• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large spread across AeroCom Phase II models in simulating black carbon in melting snow over Arctic sea ice

    2020-04-12 06:20:08PANShifengDUANMingkeng
    Advances in Polar Science 2020年4期

    PAN Shifeng &DUAN Mingkeng*

    1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),Nanjing University of Information Science &Technology,Nanjing 210044,China;

    2 Key Laboratory of Meteorological Disaster,Ministry of Education (KLME),Nanjing University of Information Science &Technology,Nanjing 210044,China;

    3 Joint International Research Laboratory of Climate and Environment Change (ILCEC),Nanjing University of Information Science &Technology,Nanjing 210044,China

    Abstract Over two dozen global atmospheric chemistry models contributing to the Aerosol Comparisons between Observations and Models (AeroCom) project were used in this study to drive the Los Alamos sea ice model to simulate the black carbon (BC) concentration in melting snow on Arctic sea ice.Measurements of BC during the melting season show concentrations in the range 2.8–41.6 ng·g-1 (average:15.3 ng·g-1) in the central Arctic Ocean and Canada Basin.Most results from models contributing to the Phase I project were within the 25th and 75th percentiles of the observations,and the multimodel mean was slightly lower than that of the observations.In contrast,there was larger divergence among the Phase II model simulations and the mean value of BC was overestimated.The multimodel mean bias was-3.1 (-11.2 to +6.7) ng·g-1 for Phase I models and +3.9 (-9.5 to +21.3) ng·g-1 for Phase II models.The differences between the models of the two phases were probably attributable to the updated aerosol scheme in the new contributions,in which removal processes are parameterized by considering the actual dimensions and chemical compositions of the particles.This means the removal mechanism acts in a way that is more selective and leads to more BC particles being transported to the Arctic.In addition,higher spatial resolution could be another important reason for overestimation of BC concentration in snow in Phase II models.

    Keywords black carbon,AeroCom,melting snow,Arctic sea ice

    1 Introduction

    Black carbon (BC) is among the particulate species most efficient at absorbing visible light (Bond et al.,2013).BC that originates from mid–high-latitude anthropogenic emissions can reach the Arctic and influence the local climate through direct radiative forcing,semidirect cloud effects,indirect cloud effects,and deposition onto snow and ice surfaces (Quinn et al.,2011).In the Arctic,BC deposition can effectively reduce the surface albedo,leading to more rapid ablation of snowpack and its underlying sea ice (Hansen et al.,2004;Flanner et al.,2007;McConnell et al.,2007;Holland et al.,2012;Goldenson et al.,2012).Previous related studies suggested that the annual mean radiative forcing over the Arctic region attributable to BC deposition is 0.1–0.3 W·m-2(Flanner et al.,2009;Quinn et al.,2011;Zhou et al.,2012;Jiao et al.,2014).However,considerable uncertainty remains regarding this effect in the sea ice region owing to lack of field measurements and model verification.

    Many measurements of BC concentration in snow have been conducted in the Arctic during various seasons (e.g.,Grenfell et al.,2002;Forsstr?m et al.,2009;Doherty et al.,2010;Sinha et al.,2017,2018;Jacobi et al.,2019).Previous studies have provided extensive verification of modeled BC deposition using ground observations during spring (e.g.,Flanner et al.,2007;Wang et al.,2011;Dou et al.,2012;Jiao et al.,2014).In contrast,simulations of BC deposition and of its effect on snow and ice ablation in the melting season are poorly validated and thus considerable uncertainties remain (Dou et al.,2016),especially over the Arctic Ocean.It is well known that BC particles could accumulate at the surface layer of the snowpack through melting of snow,strengthening BC–snow albedo feedbacks (Doherty et al.,2013;Dou et al.,2017;Dou et al.,2019).Therefore,uncertainties regarding BC deposition and the redistribution of BC particles in melting snow might be amplified in modeling of sea ice ablation.

    It is necessary to validate the modeled results of BC in melting snow to reduce the uncertainty of such simulations over sea ice areas in the melting season.The Aerosol Comparisons between Observations and Models (AeroCom) project was initiated to allow the aerosol observation and modeling communities to enhance understanding of global aerosols and of their impact on climate (Samset et al.,2013).A large number of atmospheric chemistry and climate models have contributed to the AeroCom archive (Koch et al.,2009;Myhre et al.,2013).Here,we assessed the performance of state-of-the-art aerosol models in simulating BC in melting snow over Arctic sea ice using observations published in earlier studies (Perovich et al.,2009;Doherty et al.,2010;Dou et al.,2012).Two phases of AeroCom models were considered in this study,and the differences between the two sets of modeled results and the intermodel divergences were analyzed.

