[摘要] 目的 探討1,25-(OH)2D3是否能通過調節(jié)腎臟microRNA-21的表達延緩腎纖維化的進展。方法將SD大鼠隨機分為假手術組(Sham組)、單側(左)輸尿管結扎組(UUO組)和1,25-(OH)2D3干預組(干預組),每組12只。UUO組和干預組采用單側(左)輸尿管結扎法建立梗阻性腎纖維化大鼠模型,Sham組僅游離左側輸尿管而不結扎。干預組給予0.06 μg/(kg·d)的1,25-(OH)2D3(溶于2 mL花生油)灌胃,持續(xù)28 d;Sham組和UUO組均給予等體積花生油灌胃。分別于灌胃14、28 d時,每組取6只大鼠,測定其血肌酐(Scr)、尿素氮(BUN)、鈣(Ca)、磷(P)等水平;取左側腎臟相同部位組織制作病理組織切片,行蘇木精-伊紅染色和Masson染色,在光鏡下觀察腎小管間質損傷及纖維化情況;采用RT-PCR法檢測各組腎組織microRNA-21的表達水平。結果 UUO組的腎纖維化面積大于干預組和Sham組。UUO組和干預組大鼠各時間點Scr、BUN以及microRNA-21表達水平均高于Sham組,但干預組較UUO組降低,差異均有顯著性(F=5.82~280.71,P<0.05)。結論 1,25-(OH)2D3可能通過下調microRNA-21表達,在一定程度上抑制腎纖維化并保護腎功能。
[關鍵詞] 骨化三醇;微RNAs;腎;纖維化;大鼠
[中圖分類號] R692;R977.24 "[文獻標志碼] A "[文章編號] 2096-5532(2020)06-0640-05
doi:10.11712/jms.2096-5532.2020.56.149 [開放科學(資源服務)標識碼(OSID)]
[網絡出版] https://kns.cnki.net/kcms/detail/37.1517.R.20200714.1256.003.html;
[ABSTRACT] Objective To investigate the possibility of 1,25-(OH)2D3 delaying the progression of renal fibrosis by regulating the expression of microRNA-21 in the renal tissues. "Methods A total of 36 Sprague-Dawley rats were randomly divided into sham operation group (sham group), left unilateral ureteral obstruction group (UUO group), and 1,25-(OH)2D3 treatment group (treatment group), with 12 rats in each group. The rats in the UUO group and treatment group underwent left unilateral ureteral obstruction to establish a rat model of obstructive renal fibrosis, while the rats in the sham group had their left ureter only dissociated from the kidney but not ligated. The rats in the treatment group were intragastrically administered 1,25-(OH)2D3 (dissolved in 2 mL peanut oil) at a dose of 0.06 μg/(kg·d) for 28 consecutive days; the rats in the sham group and UUO group were given the same volume of peanut oil by intragastric administration. On days 14 and 28 of the intragastric administration, six rats of each group were randomly selected for analysis. The levels of serum creatinine (SCr), blood urea nitrogen (BUN), serum calcium (Ca), serum phosphorus (P) were measured; the renal tissues from the same part of the left kidney were collected to make histopathological sections for hematoxylin-eosin staining and Masson staining, and the pathological changes of renal tubulointerstitial injury and fibrosis were observed under an optical microscope; RT-PCR was employed to measure the expression of microRNA-21 in the renal tissues of the rats in each group. "Results The renal tubulointerstitial fibrosis area was significantly larger in the UUO group than in the sham group and treatment group. The UUO group and treatment group had significantly higher SCr and BUN as well as expression of microRNA-21 than the sham group at all time points, but the treatment group had significantly lower indicators listed above compared with the UUO group (F=5.82-280.71,Plt;0.05). "Conclusion 1,25-(OH)2D3 can inhibit the progression of renal fibrosis and protect renal function to a certain extent, possibly by down-regulating the expression of micro-RNA-21 in the renal tissues.
