• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approximating home ranges of humpback and fin whales in Drake Passage and Antarctica

    2020-04-12 05:47:26JosLuisORGEIRAFacundoALVAREZ
    Advances in Polar Science 2020年4期

    José Luis ORGEIRA &Facundo ALVAREZ

    1 Departamento Biología de los Predadores Tope,Instituto Antártico Argentino.Buenos Aires,Argentina;

    2 Programa de pós-gradua??o em Ecologia e Conserva??o.Campus de Nova Xavantina.Universidade do Estado de Mato Grosso,Brasil

    Abstract Identifying home ranges—those areas traversed by individuals in their normal foraging,mating,and parenting activities—is an important aspect of cetacean study.Understanding these ranges facilitates identification of resource use and conservation.Fin and humpback whales occur in Antarctica during the austral summer,but information regarding their home ranges is limited.Using opportunistically collected whale sighting data from eight consecutive summer seasons spanning 2010–2017,we approximate the home ranges of humpback and fin whales around Drake Passage (DRA),West of Antarctic Peninsula (WAP),South Shetland Islands (SSI),an area northwest of the Weddell Sea (WED),and around the South Orkney Islands (SOI).Approximate home ranges are identified using Kernel Density Estimation (KDE).Most fin whales occurred north and northwest of the SOI,which suggests that waters near these islands support concentrations of this species.Most humpback whales were observed around the SSI,but unlike fin whales,their distributions were highly variable in other areas.KDE suggests spatial segregation in areas where both species exist such as SOI,SSI,and WPA.Partial redundancy analysis (pRDA) suggests that the distributions of these species are more affected by spatial variables (latitude,longitude) than by local scale variables such as sea surface temperature and depth.This study presents a visual approximation of the home ranges of fin and humpback whales,and identifies variation in the effects of space and environmental variables on the distributions of these whales at different spatial scales.

    Keywords humpback whale,fin whale,home range,Antarctica,Drake Passasge

    1 Introduction

    Present-day patterns in the distributions of species are the product of historical and evolutionary processes,interactions between biotic and abiotic elements,and the dispersal capacities of species (Wiens et al.,2004;Soberon,2007).While baleen whales may be conspicuous and emblematic Southern Ocean species,they remain poorly studied,particularly because researching cetaceans in Antarctic waters is logistically difficult.

    Dedicated and opportunistic surveys of whales in this region have advanced our understanding of these animals (Murase et al.,2002;Friedlaender et al.,2006;?irovi? et al.,2006;Nowacek et al.,2011;Orgeira et al.,2015,2017).Surveys that are especially relevant are those under the auspices of the International Whaling Commission (IWC),International Decade of Cetacean Research (IDCR),and Southern Ocean Whale Ecosystem Research (SOWER) from 1978/79–1983/84,1985/86–1990/91 and 1991/92–2003/04 (Branch,2011).Notable among these results are the increased breeding populations of humpback whales reported in the Southern Hemisphere (Branch,2011).

    One aspect of cetacean research in Antarctica involves determining areas that are most used in species’ life cycles.The distribution of an animal position in the two-dimensional latitude-longitude plane is known as estimation of the “distribution patterns”,which allow us to understand how a species interacts with its environment and anthropic activities (Worton,1989;Hauser et al.,2014).Estimating distribution patterns is critical in studies of species’ home ranges—those areas traversed by an individual in its normal food gathering,mating,and parenting activities (Burt,1943;Seaman and Powell,1996;Lagerquist et al.,2019).Knowing the home range of a species facilitates identification of those resources it uses,which facilitates decision-making processes regarding threatened population management and critical habitat identification (Seminoff et al.,2002;Hauser et al.,2007;Lagerquist et al.,2019).

    Knowledge of whale distributions and abundances in the Southern Ocean is generally limited because dedicated cetacean surveys are expensive,in that they consume significant ship time and are personnel intensive (Burkhardt and Lanfredi,2012).Our data were obtained from opportunistic observations made aboard one oceanographic ship over eight consecutive summers in Drake Passage and Antarctica.Using data acquired from these opportunistic samplings we aim to approximate fin (Balaenoptera physalus;Linnaeus,1758) and humpback whale (Megaptera novaeangliae;Borowski,1781) home ranges and ascertain the effects of space and environment on their distributions.

    2 Materials and methods

    2.1 Study sites

    Opportunistic observations were made from the R/VPuerto Deseadofrom 45°–66°S and 70°–33°W (Figure 1) including Drake Passage (DRA),West Antarctic Peninsula (WAP),Bransfield Sound,South Shetland Islands (SSI),an area northwest of the Weddell Sea (WED),and the South Orkney Islands (SOI),during austral summer periods from 2010–2017.The nature of sampling,and variable weather and environmental conditions during sampling,rendered the sampling effort different each year.

    Figure 1 Survey sites (gray circles) and cetacean sightings presence from 2010 to 2017:a,humpback whale (red triangles);b,fin whale (red circles).

