萬志遠,劉勤明,葉春明,劉文溢
(上海理工大學(xué)管理學(xué)院,上海200093)
應(yīng)急資源冗余配置是一切應(yīng)急救援活動順利開展的必要保障,但若應(yīng)急資源冗余的配置不合理,會降低醫(yī)院在面臨突發(fā)事件時應(yīng)急救援的及時性、增加突發(fā)事件的不確定性,甚至?xí)档歪t(yī)院對應(yīng)急資源的利用效率。
應(yīng)急資源優(yōu)化問題的研究內(nèi)容一直頗多。張華等[1]探討了改良護理應(yīng)急管理系統(tǒng)及人力資源配置在災(zāi)害救援中的應(yīng)用效果,改良了醫(yī)院護理應(yīng)急管理體系,實施了科學(xué)的人力資源管理;張玲等[2]考慮到突發(fā)事件的不確定性,建立了隨機規(guī)劃模型;潘星明等[3]建立了基于仿真智能對象(Simulation Intelligent Object,SIMIO)的醫(yī)院應(yīng)急系統(tǒng)模型,模擬出突發(fā)事件下醫(yī)院的應(yīng)急救援過程;Xiang 等[4]提出了一個新的排隊網(wǎng)絡(luò),以模擬病人健康狀況的惡化,并提供分析解決方案和數(shù)字說明,制定了兩種資源分配模型;Yang等[5]認為選擇合適的分類過程并為分診和專用實驗室增加額外的容量可以顯著提高急診科(Emergency Department,ED)性能,尤其是在醫(yī)生利用率很高的情況下,共享實驗室通常比專用實驗室為ED提供更好的支持;Su 等[6]致力于以并行方式將多個緊急資源分配給多個并發(fā)事件的挑戰(zhàn)性問題,減少響應(yīng)時間和緊急資源成本;Wen 等[7]研究了緊急醫(yī)療資源分配是用于資源優(yōu)化調(diào)度的多目標優(yōu)化問題。
資源冗余方面已有研究大多從冗余資源的整體出發(fā)。熊雪晨等[8]針對醫(yī)院醫(yī)療系統(tǒng)中的資源需求變化性,認為資源冗余優(yōu)化配置過程中需要有合理性;陳舒盈等[9]通過優(yōu)化醫(yī)療衛(wèi)生資源配置結(jié)構(gòu)合理調(diào)整存量、提高醫(yī)療資源在機構(gòu)內(nèi)的投入產(chǎn)出效率、完善衛(wèi)生資源配置評價體系;李曉翔等[10]研究了資源冗余與企業(yè)績效之間不同條件下的相關(guān)性;徐瑩等[11]提出了波形電路和導(dǎo)向按鈕的資源冗余優(yōu)化方法,將可靠性與轉(zhuǎn)換器中的投資相協(xié)調(diào),驗證了配置策略的有效性;Cheng等[12]提出了一種基于六角錐冗余配置的單軸回旋調(diào)制捷聯(lián)慣導(dǎo)系統(tǒng)(Strapdown Inertial Navigation System,SINS)方式,建立了多指標約束冗余配置的優(yōu)化準則,并設(shè)計了六邊形金字塔配置方案;龍婷等[13]研究了企業(yè)內(nèi)部存在的冗余資源環(huán)境對企業(yè)投資和戰(zhàn)略創(chuàng)新的影響調(diào)度作用。由于資源冗余方法的使用導(dǎo)致模型的擬態(tài)空間變大,尋優(yōu)算法的求解效率需要增加,為此,何盼等[14]研究了基于相鄰空間解析的模因算法。
效用理論的研究方向各有不同,李宗活等[15]引入雙方風(fēng)險分均的效用函數(shù),建立了雙方效益對稱下的風(fēng)險分均模型;Bayrak 等[16]提出了一種風(fēng)險決策的新模型,該模型為經(jīng)驗觀察到的偏好逆轉(zhuǎn)提供了解釋,其核心是概率感知不精確的結(jié)合,這是由于個體對數(shù)值概率的模糊理解而產(chǎn)生的;袁競峰等[17]結(jié)合社會期望上的效用理論,建立了以風(fēng)險決策為主的效用模型。
