016-02-27 11:10:02
    煅燒高嶺土吸附Zn2+/苯酚/CTAB復(fù)合污染物的研究
    ABS/改性高嶺土復(fù)合材料的制備與表征
    中國塑料(2015年11期)2015-10-14 01:14:14
    一種用作橡膠補(bǔ)強(qiáng)劑的改性高嶺土的制備方法
    M icrostructure and Mechanical Properties of Magnesium Alloy Sheet by Friction Heating Single Point Incremental Form ing
    国产一区有黄有色的免费视频| 日韩三级伦理在线观看| 成人18禁高潮啪啪吃奶动态图 | 成人国产麻豆网| 精品一区在线观看国产| 丝袜脚勾引网站| 亚洲精品一区蜜桃| 看十八女毛片水多多多| 成人国产麻豆网| av国产精品久久久久影院| a级毛色黄片| 成年女人在线观看亚洲视频| 纵有疾风起免费观看全集完整版| 国产欧美另类精品又又久久亚洲欧美| 日本一二三区视频观看| 欧美成人午夜免费资源| 夫妻性生交免费视频一级片| 菩萨蛮人人尽说江南好唐韦庄| 免费大片18禁| 三级国产精品片| 欧美一级a爱片免费观看看| 看免费成人av毛片| 3wmmmm亚洲av在线观看| 精品久久久久久久末码| 一个人免费看片子| 日本黄大片高清| 精品久久久久久电影网| 久久青草综合色| 国产精品99久久99久久久不卡 | 91精品国产九色| 欧美变态另类bdsm刘玥| 男女边摸边吃奶| 国产成人精品婷婷| 亚洲四区av| 国产色爽女视频免费观看| .国产精品久久| 亚洲欧洲国产日韩| 成人无遮挡网站| 丝瓜视频免费看黄片| 内射极品少妇av片p| 亚洲av中文av极速乱| 精品久久久久久电影网| 少妇的逼好多水| 夫妻午夜视频| 久久韩国三级中文字幕| 国产乱来视频区| 国产日韩欧美在线精品| 熟女av电影| 女人久久www免费人成看片| 交换朋友夫妻互换小说| 男女啪啪激烈高潮av片| 日日啪夜夜撸| 深夜a级毛片| 爱豆传媒免费全集在线观看| 六月丁香七月| 精品久久久噜噜| 免费观看av网站的网址| 国产男女内射视频| 国产精品99久久99久久久不卡 | 久久久久久久久久久丰满| 国产精品一区二区三区四区免费观看| 九九久久精品国产亚洲av麻豆| 美女福利国产在线 | 亚洲欧美精品专区久久| 国精品久久久久久国模美| 一级av片app| 亚洲,欧美,日韩| 国产亚洲5aaaaa淫片| 国产高清国产精品国产三级 | 久久精品久久久久久噜噜老黄| 久久国产亚洲av麻豆专区| 亚洲精品国产av蜜桃| 国产成人freesex在线| 一区在线观看完整版| 国产av国产精品国产| 蜜桃亚洲精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 少妇丰满av| 一二三四中文在线观看免费高清| 久久久久久人妻| 亚洲色图av天堂| 日本vs欧美在线观看视频 | 在线观看人妻少妇| 国产女主播在线喷水免费视频网站| 777米奇影视久久| 色婷婷久久久亚洲欧美| 久久毛片免费看一区二区三区| 久久精品人妻少妇| 国产高清有码在线观看视频| tube8黄色片| 日本-黄色视频高清免费观看| 国产成人精品婷婷| 亚洲精品第二区| 国产又色又爽无遮挡免| 欧美精品一区二区免费开放| av国产久精品久网站免费入址| 啦啦啦在线观看免费高清www| 国产精品久久久久成人av| tube8黄色片| 成人毛片60女人毛片免费| 爱豆传媒免费全集在线观看| 少妇熟女欧美另类| 亚洲国产日韩一区二区| 亚洲av男天堂| a 毛片基地| 蜜桃在线观看..