[KEY WORDS] calcitriol; microRNAs; kidney; fibrosis; rats
慢性腎臟?。–KD)的患病率為6%~8%[1]。而腎纖維化是CKD終末期的共同病理特征,包括腎小球硬化和腎小管間質纖維化,且腎小管間質纖維化與CKD的預后密切相關,其過程不可逆,目前尚無有效藥物逆轉終末期腎病的進展[2]。轉化生長因子-β(TGF-β)是目前發(fā)現(xiàn)的最強的促腎纖維化因子,"其與受體結合觸發(fā)Smad轉錄因子磷酸化,實現(xiàn)信號轉導作用[3]。據(jù)報道,抑制TGF-β1/Smad3信號通路可減緩腎纖維化過程[3-4]。MicroRNAs是一類內源性的非編碼RNA,通過堿基互補配對識別靶mRNA調控基因表達[5-6]。在所有microRNAs中,microRNA-21不僅能促進腫瘤的生長,還參與腎臟疾病的進展[6-7]。既往研究結果已證實,microRNA-21的過表達可顯著促進體外培養(yǎng)的人腎小管上皮細胞系HK-2的凋亡與細胞外基質沉積,下調E-鈣黏蛋白水平,促進腎間質纖維化[8]。在單側輸尿管結扎的腎纖維化模型鼠中,由受損的近端小管上皮細胞表達的microRNA-21可以通過激活PTEN/AKT通路參與腎纖維化進展[9]。1,25-(OH)2D3是維生素D3的主要活性形式,其經典作用是參與調節(jié)體內鈣磷代謝,但其他的藥理作用近年來也逐漸受到關注[10]。1,25-(OH)2D3在一定程度上可減少促炎細胞因子,下調某些microRNAs的表達,抑制CKD炎癥狀態(tài)[11-12]。有研究表明,1,25-(OH)2D3可以通過抑制TGF-β/Smad3通路,發(fā)揮抗纖維化的作用[13]。在由豬血清誘導的大鼠肝纖維化模型中,microRNA-21可激活ERK與TGF-β/smad3通路促進肝纖維化的進展[14],由此推測microRNA-21與1,25-(OH)2D3在體內存在共同的調控纖維化的通路。但1,25-(OH)2D3對microRNA-21在腎纖維化中表達是否可以產生調控作用尚未見研究報道。因此,本研究通過建立腎纖維化模型,進一步探討1,25-(OH)2D3對實驗性SD大鼠腎纖維化組織中microRNA-21表達的影響,同時檢測大鼠腎功能、腎臟損傷和纖維化情況,以期為1,25-(OH)2D3用于腎纖維化治療提供更多的理論及實驗依據(jù)。
1 材料與方法
1.1 動物與試劑
清潔級健康雄性SD大鼠36只,體質量(200±20)g,購自斯貝福(北京)生物技術有限公司,許可證號SCXK(京)2016-0002,飼養(yǎng)于青島大學醫(yī)學部(松山校區(qū))動物房。1,25-(OH)2D3(商品名羅蓋全,上海羅氏制藥有限公司),Trizol試劑(美國Invitrogen),cDNA反轉錄試劑盒和RT-PCR反應試劑盒(日本Takara),引物由青島擎科梓熙生物技術有限公司合成。
1.2 實驗方法
1.2.1 動物分組及處理 將36只SD大鼠隨機分為假手術組(Sham組)、單側(左)輸尿管結扎組(UUO組)、1,25-(OH)2D3干預組(干預組),每組12只。參考文獻的方法造模[15]。以30 g/L戊巴比妥鈉(50 mg/kg)腹腔注射麻醉大鼠,于腹正中切口翻開腸襻,找到左腎下極,在其內側找到輸尿管,游離輸尿管旁組織;UUO組、干預組于左側腎臟近腎門處結扎輸尿管,Sham組僅游離左側輸尿管而不結扎;最后還納腸襻,縫合腹部切口。手術嚴格遵守無菌操作原則。干預組術后當天開始給予1,25-(OH)2D3(溶于2 mL花生油)0.06 μg/(kg·d)每日1次灌胃,Sham組和UUO組給予等體積的花生油灌胃。1,25-(OH)2D3的劑量選擇參考金瑞日等[16]的研究。