    2.2 Survey sampling and effort

    Observations were made from the ship’s bridge (15 m above sea level) by the two same observers working simultaneously in daylight running hours (~05:00–20:00 h).Species were observed by eye and identified using 16 × 50 binoculars,personal photograph catalogs,and field guides (Bastida and Rodríguez,2003;Shirihai,2009).When identification was not possible,an individual was registered as ‘unidentified’.A ‘passing mode’ method was used during sampling,which means that the ship continued traveling along an established linear transect even after a group of marine mammals was seen (Dawson et al.,2008).

    2.3 Data analysis

    Observations were limited to sea conditions of 0–4 Beaufort Scale (wind speeds to 28 km·h-1).We express the number of sighted cetaceans as the encounter rate (ER),a measure of density (ER= the number of cetaceans observed/nm surveyed;Secchi et al.,2001),and calculate this for each species.Because vessel speed varied from 6–9 knots we assumed an average speed of 8 knots (the most frequent speed) to calculateER.This measure (or variants of it) has been used widely for decades to estimate whale densities (Secchi et al.,2001;Branch,2011;Orgeira,2018).

    Estimates of relative abundance or any related index (such as density orER) are valuable for monitoring trends and for comparing corresponding feeding or breeding grounds (Secchi et al.,2011).At each cetacean sighting,coordinates (latitude,longitude) were recorded from the ship’s GPS,sea surface temperature (SST,℃ at 3 m depth) was recorded by a Sea-Bird Electronics 21 thermosalinograph every 30 s,and water depth and distance to land (nm) were recorded from ship instruments.

    Species home ranges were obtained by Kernel Density Estimation (KDE) using data records for eight summer seasons.KDE is a non-parametric statistical function that allows estimation of the probability density of a random variable from distance distribution curves (Seaman and Powell,1996;Rayment et al.,2009).It is a widely used tool to study two-dimensional patterns of species distribution (Seaman and Powell,1996;Simonoff,1998;Duong,2007).KDE has been applied in different investigations of marine mammals,and reliably used to define home ranges (e.g.Heide-J?rgensen et al.,2002;Hobbs et al.,2005;Rayment et al.,2009;Kie et al.,2010;Hauser et al.,2014).We applied KDE from the QGIS platform [(version 3.14;Quantum GIS (Geographic Information System);QGIS.org 2020)],using the ‘Heatmap’ interpolation extension.A critical point for the algorithm is the assignment of the width of the KDE (“bandwidth”,“smoothing parameter”,or “window width”),since this variable specifies the distance of influence from a central value (Seaman and Powell,1996;Duong,2007).This Kernel bandwidth was assigned based on the authors’ experience and results of Tucker et al.(2014),wherein the home ranges of different mammals were projected from body mass.Following Hauser et al.(2014),the KDE values were normalized from 0 to 1 (1 being the maximum density value).The matrices generated were classified into two density classes according to their maximum and minimum values.Spatial and temporal differences in sampling effort can generate biases which distort reality (Phillips et al.,2009).To test for possible spatial autocorrelation (SAC) of whale occurrences,we calculated the Moran index for each data set.Although data are not affected by SAC (Moran’s I greater than |0.2|) we applied the spThin function to reduce redundant information to provide a better data fit (Aiello-Lammens et al.,2015).

    We use a partial redundancy analysis (pRDA;Borcard et al.,1992;Legendre and Legendre,2012) for each spatial predictor data set to evaluate environmental variables (SST,depth (m)) and spatial variables (latitude,longitude) for both whale species.This analysis decomposes the variation in species abundance from environmental and spatial matrices into four fractions,in which variation is determined by:(a) ‘pure’ environmental factors,(b) a spatially structured environment,(c) ‘pure’ spatial variables,and (d) unexplained variation (Borcard et al.,1992;Peres-Neto et al.,2006).pRDA allows elimination of the effects of one or more explanatory variables within a set of response variables.In this way its effects can be partitioned out to generate a single canonical axis and eigenvalue that expresses the variation for which the variable of interest is responsible (Legendre and Legendre,2012).Variations explained by each fraction are reported in terms ofR2 (Peres-Neto et al.,2006) and the effects of the environment and space are independently tested by permutation.All analyses were run in the R program (R Development Core Team,2019),with the ‘a(chǎn)despatial’ package (Dray et al.,2018) used for variable selection,and the ‘vegan’ package (Oksanen,2009) for all other analyses.

    3 Results

    A total distance of 5582 nm or 6204 km2,was covered between 45°S and 66°S (Figure 1) during summer between 2010 and 2017.In this time 764 fin whales (54.3%),644 humpback whales (45.7%) were recorded.In addition,five other cetaceans (Southern right whale,Eubalaena australis;sperm whale,Physeter macrocephalus;Antarctic minke whale,Balaenoptera bonaerensis;sei whale,Balaenoptera borealis;and hourglass dolphin,Lagenorhynchus cruciger) were also sighted.The humpback whale was the most frequently sighted species (>57% of all sightings,202 sightings).Higher encounter rates were obtained in WAP (1.01 ± 0.37 ind·nm-1(SE) for humpback whales) followed by SOI (0.89) ± 0.38 ind·nm-1(SE) for fin whales (Table 1).