    2 Data and methods

    Monthly gridded fields of BC deposition output from 12 (13) models contributing to Phase I (II) of the AeroCom project were used to simulate the BC concentration in melting snow over Arctic sea ice.Table 1 summarizes the names,resolutions,and emission rates of the 25 models.Phase I simulations were performed under the present-day “B” protocol (Kinne et al.,2006) with all models adopting harmonized BC emissions fields,while Phase II simulations were performed under the present-day “A2 control” protocol (Schulz et al.,2009) with each model adopting its own emissions fields.

    Table 1 Phase I and Phase II AeroCom models used in this study

    All fields of BC deposition were regridded to 1.9° × 2.5° resolution and used to drive the Los Alamos sea ice (CICE) model with NCEP/NCAR reanalysis data (with 6-h temporal resolution) in 2005,2008,and 2010,which is when the BC measurements were conducted.This model is able to simulate the effects of BC deposition,meltwater scavenging,and sublimation on the vertical profile of BC within snow cover.Further details regarding the performance of the CICE model can be found in Holland et al.(2012).For hydrophilic and hydrophobic BC,the scavenging coefficients were set at 0.2 and 0.03,respectively,according to Flanner et al.(2007) and Jiao et al.(2014).

    The CICE model includes two snow layers on the sea ice surface,and the thickness of the surface snow varied with the modeled depth of the entire snow layer (Hunke et al.,2011).For example,for thick snow (>8 cm),the surface snow layer was specified as 4 cm,while for thin snow (≤8 cm),the surface snow layer was set at half the total thickness (Holland et al.,2012).On average,during the sampling period,the observed snow depth was approximately 5 cm (Dou et al.,2013).Thus,we used the snow water equivalent of the different layers as weights when calculating the weighted average of the BC concentration in the entire snow layer,which we then compared with the observations obtained during the same period.The spatial distribution of the observations used for model verification is shown in Figure 1 and further details are listed in Table S1.As snow melts,superimposed ice will form on the sea ice surface,some of which will mix with the depth hoar at the bottom of the snow layer (Dou et al.,2012).In practice,it is difficult to distinguish between them during the sampling process.Therefore,BC concentrations in “snow/ice samples” were used to validate the model results in this study.For measurement sites within the same model grid,the observed values were averaged to provide a single value for comparison with the modeled value.

    3 Results and discussion

    Figure 1 Distribution of measurement sites used in this study.Red squares indicate measurement sites during the 1st Korean Arctic Expedition in summer 2010 (Dou et al.,2012).Black circles indicate the observations provided by Doherty et al.(2010),involving measurements conducted during the HOTRAX* campaign in summer 2005 and during the UVic** campaign in summer 2008.During these three campaigns,the melting snow on Arctic sea ice was sampled.Notes:*The Healy-Oden Trans-Arctic Expedition (HOTRAX) was a summer transect of the Arctic Ocean from the Bering Strait to Fram Strait performed by two icebreakers (Oden and Healy) in 2005.**The UVic campaign was a summer transect in the Beaufort Sea coordinated by the University of Victoria in 2008.

    Based on the observations on BC in snow on Arctic sea ice,collated from earlier studies (Table S1),we estimated that the BC concentration in melting snow over the central Arctic Ocean and Canada Basin was in the range 2.8–41.6 ng·g-1(average:15.3 ng·g-1).Before verification,the model results were interpolated to each measurement site in the corresponding month and year of the observations and compared with the mean observed value in cases where more than one measurement was available within a model grid box.Observation–model comparison revealed that all the model results were within the observed minimum and maximum thresholds,although intermodel divergence was large.In comparison with the mean value of the observations,the multimodel mean bias was-3.1 (-11.2 to +6.7) ng·g-1for Phase I models and +3.9 (-9.5 to +21.3) ng·g-1for Phase II models.The results of most Phase I models were concentrated within the 25th and 75th percentiles of the observations,and the average value of the multimodel results was slightly lower than that of the observations (Figure 2).In contrast,model divergence was more apparent in the Phase II contributions,and the mean value of BC concentration was overestimated (Figure 2).Overestimation of the multimodel mean for the Phase II models was mainly driven by overestimation in OsloCTM2,HadGEM2,GOCART,and TM5.

