• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimating the metal acceleration ability of high explosives

    2020-04-09 18:43:48DanyFrem
    Defence Technology 2020年1期

    Dany Frem

    Frem Co.,Beirut,Lebanon

    Keywords:Gurney velocity High explosives Aluminized explosives Combined effects explosives Fragmentation warheads

    ABSTRACT The Gurney method is widely used in the conceptual design stage of explosive fragmentation warheads employed in various weapons systems.This method states that the peak fragment velocity(V0)is a function of the Gurney velocity()and the charge-to-metal weight ratio(C/M).The current study is concerned with finding a practical approach for computing the Gurney velocity of pure and mixed high explosives which will eventually help warhead designers to select the best explosive to fulfill the needs of a particular mission.Using multiple regression analysis technique,a four-variable model was derived and used thereafter to estimate the Gurney velocity of aluminized and non-aluminized explosive formulations.The results show that the new model is particularly accurate in predicting the Gurney velocity of combined effects explosives,which are relatively a new class of high blast,high metal acceleration capability explosive compositions.?2020 China Ordnance Society.Production and hosting by Elsevier B.V.on behalf of KeAi Communications Co.This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    High explosives are an essential part of many types of ammunition used to engage and defeat air,sea and land targets.The damage inflicted on a given target is the result of blast and fragmentation generated following the detonation of the high explosive filler contained within a metal casing.Fragmentation warheads,in particular,can be classified into three categories,namely,natural fragmentation,controlled fragmentation and preformed fragments[1].In the latter two types of warheads,fragments of particular shape,mass and number can be obtained by introducing stress raisers such as grooves on the inside surface of the casing,or by embedding fragments of different geometries(e.g.cubes,spheres,rods,etc…)between the explosive charge and the metal casing.Natural fragmentation warheads,on the other hand,are know n to produce fragments exhibiting a wide range of size and shape of poor lethality which is due,in part,to the fact that nonoptimized irregular shaped-fragments tend to experience high aerodynamic drag forces when flying through the air,resulting in considerable velocity loss[2].The fragments velocity at a given distance from the warhead can be expressed using the following exponential form[3]:

    where Vf(m/s)is the fragment velocity at distance x(m)from the point of detonation,k is the velocity decay constant,ρa(kg/m3)is the air density,m(kg)is fragment mass,S(m2)is the presented area of the fragment and Cdis the drag coefficient,its value depends on both the shape and velocity of the fragment.During WWII,R.W.Gurney came up with an original method to estimate the peak fragment velocity(V0/(km/s))ejected from shells and grenades[4].Gurney's method presumes that for any metal/explosive system the initial potential chemical energy of the explosive is partitioned between the kinetic energy of the fragments and the detonation products cloud.In deriving his model,Gurney has made some assumptions that the explosion gases are of uniform density and that the radial velocity(V)of the detonation gases varies linearly from the axis of symmetry of the explosive to the interface with the metal.How ever,despite these gross assumptions the Gurney model can be successfully applied to a wide range of charge-to metal weight ratio(C/M)and various warhead geometries.The expressions for spherical and cylindrical warheads are shown below:

    The value of Gurney velocity)for military and commercial high explosives is routinely obtained using the cylinder expansion test.The standard cylinder test consists of an explosive fitted inside a right circular cylinder 11.8-inch long,1-inch internal diameter and 0.1-inch thick wall[5].The cylinder is made of oxygen-free high conductivity(OFHC)copper(ρCu=8.94 g/cm3)to reduce spalling.A plane-wave lens generator or a suitable detonator/booster assembly is used to end-initiate the explosive.The wall radial motion is studied using a streak camera or other techniques such as the Velocity Interferometer System for Any Reflector(VISAR)[6]or the Photonic Doppler Velocimetry(PDV)[7]capable of directly measuring the wall velocity.For the 1-inch cylinder test,the wall velocities commonly reported in the literature are those measured at 6 mm and 19 mm wall displacement distances.This stems from the fact that,for head-on and side-on(grazing)detonation,all energy transfer to an adjacent metal is realized by the time the explosion products have reached an expansion volume of V≈2 and V≈7,respectively[8].These expansions correspond to displacement distances of 6 mm and 19 mm in the cylinder test.The 19 mm radial expansion value corresponds to the maximum or terminal wall velocity from which the(for the test explosive can be obtained by applying Gurney's cylinder equation Eq.(2).The high cost of the cylinder test hinders its use to evaluate the available large number of explosive formulations;hence it became necessary to develop alternative means by which the metal pushing ability of high explosives can be easily and rapidly accessed.There have been many equations published by several investigators[9-19,33,34],which provides a practical mean to estimate the Gurney velocity of CHNO-based explosives,although some of these methods can give relatively large deviations from experiment when applied to CHNOAl-based explosives.As a result,the present study aims to develop a simple model capable of accurately predictingfor aluminized and non-aluminized high explosive formulations.