| 街头女战士在线观看网站| 超碰av人人做人人爽久久| 国产精品伦人一区二区| 三级经典国产精品| 777米奇影视久久| 黄色视频在线播放观看不卡| 成人高潮视频无遮挡免费网站| 男女下面进入的视频免费午夜| 午夜福利视频精品| 男女无遮挡免费网站观看| 男女免费视频国产| 观看美女的网站| 国产91av在线免费观看| av天堂中文字幕网| xxx大片免费视频| 人妻少妇偷人精品九色| 99re6热这里在线精品视频| 又大又黄又爽视频免费| 一本一本综合久久| 久久亚洲国产成人精品v| 精品久久久久久久久亚洲| 卡戴珊不雅视频在线播放| 亚洲国产精品国产精品| 成年美女黄网站色视频大全免费 | 亚洲精品乱久久久久久| 人妻少妇偷人精品九色| 国产精品一区二区三区四区免费观看| 一边亲一边摸免费视频| 欧美极品一区二区三区四区| 交换朋友夫妻互换小说| 久久久久久久精品精品| 一级爰片在线观看| 久久99蜜桃精品久久| 久久 成人 亚洲| 久久精品国产鲁丝片午夜精品| 免费观看av网站的网址| 综合色丁香网| 国产成人精品一,二区| 亚洲av欧美aⅴ国产| 丰满迷人的少妇在线观看| 欧美极品一区二区三区四区| 午夜福利高清视频| 亚洲成人手机| 大又大粗又爽又黄少妇毛片口| 久久久亚洲精品成人影院| 丰满迷人的少妇在线观看| 欧美高清性xxxxhd video| 亚洲第一区二区三区不卡| 亚洲国产欧美人成| 亚洲美女搞黄在线观看| 日韩av不卡免费在线播放| 青青草视频在线视频观看| 国产91av在线免费观看| 91午夜精品亚洲一区二区三区| 国产高清有码在线观看视频| 日韩欧美一区视频在线观看 | 18禁在线播放成人免费| 国产一区有黄有色的免费视频| 亚洲精品日韩在线中文字幕| 欧美xxxx黑人xx丫x性爽| 欧美一级a爱片免费观看看| 只有这里有精品99| 亚洲精品国产av成人精品| 久久久欧美国产精品| av国产免费在线观看| 高清欧美精品videossex| 赤兔流量卡办理| 看非洲黑人一级黄片| 国产在视频线精品| 日韩国内少妇激情av| 免费不卡的大黄色大毛片视频在线观看| 欧美精品亚洲一区二区| 欧美区成人在线视频| 久久久精品94久久精品| 亚洲av不卡在线观看| 在线看a的网站| 成人漫画全彩无遮挡| 久久精品国产亚洲av天美| 国产免费福利视频在线观看| 国产av国产精品国产| 日本欧美视频一区| 又大又黄又爽视频免费| 三级国产精品片| 久久久久久久久久人人人人人人| 久久久国产一区二区| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| 亚洲高清免费不卡视频| 亚洲,欧美,日韩| 一本色道久久久久久精品综合| 麻豆乱淫一区二区| 久久人妻熟女aⅴ| 搡老乐熟女国产| 精品亚洲乱码少妇综合久久| 久久99蜜桃精品久久| 性色avwww在线观看| 午夜视频国产福利| 久久99热这里只有精品18| 97精品久久久久久久久久精品| 国产成人精品福利久久| 搡老乐熟女国产| 日日啪夜夜爽| 深夜a级毛片| 一本一本综合久久| 女人久久www免费人成看片| 色哟哟·www| 欧美极品一区二区三区四区| 汤姆久久久久久久影院中文字幕| 久久久久网色| 九九在线视频观看精品| 国产黄片视频在线免费观看| kizo精华| 高清av免费在线| 国产91av在线免费观看| 黄片无遮挡物在线观看| 在线免费十八禁| 国产在线视频一区二区| 日韩强制内射视频| 国产成人精品一,二区| 一区在线观看完整版| 国产老妇伦熟女老妇高清| 在线精品无人区一区二区三 | 欧美+日韩+精品| 爱豆传媒免费全集在线观看| av线在线观看网站| 国产 一区精品| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花 | 丰满迷人的少妇在线观看| 最近最新中文字幕大全电影3| 欧美亚洲 丝袜 人妻 在线| 国模一区二区三区四区视频| 