    In this study,all simulations were conducted using the same sea ice model driven by the same atmospheric reanalysis data and different atmospheric chemistry models.Thus,the simulated discrepancies of BC values in melting snow were attributable mainly to intermodel diversity in BC deposition.The simulation of BC deposition depends on the emission inventory,parameterizations of aerosol aging,aerosol–cloud interactions,and dry and wet removal processes (Quinn et al.,2011).In this study,Phase I models adopted harmonized BC emissions fields (Table 1),although possibly with slight differences in the partitioning of emissions in terms of the vertical space and size distributions.In contrast,each Phase II model adopted its own emissions,for which the emission rates had a normalized standard deviation of 0.23 (Table 1),leading to wider divergence in model deposition flux.Therefore,part of the increased spread in Phase II BC concentrations in snow originated from the use of different emissions inventories.

    Figure 2 Observed and modeled BC values within melting snow over Arctic sea ice.From left to right:observed snow BC,simulated concentrations over the observational domain based on AeroCom Phase I models,and simulated values from Phase II models.The gray box indicates the 25th and 75th percentiles of the observations,and the whiskers depict the threshold of observed minimum and maximum values.The bold horizontal line indicates the mean value of the observations/multimodel results.Each colored dot represents the mean result of a particular model averaged over the grid cells matching the location,time,and depth of the measurements.

    The most important update in the Phase II contributions is the incorporation of a new aerosol scheme.Phase I models apply an aerosol process described as a bulk scheme (Krol et al.,2005).For bulk models,wet removal is overestimated because BC particles are considered wholly soluble in clouds,and because the hygroscopic state and particle size are not taken into account.In contrast,for most models contributing to Phase II (e.g.,TM5,OsloCTM2,HadGEM2,GOCART,SPRINTARS,GMI,and GISS),a new version of aerosol dynamics is applied (Gilardoni et al.,2011;Mann et al.,2014).In these models,aerosol particles are described in modes with coagulation,condensation,and nucleation considered.The removal processes are parameterized by considering the actual dimensions and chemical compositions of the particles (Glassmeier et al.,2017).Therefore,the new aerosol scheme allows the removal mechanism of BC aerosols to act in a way that is more selective and physically realistic,leading to transportation of BC particles to the Arctic that is more effective (Sand et al.,2017).This is the main reason for the overestimation of BC in melting snow and for the more significant intermodel divergence in Phase II models.In addition,it can be seen that most Phase II models run with higher horizontal resolution (Table 1).Previous studies have indicated that underestimation of aerosol concentrations in the Arctic could be improved in part by increasing the horizontal resolution of the models (e.g.,Wiedinmyer et al.,2011;Ma et al.,2014),which might be an important reason for the overestimation of BC concentrations in snow in Phase II models.

    Comparison of the model results and observations in the domain of the field measurements revealed that snow depth was overestimated by approximately 3.5 cm on average during the measurement period,leading to overestimation of the total snow BC content in the snow layer.This was expected because the CICE model does not consider the impact of snow drift (Hunke et al.,2011;Blanchard-Wrigglesworth et al.,2015).Affected by impurity enrichment associated with melting snow in the model,the snow BC concentration will be overestimated.This is another reason for the overestimation in Phase II models.

    Comparison of the results of each model in terms of the average,maximum,and minimum values and spatial variability (correlation coefficient) revealed that among the Phase I models,MATCH and UMI could well reproduce the observed value of BC over the measurement area,and that the average value of each model was within the 25th and 75th percentiles of the observations (Table 2).For Phase II models,the results of GISS-modelE were most comparable with the observations (Table 3).

    Table 2 Comparison of the results from Phase I models and the observations

    Table 3 Comparison of the results from Phase II models and observations

    4 Conclusions

    Two dozen state-of-the-art global atmospheric chemistry models contributing to the AeroCom project were used to drive the CICE model to simulate BC concentration in melting snow over Arctic sea ice.Results showed that the multimodel average of the models contributing to Phase I could generally reproduce the mean level of observed BC concentrations over the Arctic Ocean and Canada Basin,and most of the simulated BC values were concentrated within the 25th and 75th percentiles of the observations.The dispersion in the results of the Phase II models was larger and the mean value of the multimodel results was overestimated in comparison with the observed average concentration.The main reason is the adoption of a new and more selective aerosol scheme in the Phase II models that reduces the BC scavenging efficiency and increases intermodel differences.Overall,the Phase II multimodel results showed no significant improvement in the simulation of BC concentration in melting snow,but did indicate increased intermodel discrepancies.