    The distributions of both species differed each year (Figures 2 and 3).When all the cruises made are combined,the kernel density for both species is obtained (Figure 4).For fin whales,the most ‘used area’ occurred next to theSOI (particularly to the north and northwest of SOI,where 79% of all individuals were recorded).Fin whale occurrence was low in WAP,DRA and SSI,and none was observed south of 62°S (Table 1,Figure 4a).The most used area for humpback whales was the SSI (43.2% of all individuals),but unlike fin whales,high occurrences also occurred in all other studied zones (Figure 4b).The distribution obtained from KDE suggests different patterns of habitat segregation with the home ranges of each whale species.In SSI fin whales concentrated to the north of the islands while humpback whales occurred to the south.In WAP there was a concentration of humpbacks (17.2%),but fin whales were absent.Five fin whales were sighted northwest of the Weddell Sea,two in 2015 and three in 2016.

    Table 1 Mean encounter rates (ER,ind·nm-1),number of individuals seen (n),and Kernel density in Drake Passage (DRA),South Shetland Is.(SSI),West of Antarctic Peninsula (WAP),and South Orkney Is.(SOI),during summer from 2010 to 2017

    Figure 2 Survey sites per year (grey areas) and spatial distribution of humpback whale Kernel densities.

    Although spatial data do not show a strong SAC effect,the spThin function enables us to better adjust the data and further reduce possible effects of differences in sampling effort (Figure 5).pRDA detected a greater effect of space on the distributions of both species (Figure 6).The complete model for the humpback whale explained 46% of the total variation in the data,and 27% of that for the fin whale.Environmental variables did not individually,significantly affect the distributions of either species.Spatial variables had an effect of 39% for humpback whale (R2= 0.242;p<0.001) and 24% for fin whale (R2= 0.389;p<0.001).

    Figure 3 Survey sites per year (grey areas) and spatial distribution of fin whale Kernel densities.

    Figure 4 Kernel density for all years (a,humpback whale;b,fin whale) and proportion of individuals registered by area.Dotted lines delimit approximate boundaries of study sites (DRA:Drake Passage;SSI:South Shetland Is.;WAP:West of Antarctic Peninsula;SOI:South Orkney Islands).

    4 Discussion

    The social organization of cetaceans is strongly affected by different use of space (Hauser et al.,2007).For example,differences in humpback and fin whale habitat preferences around the SOI (Orgeira et al.,2017) which might have corresponded to different habitat requirements might also define different home ranges.During the austral summer the distribution of fin and humpback whales in Antarctica varies,but humpback whales are more common west of the Antarctic Peninsula (Dalla Rosa et al.,2008),around South Georgia,and several subantarctic island groups such as South Orkney,South Shetland,South Sandwich,and Bouvet islands (Engel and Martin,2009).Although humpback whales share most of these areas with fin whales,differences in their niches influence their horizontal segregation (Herr et al.,2016).Fin whales prefer more pelagic habitats (?irovi? et al.,2006),have a broader trophic niche (Shirihai,2009) and dive deeper than humpback whales (Bastida and Rodríguez,2003).Therefore,fin whales tend to exploit different resources,avoiding competition with humpback whales (?irovi? et al.,2006).Our study,based on data collected over eight consecutive summers,supports these earlier findings.KDE reveals specific spatial distribution patterns for each species,with these patterns suggesting that “central areas” exist—centers of activity where species spend more time (Seaman and Powell,1996;Rayment et al.,2009).KDE results suggest that these central areas are used unevenly by both species,and that they are also strongly associated with highly productive coastal zones,which are also subject to intense anthropic activities (Rayment et al.,2009;Hauser et al.,2014).

    Figure 5 Distribution of Moran Index values for original data (black points) and data obtained after applying the spThin function (red points) for humpback and fin whales.

    Seven breeding populations of humpback whales are reported from the Southern Hemisphere,including Stock G and Stock A from near the Antarctic Peninsula (Bravington et al.,2007).Our KDE results reveal the highest concentrations of humpback whales occur in WAP,which also explains why the humpback whaleERwas higher in WAP,although the highest abundance occurred in SSI (Table 1).Although annual variation in the distributions of these whales was evident,and individuals were not individually tracked or identified,it is possible that they belong to Stock G and that this represents a central area for them.Where whales from Stock A feed is uncertain,but it is thought to be somewhere around the Antarctic Peninsula and South Georgia Islands (Secchi et al.,2011).

    Figure 6 pRDA analysis to assess the effects of space and environment on the distributions of humpback (a) and fin (b) whales.The model suggests that spatial components such as latitude and longitude have a strong influence on the distribution of both species.Red circles represent spatial variables (latitude,longitude),blue circles represent environmental variables (SST,depth),and the overlap indicates an interaction between them.Numbers indicate the importance of values (out of a total of 1) provided by each set of variables,and the residuals indicate how much of the total cannot be explained by the model;* significative at p<0.001.