已有的資源冗余相關(guān)研究很少涉及突發(fā)事件下的應(yīng)急資源冗余,突發(fā)事件發(fā)生前,應(yīng)急資源的冗余預(yù)備必不可少,醫(yī)院在正常運轉(zhuǎn)的過程中,必定會出現(xiàn)一定量的資源冗余。本文從應(yīng)急救援資源預(yù)先配置的角度出發(fā),將應(yīng)急資源冗余進行定義并分類,引入效用函數(shù),建立突發(fā)事件下的醫(yī)院應(yīng)急資源冗余配置優(yōu)化模型,將粒子群算法(Particle Swarm Optimization,PSO)和常用來求解效用函數(shù)的序列二次規(guī)劃(Sequential Quadratic Programming,SQP)方法相結(jié)合對模型進行尋優(yōu)求解,并通過一次案例分析得出研究結(jié)果。
由Hermann的災(zāi)難模型[18]可知,突發(fā)事件帶來生命危險、決策時間緊和未知意外。應(yīng)急資源冗余對突發(fā)事件下醫(yī)院應(yīng)急的效用可能體現(xiàn)在以下三點:
1)拯救生命、應(yīng)急救援。應(yīng)急資源冗余有助于醫(yī)院擁有足夠的空間去適應(yīng)突發(fā)事件場景的變化,維持醫(yī)院應(yīng)急工作的順利進行,即使在災(zāi)情嚴重的情況下,應(yīng)急資源冗余完善的醫(yī)院仍然能夠較大程度地保障病人的生命安全。
2)靈活救援、短時間應(yīng)急決策。應(yīng)急資源冗余給予應(yīng)急人員和醫(yī)院各部門之間主動性和靈活性,突發(fā)事件發(fā)生之后,擁有較多應(yīng)急資源冗余的醫(yī)院中低層應(yīng)急管理者能在緊急情況下靈活響應(yīng)救援活動和自行做出決策,高層應(yīng)急管理者面對海量的細節(jié)信息時就可以減少決策壓力,集中精力進行關(guān)鍵性應(yīng)急決策。
3)面對意外情況和緊急調(diào)度,及時完善應(yīng)急體系。突發(fā)事件下應(yīng)急救援活動的同時,醫(yī)院可以同時審視自身的不足,及時調(diào)度應(yīng)急資源,應(yīng)急資源冗余能夠幫助醫(yī)院在臨時調(diào)度過程中支持所帶來的風(fēng)險和意外,減少資源約束。
本文將醫(yī)院應(yīng)急資源冗余定義為醫(yī)院為了保障突發(fā)事件下應(yīng)急救援的緩沖資源,其分類及內(nèi)容表述如表1。
效用理論是管理者進行決策時使用的一種理論。突發(fā)事件下醫(yī)院應(yīng)急資源冗余配置優(yōu)化的系統(tǒng)效用,即醫(yī)院應(yīng)急管理者對應(yīng)急資源冗余產(chǎn)生突發(fā)事件發(fā)生時應(yīng)急救援效用水平的滿意度,就像消費者對商品消費的滿意度。
表1 醫(yī)院應(yīng)急資源冗余的分類及內(nèi)容Tab.1 Classification and contents of hospital emergency resource redundancy
基于突發(fā)事件下醫(yī)院應(yīng)急救援管理的特性,本文將醫(yī)院應(yīng)急資源冗余配置優(yōu)化中的效用和邊際效用定義為:效用表示為醫(yī)院應(yīng)急救援活動中,在使用應(yīng)急資源(人力、物力、財力、信息)后對醫(yī)院應(yīng)急效用水平的滿意度(即效用值);邊際效用表示醫(yī)院應(yīng)急救援活動中,單位應(yīng)急資源冗余量使用后得到的效用值增加度。
本文選取人力保障資源冗余x1、社會保障資源冗余x2、物質(zhì)保障資源冗余x3和信息保障資源冗余x4作為模型的決策變量。結(jié)合已確定的醫(yī)院應(yīng)急資源冗余分類,假設(shè)影響醫(yī)院應(yīng)急水平質(zhì)量的應(yīng)急資源冗余類型為S,對第i 類應(yīng)急資源冗余的投入總量為xi,應(yīng)急效用水平為P(xi)。在突發(fā)事件下的應(yīng)急環(huán)境中,應(yīng)急資源冗余可看作一種特殊而昂貴的商品,其消費應(yīng)符合邊際規(guī)律,即有:
邊際效用的函數(shù)曲線如圖1所示。
其效用函數(shù)為:
對應(yīng)邊際效用函數(shù)為:
針對上述公式,引入兩個變量,xmax與xmin:xmax表示醫(yī)院對于應(yīng)急資源冗余量的最大量值,當醫(yī)院存在的應(yīng)急資源冗余大于xmax時,效用值不會再增加;xmin表示安應(yīng)急資源冗余量的最小量值,當醫(yī)院存在的應(yīng)急資源冗余小于xmin時,效用值為0。