1.2.2 標本采集 分別于術后14、28 d,各組隨機抽取6只大鼠,腹主動脈取血,在4 ℃下以12 000 r/min離心5 min分離血清,保存于-80 ℃冰箱中;取各組大鼠腎臟相同部位組織置于40 g/L多聚甲醛中固定,石蠟包埋制作病理切片;其余部分腎組織用液氮快速冷凍,置于-80 ℃冰箱中保存,以備提取microRNA-21。
1.2.3 血清指標的檢測 應用HITACHI 7600系列全自動生化分析儀分別檢測血肌酐(Scr)、尿素氮(BUN)、鈣(Ca)、磷(P)等水平。
1.2.4 腎臟病理學檢查 腎臟組織經40 g/L多聚甲醛固定、石蠟包埋,切成3 μm厚的切片后,行蘇木精-伊紅(HE)及Masson染色,中性樹膠封片,在光學顯微鏡下觀察各組腎組織結構并拍照。
1.2.5 RT-PCR檢測腎組織microRNA-21的表達取各組大鼠腎組織,置冰上研磨,用Trizol提取總RNA,反轉錄成cDNA后,以U6為內參照,檢測microRNA-21的相對表達量。反應體系共20 μL:SYBR Premix Ex TaqⅡ10.0 μL,上、下引物各0.8 μL,cDNA 2.0 μL,無酶水6.4 μL。反應條件:95 ℃、30 s,95 ℃、15 s,60 ℃、30 s,72 ℃、30 s,共39個循環(huán)。用2-△△Ct計算各組microRNA-21的表達水平。引物序列見表1。
1.3 統(tǒng)計學處理
采用GraphPad Prism 5軟件進行統(tǒng)計學分析,所得計量數(shù)據(jù)以±s表示,均數(shù)間比較采用雙因素方差分析,繼以Bonferroni法進行多重比較,相關性檢驗采用Spearman相關性分析。以P<0.05為差異有統(tǒng)計學意義。
2 結 "果
2.1 各組大鼠腎臟外觀
Sham組大鼠兩側腎臟紅潤,大小正常。UUO組和干預組大鼠梗阻側腎臟明顯水腫,縱向剖開后,可見腎內積水,積液清亮,且隨梗阻時間延長腎臟體積增大。
2.2 血清指標的比較
2.2.1 Scr 時間主效應顯著(F=20.339,P<0.05),組別主效應顯著(F=60.566,P<0.05),組別與時間無交互效應(F=2.023,P>0.05)。干預組、UUO組大鼠各時間點的Scr水平均高于Sham組,干預組低于UUO組,差異具有統(tǒng)計學意義(t=3.242~8.695,P<0.05)。組內比較,Sham組術后14 d與28 d比較差異無顯著性,干預組和UUO組術后28 d Scr水平高于術后14 d,差異具有統(tǒng)計學意義(t=3.667、3.156,P<0.05)。見表2。
2.2.2 BUN 時間主效應顯著(F=8.585,P<0.05),組別主效應顯著(F=280.706,P<0.05),組別與時間交互效應顯著(F=5.822,P<0.05)。干預組、UUO組大鼠各時間點BUN水平均高于Sham組,干預組低于UUO組,差異有統(tǒng)計學意義(t=6.188~17.980,P<0.05)。組內比較,Sham組和UUO組術后14 d與28 d比較差異無統(tǒng)計學意義,干預組術后28 d高于術后14 d,差異具有統(tǒng)計學意義(t=4.087,P<0.05)。見表2。
2.2.3 Ca和P 各組大鼠各時間點Ca、P水平比較差異均無顯著性(P>0.05)。見表2。
2.3 病理學改變
2.3.1 HE染色 Sham組大鼠腎組織未見明顯病理改變。術后14 d,UUO組可見腎小管上皮細胞彌漫性腫脹、變性、萎縮,管腔擴張,腎小管結構紊亂、變形,多數(shù)腎小管基底膜喪失;腎間質增寬,間質內炎癥細胞浸潤;腎小球病理改變不明顯。術后28 d,腎間質明顯增寬,大量炎癥細胞浸潤,纖維化程度加深。相對于UUO組,干預組同一時間點腎間質病變程度較輕,腎小管基底膜多呈不規(guī)則改變,部分視野腎間質、腎小管損傷不明顯,腎間質纖維化相對面積明顯減少。各組均未見鈣化點、鈣化灶。