    In terms of individual models,the MATCH and UMI (Phase I) and GISS-modelE (Phase II) models showed better performance in simulation of BC concentration in melting snow over Arctic sea ice.To provide reasonable estimations of BC concentration in melting snow and of its radiative forcing effect over Arctic sea ice,it would be beneficial to first select the optimal models through comparison with observed vertical profiles of aerosol BC in the Arctic,and then use the selected models to drive the sea ice model.Of course,more extensive observations of BC concentration in melting snow will be necessary for model verification.Meanwhile,further improvement is needed regarding the parameterization of BC scavenging associated with melting snow because the redistribution and/or enrichment of BC particles can greatly affect the BC concentration in melting snow.

    AcknowledgmentsThis study is funded by the Program of National Natural Science Foundation of China (Grant nos.41675056 and 41991283).We are grateful to the High-Performance Computing Center of Nanjing University of Information Science &Technology for conducting the numerical calculations.The authors thank the reviewer,Dr.H W Jacobi,and another anonymous reviewer for their constructive comments and suggestions.

    Appendix

    Table S1 BC concentrations observed in the melting snow over summer Arctic sea ice

    日本91视频免费播放| 亚洲av男天堂| 美女cb高潮喷水在线观看| 伦精品一区二区三区| 日日撸夜夜添| 熟妇人妻不卡中文字幕| 亚洲美女黄色视频免费看| 99热全是精品| 99热国产这里只有精品6| 美女内射精品一级片tv| 夫妻性生交免费视频一级片| 亚洲高清免费不卡视频| 午夜福利网站1000一区二区三区| 中国国产av一级| 欧美激情极品国产一区二区三区 | 啦啦啦啦在线视频资源| 日本av免费视频播放| 国产精品麻豆人妻色哟哟久久| 国产高清国产精品国产三级| 91久久精品电影网| 精品亚洲成a人片在线观看| 夫妻午夜视频| 久久久久国产网址| 美女cb高潮喷水在线观看| 22中文网久久字幕| 亚洲成人一二三区av| 街头女战士在线观看网站| 新久久久久国产一级毛片| 99久国产av精品国产电影| 国产精品人妻久久久影院| 在线天堂最新版资源| 99久久精品一区二区三区| 亚洲精品久久午夜乱码| 日日撸夜夜添| 