    We show that humpback whales (66.7% of all recorded individuals) use the SSI and SOI areas intensively.Because no tissue samples were collected,we cannot determine what genetic stock these individuals belong to,but their distributions suggest that the SSI and SOI are both central areas for their populations.The SSI is also an area in which fin whales concentrate and feed (?irovi? et al.,2006),particularly off Elephant Island (Pankow and Kock,2000),even during the austral autumn (Burkhardt and Lanfredi,2012).OurERand KDE results indicate that only 8.2% of all fin whales occurred in SSI,including Elephant Island,but 79% of them occurred around the SOI.This suggests that the SOI could be the largest central habitat for this species in western Antarctic waters north of 66°S.Because no krill surveys occurred at the time of our sightings,we cannot determine if these central habitats represent likely feeding,migration or socialization areas.However,the SOI is an area in which most krill fishing effort occurs (Brooks,2013).Five individuals sighted northwest of the Weddell Sea could suggest that the WED was part of the species’ home range.However,their presence may also be due to ice,sea currents,foraging,or the “idiosyncrasy” of this species,as described by de Marco and Nóbrega (2018).

    In the entire studied area,the pRDA analysis revealed that spatial variables (latitude and longitude) are more important than environmental variables such as SST and ocean depth.However,environmental variables such as SST and salinity have been previously identified as deterministic in the distributions of fin and humpback whales around the SOI (Orgeira et al.,2017).This suggests that environmental variables may only explain part of the distribution patterns and occurrences of species at local scales,but at larger scales,spatial variables have a greater influence on distribution patterns.

    The distributions of species are determined mainly by their dispersal capacities and body size (Heino et al.,2015),distribution of environmental conditions favoring the establishment,survival and reproduction of individuals,and the biotic environment comprising competitors,predators and pathogens,together with prey availability and their dynamics (Soberón,2007).When spatial variables are included in the pRDA analysis,most of all these factors are implicit;as Heino et al.(2015) identified,the inclusion of spatial variables as latitude and longitude allows expansion of knowledge regarding the distributions of species.Species modelling techniques,such as those used in this study,provide important tools for approximating the fundamental niches of species based on different predictor variables (Elith et al.,2006).This set of factors might also act differentially for each species,explaining the differences in pRDA values of variables for fin and humpback whales (Figure 5).

    Our data were collected opportunistically,no specific route for surveying cetaceans was established,genetic samples were not taken,and sampling effort was affected by various logistical problems.Despite this we recognize similarities and differences in our data and interpretations with those of previous studies.For example,although we report horizontal niche partitioning between fin and humpback whales (as suggested by Herr et al.in 2016),the niches of these two species obviously overlapped in some SOI areas.OurERand KDE results suggest that the South Orkney Islands area represents a summer migration feeding area for humpback whales,as reported by Engel and Martin (2009).

    5 Conclusions

    Kernel density estimates indicate spatial segregation of fin and humpback whales,between and within areas.In the South Orkney Islands region,possible niche overlaps exist for both species.In addition to the South Shetland Island and West Antarctic Peninsula regions,humpback whales are frequently associated with the South Orkney Islands,which indicates that this area might represent an important habitat for this species.Based on pRDA results,spatial variables have a greater effect on the distributions of fin and humpback whales at larger spatial scales than temperature and depth do at more local scales.

    Acknowledgements We are grateful to Armada Argentina and to the crew of the R/VPuerto Deseadofor support provided during surveys.We also thank two anonymous reviewers for their assistance in improving the manuscript.We thank the contributions of Yulie Shimano Feitosa for reading and revising this manuscript,and Steve O’Shea,PhD,from Edanz Group,for editing a draft of this manuscript.This work was conducted with logistical and financial support of the Instituto Antártico Argentino.