日韩国内少妇激情av| 国产男女内射视频| 国产久久久一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲av免费高清在线观看| 久久鲁丝午夜福利片| 欧美另类一区| 免费人成在线观看视频色| 亚洲av成人精品一二三区| 只有这里有精品99| 国产人妻一区二区三区在| 一个人看的www免费观看视频| 国产高清国产精品国产三级 | 亚洲国产精品一区三区| 一级毛片aaaaaa免费看小| 国产伦精品一区二区三区视频9| 51国产日韩欧美| 国产男女超爽视频在线观看| 一区二区三区四区激情视频| 麻豆成人av视频| 九色成人免费人妻av| 久久久久久人妻| 亚洲精品久久久久久婷婷小说| 我要看黄色一级片免费的| 免费大片黄手机在线观看| 精品久久国产蜜桃| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 成人二区视频| 在线观看免费日韩欧美大片 | av卡一久久| 亚洲精华国产精华液的使用体验| 国产男女内射视频| 新久久久久国产一级毛片| 91aial.com中文字幕在线观看| 亚洲国产精品成人久久小说| 欧美三级亚洲精品| 99久久综合免费| 久久亚洲国产成人精品v| 又粗又硬又长又爽又黄的视频| 丝瓜视频免费看黄片| 街头女战士在线观看网站| 黄色视频在线播放观看不卡| 午夜福利网站1000一区二区三区| 日韩免费高清中文字幕av| 免费看光身美女| 亚洲精品国产成人久久av| 免费少妇av软件| 搡女人真爽免费视频火全软件| 免费在线观看成人毛片| 婷婷色麻豆天堂久久| 久久久色成人| 美女脱内裤让男人舔精品视频| 亚洲色图综合在线观看| 精品一品国产午夜福利视频| 2018国产大陆天天弄谢| 中文字幕人妻熟人妻熟丝袜美| 成人黄色视频免费在线看| 水蜜桃什么品种好| 国产免费一级a男人的天堂| 嫩草影院入口| 五月开心婷婷网| 国产精品精品国产色婷婷| 国产淫语在线视频| 777米奇影视久久| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品专区久久| 亚洲精品成人av观看孕妇| 高清黄色对白视频在线免费看 | 中文在线观看免费www的网站| av免费观看日本| 亚洲欧美日韩另类电影网站 | 嫩草影院新地址| 免费看不卡的av| 国产男人的电影天堂91| 亚洲人成网站高清观看| 久久久久久久久大av| 如何舔出高潮| 欧美精品一区二区免费开放| 亚洲成人一二三区av| 免费高清在线观看视频在线观看| 久久精品夜色国产| 日韩av在线免费看完整版不卡| 色婷婷久久久亚洲欧美| 午夜福利网站1000一区二区三区| av女优亚洲男人天堂| 精品国产露脸久久av麻豆| 99久久综合免费| 国产在线免费精品| 美女福利国产在线 | 亚洲av电影在线观看一区二区三区| 99久久精品一区二区三区| 在线观看三级黄色| 精品一区二区三卡| 大片电影免费在线观看免费| 青春草视频在线免费观看| 国产成人免费观看mmmm| 精品亚洲成a人片在线观看 | 欧美老熟妇乱子伦牲交| 国产视频首页在线观看| 中文资源天堂在线| 久久综合国产亚洲精品| 十八禁网站网址无遮挡 | 国产无遮挡羞羞视频在线观看| 日韩av在线免费看完整版不卡| 国产精品一区www在线观看| 国产精品一区二区性色av| 国产亚洲精品久久久com| 国产熟女欧美一区二区| 亚洲四区av| 亚洲电影在线观看av| 能在线免费看毛片的网站| 夫妻性生交免费视频一级片| 18禁裸乳无遮挡免费网站照片| 老司机影院毛片| 国产免费视频播放在线视频| 性高湖久久久久久久久免费观看| 精品久久久久久久末码| 99精国产麻豆久久婷婷| 毛片女人毛片| 亚洲av日韩在线播放| 男人和女人高潮做爰伦理| 