摘 要:依據(jù)Gerschgorin定理,對(duì)于非奇異M-矩陣Hadamard積的最小特征值下界,給出只與矩陣元素相關(guān)且容易計(jì)算的新估計(jì)式,并從理論和例子兩個(gè)方面進(jìn)行分析,以表明本文的新估計(jì)式在某些條件下改進(jìn)了Fiedler和Markham的結(jié)論,同時(shí)也優(yōu)于其他的一些結(jié)論。
關(guān)鍵詞:非奇異;M-矩陣;Hadamard積;最小特征值;下界
中圖分類號(hào):O151.21
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào)"1000-5269(2020)05-0018-04"""DOI:10.15958/j.cnki.gdxbzrb.2020.05.03
由于M-矩陣在諸多領(lǐng)域的應(yīng)用價(jià)值比較廣泛,所以成為現(xiàn)今矩陣?yán)碚撗芯康闹匾獌?nèi)容,其中,特征值的相關(guān)下界和判別法等比較受到學(xué)者的青睞。Hadamard積是特殊的矩陣運(yùn)算[1-2],至今得到了一些比較好的關(guān)于非奇異M-矩陣Hadamard積的特征值下界的結(jié)論[3-12]。
針對(duì)這一問題,文章做了進(jìn)一步的探討,主要是在前人的基礎(chǔ)上通過構(gòu)造迭代公式,利用圓盤定理給出新的結(jié)果,使新結(jié)果在迭代若干次后更加接近真值,文中也給出了相應(yīng)的理論證明以及算例,從而驗(yàn)證新結(jié)果的有效性。
參考文獻(xiàn):
[1]黃廷祝,"楊傳勝."特殊矩陣分析及應(yīng)用[M]."北京:"科學(xué)出版社,"2003.
[2]陳景良,"陳向輝."特殊矩陣[M]."北京:"清華大學(xué)出版社,"2000.
[3]FIEDLER M,"MARKHAM T L."An inequality for the Hadamard product of an M-matrix and an inverse M-matrix [J]."Linear Algebra Appl,"1988,"101:"1-8.
[4]LI H B,"HUANG T Z,"SHEN S Q,"et al."Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse[J]."Linear Algebra Appl,"2007,"420:"235-247.
[5]LI Y T,"CHEN F B,"WANG D F."New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse[J]."Linear Algebra Appl,"2009,"430:"1423-1431.
[6]CHENG G H,"TAN Q,"WANG Z D."Some inequalities for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse[J]."J Inequal Appl,"2013,"2013(1):"65.
[7]LI Y T,"WANG F,"LI C Q,"et al."Some new bounds for the minimum eigenvalue of the Hadamard product of an M-matrix and an inverse M-matrix[J]."J Inequal Appl,"2013,"2013(1):"480.
[8]高美平."M-矩陣與其逆的Hadamard積的最小特征值下界新的估計(jì)式[J]."四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),"2014,"37(1):"90-97.
[9]蔣建新,"黃衛(wèi)華,"李艷艷."M-矩陣Hadamard積的特征值的界[J]."佳木斯大學(xué)學(xué)報(bào)(自然科學(xué)版),"2015,"33(2):"300-305.
[10]劉新."M-矩陣Hadamard積最小特征值的下界[J]."曲靖師范學(xué)院學(xué)報(bào),"2016,"35(6):"4-6.
[11]CHEN F B."New inequalities for the Hadamard product of an M-matrix and its inverse[J]."J Inequal Appl,"2015,"2015(1):"35.
[12]陳付彬."非奇異M-矩陣Hadamard積的最小特征值下界的新不等式[J]."貴州大學(xué)學(xué)報(bào)(自然科學(xué)版),"2018,"35(1):"1-4.
[13]YONG X R,"WANG Z."On a conjecture of Fiedler and Markham[J]."Linear Algebra Appl,"1999,"288:"259-267.
[14]HORN R A,"JOHNSON C R."Topics in Matrix Analysis[M]."New York:"Cambridge University Press,"1991.
[15]VARGA R S."Minimal Gerschgorin sets[J]."Pacific J Math,"1965,"15(2):"719-729.
[16]BERMAN A,"PLEMMONS R J."Nonnegative Matrices in the Mathematical Sciences[M]."New York:"Academic Press,"1979.
(責(zé)任編輯:周曉南)