隨著xi的增加,P(xi)的值會逐步增加,且越來越趨近于1。再設(shè)置參數(shù)ε,ε是無窮小的一個值,當函數(shù)值大于或等于1-ε時,令P(xi)=1。
參數(shù)ρ 與μ 的求解過程如下:設(shè)當資源冗余為xmax時,P(xi)=1-ε;當資源冗余為xmin時,P(xi)=0。
解得:
在上述效用函數(shù)確定后的基礎(chǔ)上,綜合資源配置優(yōu)化理論,建立醫(yī)院應(yīng)急資源冗余配置優(yōu)化模型。
當應(yīng)急資源冗余的量值不變時,將其總效用值作為目標函數(shù)。記此函數(shù)的總效用為Y,則:
其中,ωi指各變量之間的加權(quán)比重,且
P(xi)和xi分別表示第i 類應(yīng)急資源冗余的資源效用值和其對應(yīng)的變量值。
由于醫(yī)院存在的應(yīng)急資源冗余總量的值是一定的,即:
其中,B表示醫(yī)院儲存應(yīng)急資源冗余量的最大值。
根據(jù)柯布-道格拉斯函數(shù)常表示的函數(shù)關(guān)系,醫(yī)院的合理應(yīng)急程度可以用F(x1,x2,…,xi)表示為:
其中:A 為醫(yī)院醫(yī)療技術(shù)水平系數(shù);x1,x2,…,xi為醫(yī)院各決策變量的投入;αi表示i 個決策變量之間的重要性系數(shù),且α1+α2+…+αi=1。
醫(yī)院的救援需要在一定的合理應(yīng)急程度下進行,故:
其中,W為醫(yī)院應(yīng)急救援必須要有的最低合理應(yīng)急程度。
對于上述模型中的目標函數(shù),使用拉格朗日乘數(shù)函數(shù)則可以表示為:
G(xi,θ)取極值的必要條件為:
由此,得到模型最優(yōu)解的必要條件為:
則有:
式(13)中,若記:
式(15)表明,當xi>0 時,有ωiρ >φ。因此,醫(yī)院只需對所有ωiρ >φ 的應(yīng)急資源進行投入。記滿足該條件的資源冗余類型有I個(所有資源冗余類型的重要程度已按照ωiρ由大至小進行排序),則模型最優(yōu)解的必然條件式(15)等價于:
此模型屬于非線性規(guī)劃問題,主要特點是在求解過程中變量較多,非線性函數(shù)具有復(fù)雜性,突發(fā)事件下應(yīng)急資源需求波動具有隨機變化性。這樣的特點使得求解難度偏高,普通的數(shù)學(xué)尋優(yōu)無法很好地進行求解。本文運用拉朗日方法與KKT(Karush-Kuhn-Tucker)條件,將粒子群算法和常用來求解效用函數(shù)的序列二次規(guī)劃法相結(jié)合,通過粒子群算法進行全局搜索,用序列二次規(guī)劃法進行局部尋優(yōu),以此求得最優(yōu)解。
PSO 操作過程較簡單,且可以并行搜索尋優(yōu)。用PSO 求解尋優(yōu)時,首先需要初始化隨機粒子,經(jīng)過每一次的搜索,粒子群需要追尋2 個值來更新自己的位置和速度,個體極值和全 局 極 值 分 別 用Pi=[Pi1,Pi2,…,Pid,…,PiD]和Pg=[Pg1,Pg2,…,Pgd,…,PgD]表示。
具體迭代公式如下:
式中:Xi=[Xi1,Xi2,…,Xid,…,XiD]是指第i 個粒子在其求解集合內(nèi)的所在位置,Vi=[Vi1,Vi2,…,Vid,…,ViD]是指第i個粒子其求解集合內(nèi)的運行速度;ω 為慣性權(quán)重系數(shù);c1和c2為常量,表示正的學(xué)習(xí)因子;r1、r2為0到1之間均勻分布的隨機數(shù)。
而在求解過程中,粒子的速度卻對全局收斂性存在著極大的影響,當求解過程中無法控制和約束粒子時,就會拖慢后期的求解,使得其求解結(jié)果的最優(yōu)值不夠完全。
在用SQP 方法對模型進行求解時,首先需要求出每一個迭代的值,然后將其作為尋優(yōu)的點,沿著該點搜索,直到逼近最終的解。
在求解非線性化的函數(shù)問題時,雖然SQP方法收斂快、求解效率較高,但其初始值的設(shè)定對求解效率和準確度有著較大的影響,初始值設(shè)定需謹慎合理。