2.3.2 Masson染色 Sham組大鼠腎間質未見明顯陽性染色。隨梗阻時間延長,UUO組大鼠腎間質中膠原纖維陽性染色面積增大,術后14 d可見多數(shù)腎小管管腔擴張,腎間質增寬,纖維組織增生,炎癥細胞浸潤;術后28 d上述情況加劇。與UUO組相比,干預組在相同時間點的膠原沉積程度和腎小管管腔擴張程度顯著減輕。見圖1。
2.4 各組大鼠腎組織microRNA-21表達的比較
時間主效應顯著(F=25.170,P<0.05),組別主效應顯著(F=34.051,P<0.05),組別與時間交互效應顯著(F=7.088,P<0.05)。干預組、UUO組大鼠各時間點microRNA-21表達均高于Sham組,干預組較UUO組降低,差異具有統(tǒng)計學意義(t=3.093~8.330,P<0.05)。組內比較,Sham組和干預組術后14 d與28 d比較差異無顯著意義,UUO組術后14 d的microRNA-21表達水平低于術后28 d(1.00±0.00 vs 2.16±0.60),差異具有統(tǒng)計學意義(t=2.801,P<0.05)。見表3。
2.5 microRNA-21表達與腎間質纖維化的關系
參考崔炯等[17]的方法對Masson染色腎間質纖維化程度進行評分,并與microRNA-21的表達進行相關性分析,結果顯示,microRNA-21表達與腎間質纖維化程度呈顯著正相關(r=0.881,P<0.05)。
3 討 "論
腎纖維化以成纖維細胞和細胞外基質蛋白的異常沉積為特征,伴隨腎小球硬化、腎小管萎縮、腎間質炎癥、實質細胞丟失,腎功能逐漸喪失,其過程復雜,如何逆轉或延緩腎纖維化進展仍是目前研究的重點[18]。1,25-(OH)2D3與維生素D受體(VDR)特異性結合發(fā)揮生物學效應。VDR分為膜VDR(mVDR)和核VDR(nVDR)兩大類。mVDR主要參與控制礦物質的動態(tài)平衡;nVDR參與基因的表達,調控細胞的增殖、分化,在抗炎、抗癌、抗氧化、抗纖維化以及免疫調節(jié)中起重要作用[19-21]。目前,活性維生素D用于CKD與透析病人中以糾正鈣磷代謝紊亂已達成專家共識[22]。
隨著研究的深入,microRNAs作為生物學靶點治療各種疾病已受到學界的廣泛關注。既往研究結果表明,腎纖維化與microRNAs的表達有著密切的關系[12]。TGF-β是腎纖維化的關鍵因子,既可由microRNA-21進行調節(jié),又可通過Smad3信號傳導誘導microRNA-21表達,microRNA-21與TGF-β/Smad3信號途徑之間存在正反饋調節(jié)[23]。UUO(單側輸尿管梗阻)模型是以加速的方式模仿人類慢性阻塞性腎病[24]。在本研究中,UUO組大鼠Scr水平升高,腎小管擴張明顯,多數(shù)腎小管基底膜完全喪失,間質顯著增寬,可見到大量單核細胞浸潤、纖維組織增生,腎間質損傷及纖維化程度增高,提示UUO模型建立成功。隨著UUO模型大鼠腎纖維化的進展,microRNA-21的表達水平增加且與腎纖維化程度呈顯著正相關,表明microRNA-21參與腎纖維化的過程并隨腎纖維化的進展其表達水平增高。與UUO組相比,干預組大鼠Scr水平降低,且HE染色、Masson染色結果也顯示,干預組大鼠腎小管間質損傷及纖維化程度明顯改善,表明1,25-(OH)2D3在一定程度上具有延緩UUO模型大鼠腎小管間質纖維化、保護腎功能的作用,這與既往研究結果一致[12,16,25]。隨著時間的進展,Sham組大鼠腎臟組織形態(tài)未見明顯變化,而UUO組和干預組大鼠腎臟組織的纖維化面積逐漸增大,提示1,25-(OH)2D3雖然可以延緩UUO模型大鼠腎纖維化進展,但不能逆轉腎纖維化。各組血Ca、P水平比較差異無統(tǒng)計學意義,說明1,25-(OH)2D3的抗纖維化作用不依賴于鈣磷調節(jié)途徑。據(jù)文獻報道,1,25-(OH)2D3與其受體結合可降低Smad3的轉錄活性,抑制TGF-β的表達,從而抑制腎纖維化[16,25]。因此,1,25-(OH)2D3與microRNA-21存在共同的調控腎纖維化的途徑,即TGF-β/Smad3。本文研究結果顯示,Sham組大鼠腎組織microRNA-21的表達水平低于UUO組和干預組,而干預組大鼠腎組織microRNA-21的表達低于UUO組,差異有統(tǒng)計學意義,說明1,25-(OH)2D3可能下調了大鼠腎組織中microRNA-21的表達水平。