熟女电影av网| 99久久精品国产国产毛片| 高清午夜精品一区二区三区| 日韩亚洲欧美综合| av网站免费在线观看视频| 下体分泌物呈黄色| 亚洲av国产av综合av卡| 欧美3d第一页| 黄片wwwwww| 狠狠精品人妻久久久久久综合| 少妇被粗大猛烈的视频| 免费看日本二区| 中文字幕av成人在线电影| 18禁在线无遮挡免费观看视频| 青春草亚洲视频在线观看| 99久久精品国产国产毛片| 不卡视频在线观看欧美| 亚洲内射少妇av| 老熟女久久久| 日韩中字成人| 麻豆精品久久久久久蜜桃| 国产免费一级a男人的天堂| 国产综合精华液| 国产一区有黄有色的免费视频| 观看av在线不卡| 免费看av在线观看网站| 日韩一本色道免费dvd| 91精品国产国语对白视频| 欧美日本视频| 各种免费的搞黄视频| 国产精品久久久久久精品古装| 亚洲国产高清在线一区二区三| 啦啦啦视频在线资源免费观看| 成年女人在线观看亚洲视频| 日韩三级伦理在线观看| 高清在线视频一区二区三区| 欧美日韩精品成人综合77777| 国产成人aa在线观看| 天堂中文最新版在线下载| 国产精品欧美亚洲77777| 中文在线观看免费www的网站| 亚洲欧洲国产日韩| 干丝袜人妻中文字幕| 久久精品人妻少妇| 国产在视频线精品| 人人妻人人澡人人爽人人夜夜| 日本爱情动作片www.在线观看| 国产精品国产av在线观看| 在线观看三级黄色| tube8黄色片| 又大又黄又爽视频免费| 国产视频内射| 国产永久视频网站| 国产精品久久久久成人av| 九草在线视频观看| 少妇裸体淫交视频免费看高清| 国产av一区二区精品久久 | 天堂8中文在线网| 亚洲人成网站在线观看播放| 啦啦啦在线观看免费高清www| 久久久久精品性色| 亚洲,欧美,日韩| 国产成人精品婷婷| 精品亚洲成a人片在线观看 | 国产精品久久久久久久久免| 汤姆久久久久久久影院中文字幕| 国产精品99久久99久久久不卡 | 国精品久久久久久国模美| 午夜免费男女啪啪视频观看| 亚洲欧美精品专区久久| 最近2019中文字幕mv第一页| 熟女电影av网| 一区二区三区免费毛片| 免费大片黄手机在线观看| 综合色丁香网| 国产精品不卡视频一区二区| 国产男人的电影天堂91| 亚洲精品乱码久久久v下载方式| 亚洲熟女精品中文字幕| 欧美xxxx性猛交bbbb| 午夜福利在线观看免费完整高清在| 一二三四中文在线观看免费高清| 国产精品久久久久久久电影| 狂野欧美白嫩少妇大欣赏| 欧美日韩在线观看h| 内地一区二区视频在线| 亚洲av福利一区| 80岁老熟妇乱子伦牲交| 免费观看性生交大片5| 老司机影院毛片| 在线 av 中文字幕| av播播在线观看一区| 国产视频内射| 菩萨蛮人人尽说江南好唐韦庄| 欧美一级a爱片免费观看看| 国产精品爽爽va在线观看网站| 人妻一区二区av| av卡一久久| 寂寞人妻少妇视频99o| 国产精品蜜桃在线观看| 久久精品国产自在天天线| 老女人水多毛片| 一边亲一边摸免费视频| 在线精品无人区一区二区三 | 亚洲av日韩在线播放| 韩国av在线不卡| 在线观看一区二区三区| 黄色欧美视频在线观看| 国产精品一区二区在线不卡| 久久久久久久久久久免费av| 毛片女人毛片| 在线观看免费日韩欧美大片 | 亚洲av综合色区一区| 成人国产麻豆网| 免费少妇av软件| 丰满迷人的少妇在线观看| h日本视频在线播放| 2021少妇久久久久久久久久久| 国产黄色免费在线视频| 欧美成人午夜免费资源| 国产亚洲欧美精品永久| 欧美人与善性xxx| 在线观看免费高清a一片| 亚洲欧美一区二区三区黑人 | 亚洲无线观看免费| 亚洲国产最新在线播放| 日韩av在线免费看完整版不卡| 蜜桃亚洲精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 