    日韩熟女老妇一区二区性免费视频| 少妇 在线观看| 亚洲精品乱久久久久久| 日日撸夜夜添| 精品一区二区免费观看| 九九久久精品国产亚洲av麻豆| 搡女人真爽免费视频火全软件| 草草在线视频免费看| 极品人妻少妇av视频| 欧美亚洲 丝袜 人妻 在线| 日本av免费视频播放| 日韩人妻高清精品专区| 我的老师免费观看完整版| 3wmmmm亚洲av在线观看| 天堂8中文在线网| 亚洲精品成人av观看孕妇| 成年女人在线观看亚洲视频| 久久99一区二区三区| 中国三级夫妇交换| 人妻人人澡人人爽人人| 精品人妻一区二区三区麻豆| 一个人看视频在线观看www免费| 国产精品人妻久久久久久| 日本91视频免费播放| 三上悠亚av全集在线观看 | 久久精品国产鲁丝片午夜精品| 男女无遮挡免费网站观看| 欧美97在线视频| av专区在线播放| 蜜桃在线观看..| 久久精品国产亚洲av涩爱| 免费大片黄手机在线观看| 插逼视频在线观看| 三级国产精品欧美在线观看| 亚洲精品亚洲一区二区| 在线观看免费日韩欧美大片 | 日本与韩国留学比较| 又大又黄又爽视频免费| 欧美少妇被猛烈插入视频| 在线观看国产h片| 一区二区三区四区激情视频| 最后的刺客免费高清国语| 亚洲精品日本国产第一区| 亚洲欧美日韩另类电影网站| 国产精品国产三级国产专区5o| 欧美xxxx性猛交bbbb| 国产视频内射| 日本欧美国产在线视频| 纯流量卡能插随身wifi吗| 伊人久久精品亚洲午夜| 国产 一区精品| 99九九线精品视频在线观看视频| 天堂俺去俺来也www色官网| 99久久精品一区二区三区| 成人毛片60女人毛片免费| www.色视频.com| 大片免费播放器 马上看| 国产爽快片一区二区三区| 伊人久久精品亚洲午夜| 国产熟女午夜一区二区三区 | 性色av一级| 国产在线男女| 亚洲精品日韩在线中文字幕| 日韩强制内射视频| 国产日韩欧美视频二区| 午夜精品国产一区二区电影| 国产在线一区二区三区精| 国产精品一区二区三区四区免费观看| 日韩伦理黄色片| 日日爽夜夜爽网站| 中文字幕免费在线视频6| 亚洲欧美日韩东京热| 亚洲欧美精品专区久久| 久久97久久精品| 纯流量卡能插随身wifi吗| 五月开心婷婷网| 26uuu在线亚洲综合色| 国精品久久久久久国模美| 纯流量卡能插随身wifi吗| 看十八女毛片水多多多| 七月丁香在线播放| 我要看黄色一级片免费的| 国产高清三级在线| 国产成人精品无人区| 九色成人免费人妻av| 简卡轻食公司| 午夜视频国产福利| 亚洲精品,欧美精品| 一级二级三级毛片免费看| 婷婷色av中文字幕| 成人免费观看视频高清| av免费在线看不卡| 国产精品嫩草影院av在线观看| 精品久久久噜噜| 国产成人精品无人区| 亚洲欧洲日产国产| 久久人人爽人人片av| 色5月婷婷丁香| 一区在线观看完整版| 久久97久久精品| av线在线观看网站| 全区人妻精品视频| 久久久国产一区二区| 欧美精品亚洲一区二区| 国产成人一区二区在线| 26uuu在线亚洲综合色| 国产免费一区二区三区四区乱码| 久久久国产欧美日韩av| 国产成人精品无人区| av一本久久久久| 国产亚洲一区二区精品| 免费大片黄手机在线观看| 精品久久久久久电影网| 国产精品嫩草影院av在线观看| 日韩欧美一区视频在线观看 | 亚洲精品国产av蜜桃| 色94色欧美一区二区| 欧美日韩精品成人综合77777| 亚洲综合色惰| av又黄又爽大尺度在线免费看| 日本猛色少妇xxxxx猛交久久| 99九九线精品视频在线观看视频| 免费观看无遮挡的男女| 最近2019中文字幕mv第一页| 熟妇人妻不卡中文字幕| 少妇被粗大的猛进出69影院 | 免费观看a级毛片全部| 久久久久视频综合| 精品卡一卡二卡四卡免费| 曰老女人黄片| 国产免费视频播放在线视频| 日韩av在线免费看完整版不卡| 黑人猛操日本美女一级片| 老司机影院成人| 夜夜爽夜夜爽视频| 成年美女黄网站色视频大全免费 | 国产精品一区二区在线观看99| 一级毛片黄色毛片免费观看视频| 我的女老师完整版在线观看| 夜夜骑夜夜射夜夜干| 中文字幕久久专区| 男女边摸边吃奶| 成人国产麻豆网| 午夜免费鲁丝| 一级黄片播放器| 亚洲无线观看免费| 男人舔奶头视频| 久久久精品94久久精品| 少妇人妻精品综合一区二区| 国产伦精品一区二区三区四那| 亚洲精品aⅴ在线观看| 五月玫瑰六月丁香| 亚洲综合精品二区| 蜜桃久久精品国产亚洲av| 日韩,欧美,国产一区二区三区| 亚洲欧美精品专区久久| 色视频在线一区二区三区| 久久人人爽人人片av| 蜜桃在线观看..