天天躁夜夜躁狠狠久久av| h视频一区二区三区| 欧美 日韩 精品 国产| 中文精品一卡2卡3卡4更新| 精品一区二区免费观看| 女人久久www免费人成看片| 男女无遮挡免费网站观看| 国产精品久久久久久久久免| 亚洲精品av麻豆狂野| 中文精品一卡2卡3卡4更新| 日韩av不卡免费在线播放| 久久鲁丝午夜福利片| tube8黄色片| a 毛片基地| 9色porny在线观看| 国产欧美另类精品又又久久亚洲欧美| 这个男人来自地球电影免费观看 | 国产成人免费无遮挡视频| 久久久久视频综合| 在线观看一区二区三区激情| 在线观看免费高清a一片| 精品一区二区三卡| 亚洲熟女精品中文字幕| 岛国毛片在线播放| 午夜福利在线观看免费完整高清在| 黄片播放在线免费| av黄色大香蕉| 成人黄色视频免费在线看| 国产av码专区亚洲av| 亚洲欧美成人精品一区二区| 18禁观看日本| 一本—道久久a久久精品蜜桃钙片| 在线观看免费日韩欧美大片 | 国产精品不卡视频一区二区| 欧美成人午夜免费资源| 久久久久久伊人网av| 亚洲精品乱码久久久v下载方式| 色婷婷久久久亚洲欧美| 一级二级三级毛片免费看| 一级a做视频免费观看| 精品久久蜜臀av无| 人人妻人人澡人人看| 男人操女人黄网站| 亚洲激情五月婷婷啪啪| 黑丝袜美女国产一区| kizo精华| 美女中出高潮动态图| 国产爽快片一区二区三区| 亚洲精品中文字幕在线视频| 九九爱精品视频在线观看| 在线观看一区二区三区激情| 日本黄色日本黄色录像| 亚洲第一av免费看| av黄色大香蕉| 中文字幕制服av| 一边摸一边做爽爽视频免费| 国语对白做爰xxxⅹ性视频网站| 免费观看性生交大片5| 精品久久久久久久久av| 久久久久久伊人网av| 欧美xxⅹ黑人| 大香蕉久久网| 一个人看视频在线观看www免费| 精品视频人人做人人爽| 色5月婷婷丁香| 女的被弄到高潮叫床怎么办| 久久久久精品性色| 国产免费一区二区三区四区乱码| 狂野欧美激情性xxxx在线观看| 在线观看三级黄色| www.色视频.com| 亚洲精品亚洲一区二区| 亚洲精品中文字幕在线视频| 久久青草综合色| 国产黄片视频在线免费观看| 在线观看国产h片| 亚洲精品国产色婷婷电影| 日本av免费视频播放| 亚洲精品日韩av片在线观看| 少妇的逼水好多| 黑人巨大精品欧美一区二区蜜桃 | 国产视频内射| 插阴视频在线观看视频| 免费高清在线观看日韩| 最后的刺客免费高清国语| 大陆偷拍与自拍| 中文字幕亚洲精品专区| 国产午夜精品久久久久久一区二区三区| 久久av网站| 免费黄色在线免费观看| 一级毛片 在线播放| 亚洲精品一二三| 国产亚洲精品久久久com| 久久久久精品久久久久真实原创| 人人妻人人澡人人爽人人夜夜| 国产黄色视频一区二区在线观看| 成年美女黄网站色视频大全免费 | 亚洲人成网站在线播| 国产一区亚洲一区在线观看| 亚洲av欧美aⅴ国产| 性色av一级| 一区二区三区四区激情视频| www.色视频.com| 久久毛片免费看一区二区三区| 日韩强制内射视频| 亚洲精品乱码久久久久久按摩| 免费看不卡的av| 中文字幕免费在线视频6| 久久国产亚洲av麻豆专区| 亚洲怡红院男人天堂| 免费看不卡的av| 五月天丁香电影| 亚洲国产av影院在线观看| 最近中文字幕2019免费版| 精品亚洲成a人片在线观看| 人妻少妇偷人精品九色| 国产av国产精品国产| 亚洲av福利一区| 交换朋友夫妻互换小说| 夜夜爽夜夜爽视频| 日日爽夜夜爽网站| 久久久午夜欧美精品| 精品国产一区二区三区久久久樱花| 又黄又爽又刺激的免费视频.| 久久久久国产精品人妻一区二区| 久久午夜综合久久蜜桃| 久久精品久久久久久噜噜老黄| 成人亚洲精品一区在线观看| 亚洲国产日韩一区二区| 国产精品99久久久久久久久| 99国产精品免费福利视频| 91精品三级在线观看| 亚洲性久久影院| 蜜桃在线观看..