另类亚洲欧美激情| 啦啦啦视频在线资源免费观看| 欧美xxⅹ黑人| 超碰97精品在线观看| 国产精品一及| 欧美老熟妇乱子伦牲交| 能在线免费看毛片的网站| 91午夜精品亚洲一区二区三区| 国产精品久久久久久久久免| 五月玫瑰六月丁香| 内射极品少妇av片p| 最近手机中文字幕大全| 午夜日本视频在线| 久久精品国产a三级三级三级| 一级a做视频免费观看| 精品少妇黑人巨大在线播放| 亚洲综合精品二区| freevideosex欧美| av线在线观看网站| 91久久精品国产一区二区三区| 亚洲中文av在线| 亚洲四区av| 国产午夜精品久久久久久一区二区三区| 亚洲精品乱码久久久v下载方式| 精品久久久久久久久av| 国产成人精品福利久久| 国产人妻一区二区三区在| 少妇被粗大猛烈的视频| 在线观看免费视频网站a站| 黄色怎么调成土黄色| 免费观看在线日韩| 99热这里只有是精品在线观看| 久久久久久伊人网av| 亚洲精华国产精华液的使用体验| 能在线免费看毛片的网站| 这个男人来自地球电影免费观看 | 欧美 日韩 精品 国产| av又黄又爽大尺度在线免费看| 熟女av电影| 性色avwww在线观看| 只有这里有精品99| 丝袜喷水一区| 视频中文字幕在线观看| 身体一侧抽搐| 纯流量卡能插随身wifi吗| 亚洲内射少妇av| 五月开心婷婷网| 日韩 亚洲 欧美在线| 日韩不卡一区二区三区视频在线| 在线观看免费视频网站a站| 91精品国产国语对白视频| 22中文网久久字幕| 精品99又大又爽又粗少妇毛片| 国产男人的电影天堂91| 亚洲国产日韩一区二区| 国产精品一区www在线观看| 成人国产麻豆网| 亚洲人成网站在线观看播放| 欧美日韩国产mv在线观看视频 | 国产乱人偷精品视频| 激情 狠狠 欧美| 高清午夜精品一区二区三区| 建设人人有责人人尽责人人享有的 | 亚洲欧美日韩卡通动漫| 久久热精品热| av黄色大香蕉| 成人18禁高潮啪啪吃奶动态图 | 精品久久久噜噜| av在线播放精品| 国产爱豆传媒在线观看| 久久精品国产鲁丝片午夜精品| 中国国产av一级| 精品熟女少妇av免费看| 超碰97精品在线观看| 欧美精品国产亚洲| 人妻制服诱惑在线中文字幕| 国产淫片久久久久久久久| 最新中文字幕久久久久| a级一级毛片免费在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品福利在线免费观看| 国产精品麻豆人妻色哟哟久久| 青青草视频在线视频观看| 亚洲av日韩在线播放| 国产爽快片一区二区三区| 国产精品欧美亚洲77777| 成人亚洲欧美一区二区av| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久影院| 精品酒店卫生间| 日韩 亚洲 欧美在线| 亚洲av.av天堂| 一个人看视频在线观看www免费| 国产人妻一区二区三区在| 亚洲伊人久久精品综合| 麻豆成人av视频| 亚洲欧美中文字幕日韩二区| 精品久久久久久电影网| 麻豆成人av视频| 丝袜脚勾引网站| 亚洲国产精品专区欧美| 欧美激情国产日韩精品一区| 亚洲精品日本国产第一区| 国产精品秋霞免费鲁丝片| 亚洲精华国产精华液的使用体验| 毛片女人毛片| 成人国产麻豆网| 国产毛片在线视频| 亚洲欧美中文字幕日韩二区| 色婷婷av一区二区三区视频| 日韩国内少妇激情av| 欧美xxxx性猛交bbbb| 国产精品国产三级国产av玫瑰| 免费大片黄手机在线观看| 少妇人妻精品综合一区二区| 国产精品一及| 黄色一级大片看看| 国产乱来视频区| 久久久国产一区二区| 成人亚洲欧美一区二区av| 91精品国产九色| 国产精品爽爽va在线观看网站| 国产成人精品久久久久久| 国产爽快片一区二区三区| 欧美一区二区亚洲| 1000部很黄的大片|