PSO 算法與SQP 方法的結(jié)合,避免了兩者缺點的同時又有著較好的優(yōu)勢互補。
其主要思路是:首先,通過PSO 算法迭代搜索,當其2 次尋優(yōu)的值小于規(guī)定的值時,可用其作為PSO-SQP 算法的初始值;然后,通過最大效用函數(shù)和模型中的約束建立一個適應(yīng)度函數(shù);最后,求解此函數(shù),從而不斷獲取下一個迭代值,直至求得最優(yōu)解。
算法具體操作及改進如下:
步驟1 設(shè)定權(quán)重系數(shù)、初始值、變量和學(xué)習(xí)因子等參數(shù)。
步驟2 初始化隨機產(chǎn)生一定數(shù)量的粒子種群。
步驟3 采用PSO 算法進行一定次數(shù)的尋優(yōu)計算,得到最優(yōu)值及其變量X。
步驟5 設(shè)定xi為SQP方法的初始值。
步驟6 使用SQP 方法進行局部搜索優(yōu)化并求解,從而獲得Y(xSQP)的值作為其最優(yōu)解,以及其對應(yīng)的變量xSQP。
步驟7 判斷優(yōu)化計算的最終值,取2種算法的最小值為最優(yōu)解,即對Y(xi)和Y(xSQP)的大小進行比較,得到最終解值。
某醫(yī)院某年的應(yīng)急資源冗余總量為392 萬元,其中人力保障資源冗余為92萬元,社會保障資源冗余為100萬元,物質(zhì)保障資源冗余為105 萬元,信息保障資源冗余為95 萬元。突發(fā)事件下醫(yī)院的合理應(yīng)急度達到95 才可以達到應(yīng)急救援活動的相關(guān)要求,各類參數(shù)的具體數(shù)值見表2。
表2 應(yīng)急資源冗余模型相關(guān)參數(shù)Tab.2 Related parameters of emergency resource redundancy model
在CPU 為3.4 GHz、內(nèi)存為4 GB 的計算機上,使用Matlab R2017a 編程求解,實現(xiàn)PSO-SQP 算法優(yōu)化,設(shè)粒子群算法的種群規(guī)模為200,慣性權(quán)重取值0.729 8,兩個學(xué)習(xí)因子都取值為1.494 45,運行程序30 次,求解時間都在11.401 547~11.894 152 s,說明其求解的結(jié)果和時間都具有較高的穩(wěn)定性。PSO-SQP 算法適應(yīng)度函數(shù)的關(guān)系變化曲線如圖2所示。
圖2 PSO-SQP算法的適應(yīng)度曲線Fig.2 Fitness curve of PSO-SQP algorithm
根據(jù)上述參數(shù)進行計算,可以得出該醫(yī)院模型的應(yīng)急總效用值Y為0.876,合理應(yīng)急度為97.118。最終獲得的應(yīng)急資源 冗 余 量 配 置 情 況 為:xT=[101.187,117.352,162.216,70.245],此時總效用為0.907,與優(yōu)化之前相比提高了1.48%,醫(yī)院的應(yīng)急合理度為99.579。表3 列出了模型的優(yōu)化前后結(jié)果數(shù)據(jù)。
1)人力保障資源冗余:人力保障資源冗余的量與之前相比,由92萬元增加至101.187萬元,表示該醫(yī)院人力保障資源冗余的量偏小,需要增加。研究調(diào)查結(jié)果發(fā)現(xiàn),應(yīng)急救援主要依靠人力保障資源,在確保醫(yī)院及時應(yīng)對突發(fā)事件的能力下,該醫(yī)院應(yīng)增加人力保障資源冗余的投入量,提升醫(yī)護人員等人力保障資源冗余的質(zhì)量水平,以提高醫(yī)院系統(tǒng)的應(yīng)急效用值。
表3 醫(yī)院應(yīng)急資源冗余模型優(yōu)化前后結(jié)果對比Tab.3 Result comparison of hospital emergency resource redundancy model before and after optimization
2)社會保障資源冗余:該醫(yī)院應(yīng)增加社會保障資源的投入,將社會保障資源冗余從100萬元增加至117.352萬元。調(diào)查顯示,雖然該醫(yī)院有社會保障資源冗余,但是突發(fā)事件的嚴重性可能導(dǎo)致此種資源的不足,應(yīng)適量增加。