| 成人午夜精彩视频在线观看| 秋霞伦理黄片| av女优亚洲男人天堂| 综合色丁香网| 欧美日韩在线观看h| av有码第一页| 80岁老熟妇乱子伦牲交| 秋霞在线观看毛片| 亚洲情色 制服丝袜| 精品一区二区免费观看| a级毛片在线看网站| 久久久精品免费免费高清| 纯流量卡能插随身wifi吗| 人妻少妇偷人精品九色| 久久精品久久精品一区二区三区| av免费在线看不卡| 熟妇人妻不卡中文字幕| 久久国内精品自在自线图片| 成人18禁高潮啪啪吃奶动态图 | 99九九线精品视频在线观看视频| 亚洲精品色激情综合| 有码 亚洲区| 极品人妻少妇av视频| 老熟女久久久| 国产精品一二三区在线看| 老司机影院成人| 国产 精品1| 国产日韩欧美视频二区| 亚洲五月色婷婷综合| 国模一区二区三区四区视频| 热99国产精品久久久久久7| 黄色怎么调成土黄色| 亚洲av国产av综合av卡| 高清午夜精品一区二区三区| 国产精品不卡视频一区二区| 久久久国产欧美日韩av| 亚洲精品第二区| 精品久久久精品久久久| 国产精品一国产av| 国产成人精品在线电影| 亚洲图色成人| 青春草国产在线视频| 精品少妇内射三级| 国产精品三级大全| 午夜日本视频在线| 日韩成人伦理影院| 黑人欧美特级aaaaaa片| a级毛片在线看网站| 青春草视频在线免费观看| 香蕉精品网在线| 人妻系列 视频| 99久国产av精品国产电影| av在线播放精品| 制服人妻中文乱码| 这个男人来自地球电影免费观看 | 国产欧美日韩综合在线一区二区| 狂野欧美激情性bbbbbb| av又黄又爽大尺度在线免费看| 伊人亚洲综合成人网| 亚洲第一区二区三区不卡| 国产精品不卡视频一区二区| a 毛片基地| 制服人妻中文乱码| 午夜激情久久久久久久| 亚洲综合色惰| 国产一区二区在线观看日韩| 日本与韩国留学比较| 亚洲精品视频女| 满18在线观看网站| 精品亚洲乱码少妇综合久久| 国产乱来视频区| 久久午夜福利片| 国产精品一国产av| 亚洲色图 男人天堂 中文字幕 | 亚洲av成人精品一区久久| 另类精品久久| 麻豆乱淫一区二区| 一本一本综合久久| 久久综合国产亚洲精品| 欧美日韩精品成人综合77777| 国产午夜精品久久久久久一区二区三区| 久久久亚洲精品成人影院| 中文字幕人妻丝袜制服| 亚洲成人av在线免费| 性高湖久久久久久久久免费观看| 日韩,欧美,国产一区二区三区| 午夜视频国产福利| 五月开心婷婷网| 精品国产露脸久久av麻豆| 国产成人精品一,二区| 日韩电影二区| 精品熟女少妇av免费看| 大香蕉久久成人网| 免费大片18禁| 插阴视频在线观看视频| 麻豆精品久久久久久蜜桃| 丁香六月天网| 精品人妻熟女毛片av久久网站| 大陆偷拍与自拍| 日本wwww免费看| 成人国产麻豆网| 国产精品欧美亚洲77777| 王馨瑶露胸无遮挡在线观看| 亚洲人与动物交配视频| videos熟女内射| 久久狼人影院| 国产免费现黄频在线看| 超色免费av| 七月丁香在线播放| 青青草视频在线视频观看| 18禁在线无遮挡免费观看视频| 欧美丝袜亚洲另类| 免费人成在线观看视频色| 精品国产一区二区三区久久久樱花| 成人手机av| 97在线视频观看| 人妻人人澡人人爽人人| 嘟嘟电影网在线观看| 国产不卡av网站在线观看| 熟女电影av网| 免费播放大片免费观看视频在线观看| 国产亚洲午夜精品一区二区久久| 综合色丁香网| 国产精品99久久99久久久不卡 | 亚洲高清免费不卡视频| 性色av一级| 男人添女人高潮全过程视频| 国产探花极品一区二区| 人妻夜夜爽99麻豆av| 亚洲国产av影院在线观看| 人人妻人人添人人爽欧美一区卜| 高清不卡的av网站| 777米奇影视久久| 一区二区三区免费毛片| 国产日韩欧美视频二区| 18+在线观看网站| 在线天堂最新版资源| 免费播放大片免费观看视频在线观看| 久久久久人妻精品一区果冻| 精品国产国语对白av| 999精品在线视频| 80岁老熟妇乱子伦牲交| 满18在线观看网站| 我的女老师完整版在线观看| 男男h啪啪无遮挡| 韩国高清视频一区二区三区| 一区二区日韩欧美中文字幕 | 国产精品一二三区在线看| 美女中出高潮动态图| 亚洲经典国产精华液单| 国产精品一国产av| 久久午夜综合久久蜜桃| 九色亚洲精品在线播放| 新久久久久国产一级毛片| 色5月婷婷丁香| 91久久精品电影网| 亚州av有码| 一区二区三区乱码不卡18| 国产深夜福利视频在线观看| 看免费成人av毛片| 国产极品天堂在线| 中国国产av一级| 蜜桃国产av成人99| 国产不卡av网站在线观看| 