| 91久久精品电影网| 深夜a级毛片| 99九九线精品视频在线观看视频| 久久精品国产亚洲av天美| 精品熟女少妇av免费看| 久久久久人妻精品一区果冻| 内地一区二区视频在线| 三级国产精品欧美在线观看| 人人妻人人添人人爽欧美一区卜| 新久久久久国产一级毛片| 国内少妇人妻偷人精品xxx网站| 日韩成人av中文字幕在线观看| 99热这里只有精品一区| 我的老师免费观看完整版| 9色porny在线观看| 丝袜喷水一区| 国产黄频视频在线观看| 能在线免费看毛片的网站| 久久这里有精品视频免费| 欧美日韩在线观看h| 亚洲国产最新在线播放| 国产又色又爽无遮挡免| 日韩制服骚丝袜av| 水蜜桃什么品种好| 三级经典国产精品| 男女边吃奶边做爰视频| 久久久久久久国产电影| 熟女电影av网| 欧美精品一区二区免费开放| kizo精华| www.av在线官网国产| 大话2 男鬼变身卡| 国产亚洲欧美精品永久| 国产 精品1| 少妇的逼水好多| 在线看a的网站| 人人妻人人澡人人看| 国产av国产精品国产| 一级av片app| 欧美日本中文国产一区发布| 久久国产精品大桥未久av | 亚洲高清免费不卡视频| 亚洲av在线观看美女高潮| 九九在线视频观看精品| 最近最新中文字幕免费大全7| 在线观看美女被高潮喷水网站| 熟女人妻精品中文字幕| 在线观看免费视频网站a站| 成人毛片a级毛片在线播放| 一边亲一边摸免费视频| 嫩草影院入口| 人妻系列 视频| 久久精品熟女亚洲av麻豆精品| 国产精品成人在线| 国语对白做爰xxxⅹ性视频网站| 蜜桃在线观看..| 国产成人免费观看mmmm| 亚洲精品中文字幕在线视频 | 嫩草影院新地址| 亚洲第一av免费看| 精华霜和精华液先用哪个| 中文乱码字字幕精品一区二区三区| 亚洲欧美日韩东京热| 又粗又硬又长又爽又黄的视频| 一级av片app| 我的老师免费观看完整版| 啦啦啦中文免费视频观看日本| 日本欧美视频一区| 又大又黄又爽视频免费| 麻豆精品久久久久久蜜桃| 高清午夜精品一区二区三区| 久久综合国产亚洲精品| 国产色婷婷99| 成人国产麻豆网| 在线免费观看不下载黄p国产| 久久女婷五月综合色啪小说| 久久久久人妻精品一区果冻| 国产色婷婷99| 菩萨蛮人人尽说江南好唐韦庄| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 免费大片18禁| 青春草视频在线免费观看| 久久精品国产自在天天线| 国产 精品1| 国产男女超爽视频在线观看| 久久综合国产亚洲精品| 国产伦精品一区二区三区四那| 亚洲怡红院男人天堂| 狂野欧美白嫩少妇大欣赏| 人体艺术视频欧美日本| 午夜免费鲁丝| 亚洲人成网站在线观看播放| 777米奇影视久久| 特大巨黑吊av在线直播| 久久久亚洲精品成人影院| 久久午夜福利片| 91精品一卡2卡3卡4卡| 丰满人妻一区二区三区视频av| 嘟嘟电影网在线观看| 久久热精品热| 亚洲综合精品二区| 久久久欧美国产精品| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久久久免| 汤姆久久久久久久影院中文字幕| 亚洲国产精品成人久久小说| 成人亚洲欧美一区二区av| 美女xxoo啪啪120秒动态图| 日韩视频在线欧美| 国产成人免费观看mmmm| 狠狠精品人妻久久久久久综合| freevideosex欧美| 久久久久精品性色| 99视频精品全部免费 在线| 免费大片18禁| 人人妻人人看人人澡| 久久久久视频综合| 日日啪夜夜爽| 26uuu在线亚洲综合色| 青春草国产在线视频| 在线看a的网站| 久久午夜福利片| 国产成人freesex在线| 97在线视频观看| 免费黄频网站在线观看国产| 少妇人妻 视频| 国产精品一二三区在线看| 亚洲欧美一区二区三区黑人 | 纵有疾风起免费观看全集完整版| av国产久精品久网站免费入址| 十八禁网站网址无遮挡 | 九草在线视频观看| 午夜免费鲁丝| 久久av网站| 多毛熟女@视频| 在线观看人妻少妇| 国产成人91sexporn| 亚洲av不卡在线观看| 日本与韩国留学比较| 丝袜脚勾引网站| 亚洲电影在线观看av| 精品少妇内射三级| 伦理电影大哥的女人| 国产综合精华液| 两个人免费观看高清视频 | 久久久欧美国产精品| 中文精品一卡2卡3卡4更新| 亚洲精品乱码久久久v下载方式| 国产一区二区三区av在线| 久久精品夜色国产| 亚洲av日韩在线播放| 插阴视频在线观看视频| 99精国产麻豆久久婷婷| 