3)物質(zhì)保障資源冗余:該醫(yī)院的物質(zhì)保障資源冗余的量投入過少,需要增加,應(yīng)該由105 萬元增加至132.216 萬元。良好的物質(zhì)保障基礎(chǔ)能幫助醫(yī)院在面對突發(fā)事件時提高應(yīng)急水平,使得醫(yī)院的應(yīng)急救援活動能夠快速有效地進行。
4)信息保障資源冗余:該醫(yī)院的信息保障資源冗余的量偏多,需要由95 萬元減少至78.245 萬元。調(diào)查結(jié)果顯示,該醫(yī)院為了增加突發(fā)事件反應(yīng)調(diào)度功能,投入了偏多的信息管理系統(tǒng)構(gòu)建和應(yīng)急知識培訓(xùn)課程。然而由于大量的培訓(xùn)在后續(xù)時段內(nèi)缺乏對受培訓(xùn)醫(yī)護人員的知識查驗,使得許多應(yīng)急人員沒有真正具備正確的應(yīng)急能力,讓醫(yī)院的應(yīng)急管理存在疏漏。因此,該醫(yī)院應(yīng)提高應(yīng)急人員的綜合能力,以及多引進應(yīng)急管理高水平人才,提升管理人員的綜合水平和能力。
另外,不同醫(yī)院的應(yīng)急水平不同,如表4 所示,其應(yīng)急合理度也不同,為了進一步驗證模型的有效性以及分析不同類型資源冗余的優(yōu)勢,通過調(diào)查,得出的不同醫(yī)院的資源冗余需求如表5所示。
表4 醫(yī)院應(yīng)急水平對比Tab.4 Comparison of hospital emergency levels
表5 幾種醫(yī)院的應(yīng)急資源冗余對比Tab.5 Comparison of emergency resource redundancy in several types of hospitals
可以看出,對于應(yīng)急水平為低和中的中小型醫(yī)院來說,其冗余資源主要在于人力保障資源和物質(zhì)保障資源,社會保障資源與信息保障資源的適用性較低;相反,對于應(yīng)急水平高的一些大型醫(yī)院來說,社會保障資源與信息保障資源的重要性呈直線上升。
這是因為大型醫(yī)院在突發(fā)事件發(fā)生的時候,承擔的救援任務(wù)較重,信息保障資源的及時供應(yīng)顯得尤為重要,應(yīng)急管理制度的完善亦需要信息保障資源提供強有力的支撐;而對于小型醫(yī)院來說,人力和物力是最直接的應(yīng)急手段,所以這兩種資源冗余的妥善完備更為重要。圖3 為上述幾種類型醫(yī)院優(yōu)化前后的應(yīng)急合理度數(shù)值。兩條曲線所構(gòu)成的區(qū)域代表著優(yōu)化的效果,面積越大效果越明顯。
圖3 幾種類型醫(yī)院應(yīng)急合理度優(yōu)化前后對比Fig.3 Comparison of emergency rationality of several types of hospitals before and after optimization
本文首先從應(yīng)急救援資源預(yù)先配置的角度出發(fā),闡述了醫(yī)院應(yīng)急資源冗余效用所體現(xiàn)的三個方面,將應(yīng)急資源冗余進行定義并分類;之后引入效用函數(shù),建立了突發(fā)事件下的醫(yī)院應(yīng)急資源冗余配置優(yōu)化模型,將常用來求解效用函數(shù)的序列二次規(guī)劃方法和粒子群算法結(jié)合對模型進行尋優(yōu)求解;最后通過一次案例分析,將某醫(yī)院的應(yīng)急資源冗余進行了合理優(yōu)化配置,優(yōu)化后的總效用水平提升了1.48%,驗證了突發(fā)事件下應(yīng)急資源冗余配置優(yōu)化的合理性和有效性。
然而本文的應(yīng)急資源冗余是醫(yī)院為了保證突發(fā)事件下應(yīng)急救援活動的合理進行而留存的“預(yù)備資源”,應(yīng)急資源冗余的總量如果太多,就會使得醫(yī)院的運行成本偏大,所以在確保醫(yī)院應(yīng)急水平合理化的同時,怎樣減少醫(yī)院的應(yīng)急資源冗余量,是我們以后的研究方向。