人成视频在线观看免费观看| 免费不卡的大黄色大毛片视频在线观看| 中文字幕av电影在线播放| 久久久精品区二区三区| 久久毛片免费看一区二区三区| 人妻夜夜爽99麻豆av| 国产国语露脸激情在线看| 综合色丁香网| 丰满饥渴人妻一区二区三| 男女无遮挡免费网站观看| 成年美女黄网站色视频大全免费 | 三级国产精品片| 国产成人午夜福利电影在线观看| 国产女主播在线喷水免费视频网站| 精品国产一区二区久久| 国产国拍精品亚洲av在线观看| 亚洲精品av麻豆狂野| 香蕉精品网在线| 国产在线视频一区二区| 亚洲精品久久久久久婷婷小说| 国产伦精品一区二区三区视频9| 在线观看美女被高潮喷水网站| 欧美 亚洲 国产 日韩一| 国产老妇伦熟女老妇高清| a 毛片基地| av线在线观看网站| 久久久精品免费免费高清| 久久免费观看电影| √禁漫天堂资源中文www| 最近的中文字幕免费完整| 久久毛片免费看一区二区三区| 免费av不卡在线播放| 国产伦精品一区二区三区视频9| 99久久综合免费| 精品亚洲成国产av| av.在线天堂| 777米奇影视久久| 免费日韩欧美在线观看| 成人综合一区亚洲| 精品酒店卫生间| 国产精品偷伦视频观看了| 观看美女的网站| 狠狠精品人妻久久久久久综合| 国产毛片在线视频| 日韩中字成人| 最近手机中文字幕大全| 国产av一区二区精品久久| 成人漫画全彩无遮挡| 简卡轻食公司| 欧美老熟妇乱子伦牲交| 日韩人妻高清精品专区| 国产亚洲最大av| 日本黄色片子视频| 亚洲国产日韩一区二区| 成人国产麻豆网| av电影中文网址| 日韩视频在线欧美| 男女边摸边吃奶| 久久久精品94久久精品| 久久人人爽人人片av| 91精品三级在线观看| 一区二区av电影网| 国语对白做爰xxxⅹ性视频网站| 国产一区有黄有色的免费视频| 国产成人精品久久久久久| 国产国拍精品亚洲av在线观看| 少妇 在线观看| 久久精品国产亚洲av涩爱| 草草在线视频免费看| 我要看黄色一级片免费的| 中文字幕久久专区| 人妻夜夜爽99麻豆av| 国产熟女午夜一区二区三区 | 又黄又爽又刺激的免费视频.| 边亲边吃奶的免费视频| 久久午夜综合久久蜜桃| 狠狠精品人妻久久久久久综合| 免费av不卡在线播放| 国产精品人妻久久久影院| 亚洲欧美一区二区三区国产| 人人妻人人爽人人添夜夜欢视频| 成人国产麻豆网| 中文字幕精品免费在线观看视频 | 涩涩av久久男人的天堂| 亚洲av日韩在线播放| 免费av中文字幕在线| 热re99久久精品国产66热6| 性高湖久久久久久久久免费观看| 亚洲精品av麻豆狂野| 蜜桃国产av成人99| 成人亚洲欧美一区二区av| 18禁裸乳无遮挡动漫免费视频| 国产精品一区www在线观看| 国产伦理片在线播放av一区| 日本与韩国留学比较| 青春草亚洲视频在线观看| 久久久精品区二区三区| 久久久久国产网址| 成人国语在线视频| 日韩免费高清中文字幕av| 久久国产精品男人的天堂亚洲 | 国产成人freesex在线| 免费久久久久久久精品成人欧美视频 | 啦啦啦视频在线资源免费观看| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人爽人人夜夜| 26uuu在线亚洲综合色| 在线观看免费高清a一片| 又黄又爽又刺激的免费视频.| 久久免费观看电影| 综合色丁香网| 涩涩av久久男人的天堂| 男女啪啪激烈高潮av片| 久久青草综合色| 久久久国产欧美日韩av| 亚洲精品亚洲一区二区| 一区二区三区四区激情视频| 又黄又爽又刺激的免费视频.| 男女边摸边吃奶| 在线观看免费高清a一片| 丝袜喷水一区| 欧美日韩成人在线一区二区| 精品卡一卡二卡四卡免费| 久久婷婷青草| 国产一区二区三区av在线| 18禁在线无遮挡免费观看视频| 久久毛片免费看一区二区三区| 欧美日韩精品成人综合77777| av不卡在线播放| 国产精品不卡视频一区二区| 国产极品粉嫩免费观看在线 | 麻豆精品久久久久久蜜桃| 久久女婷五月综合色啪小说| 日日啪夜夜爽| 亚洲欧美成人精品一区二区| 日本与韩国留学比较| xxxhd国产人妻xxx| 亚洲精品国产av蜜桃| 精品熟女少妇av免费看| av天堂久久9| 久久久久久久久久久丰满| 