綜上所述,1,25-(OH)2D3可能通過下調UUO腎纖維化模型大鼠腎組織中microRNA-21的表達而延緩腎纖維化的進展。但本研究由于樣本數(shù)有限以及未進行相關的體外實驗,關于1,25-(OH)2D3調控microRNA-21表達延緩腎纖維化的具體機制還未充分闡明,有待今后繼續(xù)研究。
[參考文獻]
[1] CHEN T K, KNICELY D H, GRAMS M E. Chronic kidney disease diagnosis and management: a review[J]. JAMA, 2019,322(13):1294-1304.
[2] XIAO Y, JIANG X H, PENG C, et al. BMP-7/Smads-induced inhibitor of differentiation 2 (Id2) upregulation and Id2/Twist interaction was involved in attenuating diabetic renal tubulointerstitial fibrosis[J]. The International Journal of Biochemistry amp; Cell Biology, 2019,116:105613.
[3] 曾錦江,米華. TGF-β/Smad信號通路在腎纖維化中的研究進展[J]. 廣東醫(yī)學, 2017,38(15):2412-2415.
[4] SIERRA-MONDRAGON E, RODRGUEZ-MUOZ R, NAMORADO-TONIX C, et al. All-trans retinoic acid atte-nuates fibrotic processes by downregulating TGF-β1/Smad3 in early diabetic nephropathy[J]. Biomolecules, 2019,9(10):525-544.
[5] FAN Y L, CHEN H T, HUANG Z X, et al. Emerging role of miRNAs in renal fibrosis[J]. RNA Biol, 2020,17(1):1-12.
[6] TRIONFINI P, BENIGNI A. MicroRNAs as master regulators of glomerular function in health and disease[J]. J Am Soc Nephrol: JASN, 2017,28(6):1686-1696.
[7] LV W, FAN F, WANG Y G, et al. Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD[J]. Physiol Genom, 2018,50(1):20-34.
[8] LYU H Y, LI X, WU Q, et al. Overexpression of microRNA-21 mediates Ang Ⅱ-induced renal fibrosis by activating the TGF-β1/Smad3 pathway via suppressing PPARα[J]. Journal of Pharmacological Sciences, 2019,141(1):70-78.