    2.Result and discussion

    2.1.Developing the multivariate model

    The new method should provide a reduced computational effort to facilitate the fast screening of energetic materials.This requirement means that the derived model should include the minimum number of terms and the terms themselves need to be easily calculable from available data.The first and most obvious term to consider is the density(ρ),which is justified by the fact that all of the detonation performance parameters,including the Gurney velocity,depend on it.A limited number of studies have addressed the relationship between explosive properties and the heat of combustion.Linear correlations were found to exist between the detonation velocity(D)[20],the relative explosive strength[21]and the specific heat of combustion(ΔHoc)in(k J/g)for a number of nitramine-based plastic bonded explosives.Furthermore,the heat of combustion was successfully used to evaluate the TNT equivalency of explosives with respect to quasi-static pressure in confined volumes[22].These findings suggest that the heat of combustion may also be used to estimateThe experimental heat of combustion can be obtained by burning a small sample(usually 1-2 g)in a bomb calorimeter in the presence of excess of oxygen(O2)[23].The measured energy of combustion(ΔUc)in(k J/mol)is converted to(ΔHc)using follow ing expression:

    where R is the gas constant 8.314.10-3(k J/mol·K),T(K)is the temperature and Δngis the change in the number of moles of gas for the reaction.For an explosive with the general formula CaHbNcOdAlethe theoretical combustion equation in the presence of oxygen can be represented as follow s:

    The combustion products CO2and N2are in the gaseous phase while H2O and Al2O3are in the liquid and solid phase,respectively.In this study,(ΔHoc)was calculated using the know n heat of formation(ΔHof)values of the products and reactants according to Eq.(6):

    Multiple regression analysis was used to f i t experimentaldata using the density and the specific heat of combustion as variables.The data set includes pure and mixed explosives as well as aluminized and combined effects explosives.The goodness of the fit of the resultant two-variable model was ascertained from the coefficient of determination(R2=0.848)and the corresponding adjusted coefficient of determination(R2Adj=0.826),which represents the fraction of variation of the response explained and predicted by the obtained model[24].Subsequent studies and analysis have shown that the predictive power of the model can be significantly increased by including two more parameters,namely,(ζ)and(φ).The term(ζ)represents the total weight fraction of nitroaromatic explosives present in any composition.Moreover,if an aluminized formulation contains a nitroaromatic,then the weight fraction of the aluminum plus that of the nitroaromatic should be accounted for in the calculation of(ζ).The second term(φ),is merely a dummy parameter which can only have two values“0”and“1”.It is equal to“1”if the studied composition is a combined effects explosive;otherwise,it takes the value of“0”.

    A four-variable expression for the estimation of the Gurney velocity is shown below:

    The intercept X1and the regression coefficients C1-C4were obtained from the multiple regression analysis and a data set made of seventeen experimentalshown in Table 1.The resultant final regression equation is as follows:

    Multivariate results reported in Table 2 shows that all the independent variables are significant which is evident from P-values,which were all less than 0.05 for 95% confidence interval.Furthermore,inclusion of(ρ),(ΔHoc),(ζ)and(φ)variables explains 98.6%of the variability of the data.The small Significance of F(4.31×10-11)led to the rejection of the null hypothesis and confirms the validity of the regression output.

    Table1 Experimental Gurney Velocities(As Compared to Those Calculated by Eq.(8).The Percentage Deviations are shown in Parenthesis.