嫩草影院入口| 人人妻人人澡人人爽人人夜夜| 校园人妻丝袜中文字幕| 欧美+日韩+精品| 亚洲精品国产成人久久av| 桃花免费在线播放| 精品午夜福利在线看| 男女边摸边吃奶| 免费不卡的大黄色大毛片视频在线观看| 日韩av免费高清视频| 色婷婷久久久亚洲欧美| 日韩精品免费视频一区二区三区 | 国产色婷婷99| 肉色欧美久久久久久久蜜桃| 国产亚洲91精品色在线| 大香蕉97超碰在线| a级一级毛片免费在线观看| freevideosex欧美| 免费av中文字幕在线| 韩国高清视频一区二区三区| 不卡视频在线观看欧美| 国产 一区精品| 高清不卡的av网站| 国产91av在线免费观看| 亚洲电影在线观看av| 亚洲av福利一区| 国产中年淑女户外野战色| 亚洲久久久国产精品| 国产精品秋霞免费鲁丝片| 夜夜骑夜夜射夜夜干| 成年女人在线观看亚洲视频| 一级,二级,三级黄色视频| 成人影院久久| 国内精品宾馆在线| 国产欧美日韩精品一区二区| 欧美亚洲 丝袜 人妻 在线| 亚洲情色 制服丝袜| av线在线观看网站| 三级国产精品欧美在线观看| 国产视频首页在线观看| 如何舔出高潮| 精品国产一区二区三区久久久樱花| 亚洲自偷自拍三级| 少妇人妻精品综合一区二区| 伊人久久精品亚洲午夜| 爱豆传媒免费全集在线观看| 狂野欧美白嫩少妇大欣赏| 少妇高潮的动态图| 免费不卡的大黄色大毛片视频在线观看| 欧美精品亚洲一区二区| 亚洲,欧美,日韩| 色婷婷av一区二区三区视频| 欧美日韩国产mv在线观看视频| 99热这里只有是精品50| 男女啪啪激烈高潮av片| 少妇 在线观看| 国产精品伦人一区二区| 久久精品国产鲁丝片午夜精品| 成人毛片a级毛片在线播放| 国精品久久久久久国模美| 日韩视频在线欧美| 亚洲欧洲国产日韩| 99热这里只有精品一区| 日本与韩国留学比较| 久久人人爽人人片av| 日本黄大片高清| 国语对白做爰xxxⅹ性视频网站| 黄色配什么色好看| 少妇猛男粗大的猛烈进出视频| 欧美日本中文国产一区发布| 噜噜噜噜噜久久久久久91| 成人午夜精彩视频在线观看| 色哟哟·www| 久久狼人影院| 一级片'在线观看视频| 国产成人精品一,二区| 日韩伦理黄色片| 丝袜在线中文字幕| 国产一区二区在线观看日韩| 欧美成人午夜免费资源| 精品一区二区免费观看| 中文在线观看免费www的网站| 色吧在线观看| 亚洲av在线观看美女高潮| 九九久久精品国产亚洲av麻豆| 亚洲精品乱码久久久v下载方式| 26uuu在线亚洲综合色| 三上悠亚av全集在线观看 | 丁香六月天网| 七月丁香在线播放| 国产精品麻豆人妻色哟哟久久| 日韩大片免费观看网站| 久久久a久久爽久久v久久| 99久久中文字幕三级久久日本| 中文字幕人妻熟人妻熟丝袜美| 国产伦精品一区二区三区视频9| 高清毛片免费看| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| 日韩不卡一区二区三区视频在线| 日日啪夜夜爽| 亚洲精品色激情综合| 午夜影院在线不卡| 欧美精品国产亚洲| 99久久精品一区二区三区| 97在线视频观看| 18+在线观看网站| 久久久久人妻精品一区果冻| 久久精品国产亚洲av涩爱| 久久久久久久精品精品| 亚洲国产日韩一区二区| 大片免费播放器 马上看| 欧美区成人在线视频| 春色校园在线视频观看| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品电影小说| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品电影小说| 亚洲精品亚洲一区二区| 亚洲国产欧美日韩在线播放 | 久久久久久人妻| 亚洲精品亚洲一区二区| 久久人人爽av亚洲精品天堂| 免费黄网站久久成人精品| 国产女主播在线喷水免费视频网站| 国产精品99久久99久久久不卡 | 亚洲欧美成人综合另类久久久| 亚洲图色成人| 女人精品久久久久毛片| 成人综合一区亚洲| 91久久精品国产一区二区三区| 91精品一卡2卡3卡4卡| 偷拍熟女少妇极品色| 国产一区二区三区综合在线观看 | 久久午夜综合久久蜜桃| 国产在线免费精品| 精品久久久精品久久久| 人妻夜夜爽99麻豆av| 51国产日韩欧美| 午夜av观看不卡| 午夜精品国产一区二区电影| 99热网站在线观看| 国产黄色免费在线视频| 大香蕉97超碰在线| 亚洲精品aⅴ在线观看| 黄色视频在线播放观看不卡| av播播在线观看一区| 国产精品蜜桃在线观看| 国产成人91sexporn| 