[9] ZHENG S B, ZHENG Y, JIN L W, et al. Microvesicles containing microRNA-21 secreted by proximal tubular epithelial cells are involved in renal interstitial fibrosis by activating AKT pathway[J]. Eur Rev Med Pharmacol Sci, 2018,22(3):707-714.
[10] TUCKEY R C, CHENG C Y S, SLOMINSKI A T. The se-rum vitamin D metabolome: What we know and what is still to discover[J]. J Steroid Biochem Mol Biol, 2019,186:4-21.
[11] SHEN Q Q, BI X, LING L L, et al. 1,25-dihydroxyvitamin D3 attenuates angiotensin Ⅱ-induced renal injury by inhibiting mitochondrial dysfunction and autophagy[J]. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol, 2018,51(4):1751-1762.
[12] HU X F, LIU W L, YAN Y L, et al. Vitamin D protects against diabetic nephropathy: evidence-based effectiveness and mechanism[J]. Eur J Pharmacol, 2019,845:91-98.
[13] SHANY S, SIGAL-BATIKOFF I, LAMPRECHT S. Vitamin D and myofibroblasts in fibrosis and cancer: at cross-purposes with TGF-β/SMAD signaling[J]. Anticancer Research, 2016,36(12):6225-6234.
[14] HUANG Q F, ZHANG X L, BAI F C, et al. Methyl helic-terte ameliorates liver fibrosis by regulating miR-21-mediated ERK and TGF-β1/Smads pathways[J]. Int Immunopharmacol, 2019,66:41-51.
[15] 陳香美. 腎臟病學實驗技術操作規(guī)程[M]. 北京:人民軍醫(yī)出版社, 2011:206-208.
[16] 金瑞日,鮑曉榮. 活性維生素D3對大鼠腎小管間質纖維化的影響及其機制研究[J]. 中國臨床醫(yī)學, 2015,22(6):722-726.
[17] 崔炯,吳小婷,尤丹瑜,等. 巨噬細胞清除對補體C3缺失的單側輸尿管梗阻小鼠腎間質纖維化的影響[J]. 中華腎臟病雜志, 2019,35(9):690-698.
[18] ZHANG X F, YANG Y, ZHANG J, et al. Microvesicle-containing miRNA-153-3p induces the apoptosis of proximal tubular epithelial cells and participates in renal interstitial fibrosis[J]. Eur Rev Med Pharmacol Sci, 2019,23(22):10065-10071.
[19] GALLO D, MORTARA L, GARIBOLDI M B, et al. Immunomodulatory effect of vitamin D and its potential role in the prevention and treatment of thyroid autoimmunity: a narrative review[J]. Journal of Endocrinological Investigation, 2020,43(4):413-429.
[20] MURDACA G, TONACCI A, NEGRINI S, et al. Emerging role of vitamin D in autoimmune diseases: an update on evidence and therapeutic implications[J]. Autoimmunity Reviews, 2019,18(9):102350.
[21] HARRISON S R, LI D Y, JEFFERY L E, et al. Vitamin D, autoimmune disease and rheumatoid arthritis[J]. Calcif Tissue Int, 2020,106(1):58-75.
[22] JEAN G, SOUBERBIELLE J, CHAZOT C. Vitamin D in chronic kidney disease and dialysis patients[J]. Nutrients, 2017,9(4):328.
[23] LAI JENNIFER Y, LUO JH, O’CONNOR C, et al. MicroRNA-21 in glomerular injury[J]. J Am Soc Nephrol, 2015,26(4):805-816.
[24] MARTNEZ-KLIMOVA E, APARICIO-TREJO O E, TAPIA E, et al. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments[J]. Biomolecules, 2019,9(4):141-169.
[25] 劉萍,席春生. 活性維生素D在腎纖維化中的治療作用及機制[J]. 中國中西醫(yī)結合腎病雜志, 2018,19(9):841-843.
(本文編輯 馬偉平)