    Table1 Experimental Gurney Velocities(As Compared to Those Calculated by Eq.(8).The Percentage Deviations are shown in Parenthesis.

    b The heats of formation of Cellulose Acetate Butyrate(CAB)and CL-20 were taken from Ref.[26].aAll heats of formation(ΔHof)and Gurney velocities,unless otherwise noted,were taken from Ref.[25].c The heats of formation of CO2(g);H2O(l);HF(g)and Al2O3(s)were taken from Ref.[27].d Average value from two tests[28].e[29].f [30].g[31].

    Table 2Results of multiple regression analysis(R2=0.986 and

    Table 2Results of multiple regression analysis(R2=0.986 and

    As can be seen in Table 1,most of the studied compositions are based on well-known families of explosives such as nitramines,nitroaromatics and nitrate esters.These formulations were carefully chosen so as to cover a wide range of loading densities(ρ=1.14-1.999 g/cm3)and Gurney velocities2.16-3.16 km/s).Furthermore,the computed specific heat of combustion(ΔHoc)according to Eq.(6)span a range from about-8 k J/g to-15 k J/g.The new method properly predicts theof conventional military explosives such as TNT,Comp-B and RDX,commonly used in munitions.The introduction of the variable(φ)into the model,on the other hand,allow s the accurate prediction(within±1%)of the Gurney velocities of combined effects explosives PAX-29 and PAX-42(row s 16-17,Table 1).These specific types of explosives have remarkable high blast energies and metal pushing capabilities compared to traditional aluminized explosives and high-energy plastic-bonded explosives.The poor metal acceleration ability of conventional aluminized explosives is consistent with the fact that little or no aluminum reacts during the early stages of detonation product expansion.This issue has been addressed by using specially formulated combined effects explosives capable of achieving high performance due to the early anaerobic reaction of aluminum with gaseous detonation products such as H2O and CO2to form Al2O3[32]with the release of substantial amounts of energy and,as such,combined effects explosives are potential candidates to be further developed for advanced blast and fragmentation warhead applications.Referring back to Table 1,it is observed that most of the Gurney velocities estimated using Eq.(8)are within few percent(1%-2%)of the actual measured experimental values.

    2.2.Evaluating the predictive performance of current and existing methods for estimating

    A test set made of nineteen explosive compositions was used to further evaluate the newly proposed model.The predictive performance of Eq.(8)was also compared to several predictive existing equations regarding their abilities in estimating the Gurney velocity of various aluminized and non-aluminized explosives.The relationships derived by Cooper[33]and Koch et al.[19]are widely used for the estimation of the Gurney velocity due to their very low mathematical complexity in that they only require the detonation velocity(D)as input as shown below:

    Departing from the previous methods,Locking[34]arrived at a similar relationship,how ever,the constant in the denominator has been replaced by the term(fx)which is function of the explosive material:

    where(ρ)is the density in kg/m3.In a recent paper[35],a method has been provided from which the Gurney velocity of aluminized and non-aluminized explosive formulations can be accurately obtained following Eq.(12):

    where(PBKW)and(γBKW)are the detonation pressure and adiabatic coefficient calculated using the BKW thermochemical code.The empirical correlation proposed by Keshavarz[9]is used here to exclusively estimateof non-aluminized explosives:

    where a,b,c and d are the number of carbon(C),hydrogen(H),nitrogen(N)and oxygen(O)atoms.Eq.(13)offers the advantage of being simple and requires as input the density and the stoichiometry of the explosive.Obviously,in order to use Eq.(9)-Eq.(12)the detonation performance need to be calculated for all the compositions listed in Table 3.This has been carried out using the BKW code which is based on a chemical-equilibrium,steady-state model of detonation.The code computes the detonation properties using the Becker-Kistiakow sky-Wilson Equation of State(BKW-EOS)for the gaseous product and the Cow an EOS for solid explosion products[36].

    The BKW-EOS is written as:

    where(P),(V),(R),(T)and(x eβx)represent the pressure,molar volume of the gaseous products,gas constant,temperature and the imperfection term,respectively,while(Xi)and(ki)are the mole fraction and the co volume of each product species,respectively.(α),(β),(κ)and(θ)are empirical adjustable parameters.The RDX parameter set(α=0.50;β=0.16;κ=10.91;θ=400)was used to calculate the detonation pressures,adiabatic coefficients and most of the detonation velocities.Concurrently,the TNT parameter set(α=0.50;β=0.09585;κ=12.685;θ=400)was used to compute the detonation velocities for those explosives that generate too much solid carbon in the detonation products such as TACOT and PBX-9502(see Table 3).