一级爰片在线观看| 激情五月婷婷亚洲| 亚洲欧美日韩东京热| 亚洲成人手机| 永久网站在线| 最近2019中文字幕mv第一页| 国产 一区精品| 亚洲人成网站在线播| 日日撸夜夜添| 男女无遮挡免费网站观看| 久久ye,这里只有精品| 国产在线视频一区二区| 性色avwww在线观看| 天天操日日干夜夜撸| 秋霞在线观看毛片| 最黄视频免费看| 久久久久久久久久久丰满| 中文精品一卡2卡3卡4更新| 久久精品熟女亚洲av麻豆精品| 久久午夜综合久久蜜桃| 亚洲经典国产精华液单| 简卡轻食公司| av播播在线观看一区| 亚洲精品乱码久久久v下载方式| 在线观看三级黄色| 91精品一卡2卡3卡4卡| 久久韩国三级中文字幕| 国产免费福利视频在线观看| 青春草国产在线视频| 少妇被粗大猛烈的视频| 久久久a久久爽久久v久久| 男女国产视频网站| 黄色一级大片看看| 国产亚洲精品久久久com| 国内少妇人妻偷人精品xxx网站| 三级国产精品片| 精品国产乱码久久久久久小说| av在线老鸭窝| 欧美性感艳星| 99视频精品全部免费 在线| 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 国产精品蜜桃在线观看| 一本色道久久久久久精品综合| 国产在线男女| 国产成人免费无遮挡视频| 日本黄大片高清| 国产精品国产三级国产专区5o| 日本wwww免费看| 一级爰片在线观看| 久久久久人妻精品一区果冻| 波野结衣二区三区在线| 麻豆成人午夜福利视频| 蜜臀久久99精品久久宅男| 女的被弄到高潮叫床怎么办| 成人黄色视频免费在线看| 91精品国产九色| 亚洲欧美成人综合另类久久久| 免费黄频网站在线观看国产| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线观看播放| 一级毛片久久久久久久久女| 国产黄片美女视频| 老司机影院成人| 亚洲av中文av极速乱| 熟女人妻精品中文字幕| 一区二区三区精品91| 韩国av在线不卡| 国产真实伦视频高清在线观看| 国产欧美日韩一区二区三区在线 | 亚洲国产精品专区欧美| 丝袜喷水一区| 97在线视频观看| 久久精品国产亚洲av涩爱| 插阴视频在线观看视频| 美女大奶头黄色视频| 婷婷色av中文字幕| 桃花免费在线播放| 久久婷婷青草| 少妇裸体淫交视频免费看高清| 女性生殖器流出的白浆| 国产精品嫩草影院av在线观看| 男女啪啪激烈高潮av片| 国产精品久久久久久久久免| 日日撸夜夜添| 国产午夜精品一二区理论片| 视频中文字幕在线观看| 人人妻人人澡人人爽人人夜夜| 一本一本综合久久| 在线观看免费日韩欧美大片 | 夫妻性生交免费视频一级片| 国产美女午夜福利| 少妇丰满av| 美女中出高潮动态图| 免费观看无遮挡的男女| 边亲边吃奶的免费视频| 在线亚洲精品国产二区图片欧美 | 国产精品久久久久久精品电影小说| 国产一区二区在线观看日韩| 国产伦精品一区二区三区四那| 91久久精品国产一区二区成人| 亚洲电影在线观看av| 国产69精品久久久久777片| 最近最新中文字幕免费大全7| 欧美+日韩+精品| 一本一本综合久久| 国产精品一区二区性色av| 亚洲成人手机| 国产男女超爽视频在线观看| 成人特级av手机在线观看| 99九九在线精品视频 | www.色视频.com| 亚洲精品中文字幕在线视频 | 欧美日韩视频高清一区二区三区二| 午夜免费观看性视频| 精品一区在线观看国产| 免费少妇av软件| 国产亚洲91精品色在线| 国产一区有黄有色的免费视频| 18禁裸乳无遮挡动漫免费视频| 午夜精品国产一区二区电影| 99热国产这里只有精品6| 如何舔出高潮| 99久久精品热视频| 久久精品国产亚洲av天美| 哪个播放器可以免费观看大片| 国产精品一二三区在线看| 国产女主播在线喷水免费视频网站| 水蜜桃什么品种好| 久久久午夜欧美精品| 日本黄色片子视频| 免费观看a级毛片全部| 欧美 日韩 精品 国产| 精品久久久久久电影网| 一个人免费看片子| 色哟哟·www| 亚洲性久久影院| 国产免费视频播放在线视频| 免费av不卡在线播放| 久久国内精品自在自线图片| 成人毛片60女人毛片免费| 狂野欧美激情性bbbbbb| 国产精品福利在线免费观看| 久久久久久久国产电影| 精品一区在线观看国产| 天堂中文最新版在线下载| 99热这里只有精品一区| 成人漫画全彩无遮挡| 国产女主播在线喷水免费视频网站| 99久久人妻综合| 9色porny在线观看| 高清黄色对白视频在线免费看 | 中文精品一卡2卡3卡4更新|