久久人妻熟女aⅴ| 久久久久人妻精品一区果冻| 亚洲人成网站在线播| 亚洲av欧美aⅴ国产| 美女xxoo啪啪120秒动态图| 国产欧美日韩一区二区三区在线 | 亚洲婷婷狠狠爱综合网| 久久久精品免费免费高清| 97超视频在线观看视频| 自线自在国产av| 日韩精品有码人妻一区| 成人二区视频| av播播在线观看一区| 天美传媒精品一区二区| 欧美一级a爱片免费观看看| 亚洲精品色激情综合| 日本91视频免费播放| 日韩大片免费观看网站| 国产精品麻豆人妻色哟哟久久| 我的女老师完整版在线观看| 免费黄频网站在线观看国产| 各种免费的搞黄视频| 一个人免费看片子| 国产一区亚洲一区在线观看| 国产免费又黄又爽又色| 啦啦啦在线观看免费高清www| 丝袜喷水一区| 午夜激情久久久久久久| 人妻 亚洲 视频| 亚洲欧洲精品一区二区精品久久久 | 99九九在线精品视频| 国产有黄有色有爽视频| 午夜老司机福利剧场| 免费av不卡在线播放| 高清不卡的av网站| 另类亚洲欧美激情| 91午夜精品亚洲一区二区三区| 免费观看无遮挡的男女| 国产精品国产av在线观看| 国产成人免费观看mmmm| 国产一级毛片在线| 天天躁夜夜躁狠狠久久av| 我要看黄色一级片免费的| 亚洲国产日韩一区二区| 激情五月婷婷亚洲| 国产乱人偷精品视频| 亚洲色图 男人天堂 中文字幕 | 久久精品国产自在天天线| a级毛片黄视频| 最近中文字幕2019免费版| 久久99热这里只频精品6学生| 中文字幕久久专区| 九九久久精品国产亚洲av麻豆| 国产黄色视频一区二区在线观看| 黑丝袜美女国产一区| 久久97久久精品| 国产精品不卡视频一区二区| 在线观看三级黄色| 婷婷色av中文字幕| 日韩人妻高清精品专区| 夜夜骑夜夜射夜夜干| 一个人看视频在线观看www免费| 国产男女内射视频| 国产亚洲av片在线观看秒播厂| 制服诱惑二区| 少妇人妻精品综合一区二区| 精品熟女少妇av免费看| 一二三四中文在线观看免费高清| 中国美白少妇内射xxxbb| 少妇的逼好多水| tube8黄色片| 精品国产一区二区久久| 亚洲成人一二三区av| 视频在线观看一区二区三区| 亚洲精品日本国产第一区| 成人亚洲欧美一区二区av| 校园人妻丝袜中文字幕| 日韩在线高清观看一区二区三区| 我的女老师完整版在线观看| 婷婷成人精品国产| 精品人妻偷拍中文字幕| 国内精品宾馆在线| 精品国产露脸久久av麻豆| 久久国产亚洲av麻豆专区| 伦精品一区二区三区| 亚洲,一卡二卡三卡| 秋霞伦理黄片| 国产男人的电影天堂91| 91成人精品电影| 日韩制服骚丝袜av| 欧美 日韩 精品 国产| 午夜av观看不卡| 麻豆精品久久久久久蜜桃| 天天躁夜夜躁狠狠久久av| 男人爽女人下面视频在线观看| 亚洲人成77777在线视频| 日日爽夜夜爽网站| 伊人久久精品亚洲午夜| 久久人人爽av亚洲精品天堂| 97超碰精品成人国产| 黑人高潮一二区| 午夜福利视频在线观看免费| 亚洲国产av影院在线观看| 纯流量卡能插随身wifi吗| 亚洲天堂av无毛| 欧美3d第一页| 国产极品天堂在线| 97精品久久久久久久久久精品| 伊人亚洲综合成人网| 久久久久网色| 欧美精品一区二区大全| 亚洲精品日本国产第一区| 制服丝袜香蕉在线| 亚洲四区av| 久久人妻熟女aⅴ| 2021少妇久久久久久久久久久| 亚洲人成77777在线视频| 亚洲国产最新在线播放| 黑丝袜美女国产一区| 午夜老司机福利剧场| 久久久久久久久久人人人人人人| 高清不卡的av网站| 色94色欧美一区二区| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| 亚洲,一卡二卡三卡| 国产白丝娇喘喷水9色精品| 亚洲综合精品二区| 国产成人精品久久久久久| 免费日韩欧美在线观看| 男女免费视频国产| 午夜激情av网站| 亚洲激情五月婷婷啪啪| 亚洲精品成人av观看孕妇| av在线观看视频网站免费| 欧美丝袜亚洲另类| 3wmmmm亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 少妇人妻久久综合中文| 中文字幕人妻熟人妻熟丝袜美| 日韩大片免费观看网站| 欧美精品高潮呻吟av久久|