    The Root-mean-square deviation(RMSD)calculated using Eq.(15)was used as a measure of accuracy of prediction of Eq.(8)-Eq.(13):

    where(Xobs)and(Xpred)denotes the observed(or experimental)and the predicted values,respectively,while(n)is the number of observations.As seen in Table 4,Eq.(8)accurately estimates the Gurney velocities of non-aluminized explosives as 75%of the predicted values were within±1%of the observed values,indicating a good predictive performance.Chemical elements such as calcium(Ca)or phosphorus(P)present in minute amounts in some explosives(e.g.,HBX-1,H-6 and PBX-9404)were converted to their respective oxides(i.e.CaO and P4O10)and their heat contribution was considered in calculating the specific heat of combustion(ΔHoc).Furthermore,halides,such as fluorine(F)and chlorine(Cl)were assumed to react with hydrogen to afford hydrogen fluoride(HF)and hydrogen chloride(HCl)as combustion products,respectively.Remarkably,all of the tested methods were found unsuitable to estimate the metal acceleration ability of reduced sensitivity explosives.For example,both Eq.(10)and Eq.(13)accurately predict the Gurney velocity for TACOT,but fail to do so for PBX-9502 which is also true for the rest of the equations.If the data for TACOT and PBX-9502 were excluded from the analysis,then Eq.(8)and Eq.(12)would have the best performance among the other equations with an RMSD of only 0.03 km/s.In addition,it is noteworthy to note that other investigators have reported similar findings in studying the energy delivered by a detonating explosive in the cylinder test[41].The model derived in Ref.[41]adequatelyreproduces the experimental cylinder energy at seven volumes expansion for relatively sensitive compositions containing(RDX)and(HMX),how ever,it overestimates by about 15%the cylinder energy for insensitive explosives such as nitroguanidine(NQ)and 1,3,5-triamino-2,4,6-trinitrobenzene(TATB).It also seems like many of the insensitive explosives share the characteristic of having low to moderate metal acceleration ability,which puts into question their use in high performance fragmentation weapons.On the other hand,predictions made by Eqs.(9)-(12)grossly underestimate the Gurney velocities of combined effects explosives(PAX-29n and PAX-30),some by as much as 12%.Besides,these results clearly indicate that factors other than detonation performance can also influence the Gurney velocity.For instance,the Gurney velocity of PAX-30 is 8.5%greater than that of Octol 75/25,even though both explosives have almost the same detonation pressure and velocity(see Table 3).In order to shed some light on the factors that may promote the early anaerobic aluminum oxidation,Anderson et al.[42]performed detonation calorimetry experiments and CHEETAH 5.0 thermochemical code calculations on a series of HMX-based aluminized formulations with varying compositions of HMX,aluminum,and binder materials.The results have shown that the binder type(energetic vs inert)was the sole most important factor in promoting aluminum reaction.Cylinder test wall velocity measurements for PAX-29,PAX-30 and PAX-42 also reveal that the aluminum particle size plays a crucial role in the onset of aluminum oxidation.In the case of formulations incorporating large aluminum particles(≥50μm),little or no reaction occurs even at large expansion volumes[43].Furthermore,the extent of aluminum reaction was affected by the available explosive percentages[32].Any potential user of Eq.(8)can identify a combined effects explosives(φ=1)if all of the following conditions are fulfilled:a)the presence of an“energetic”binder(e.g.,cellulose acetate butyrate plasticized with BDNPA/F);b)the use of small aluminum particles(<50μm);and c)the presence of significant amounts(>75 w t%)of an explosive material.If any one of these conditions is not met,then the explosive is classified as a traditional explosive and its(φ)value should be equal to zero(e.g.,PAX-3a,HTA-3,HBX-1).Lastly,referring to Table 4,It can be clearly seen that,Eq.(8)has the low est RMSD(0.05 km/s)compared to other equations which ranged from 0.13 km/s to 0.23 km/s.These results,supports the reliability of the model proposed to predict the Gurney velocity of various explosive materials.

    Table 3 Detonation performance calculated using the BKW thermochemical code.

    Table4 Experimental Gurney VelocitiesAs Compared to Those Calculated by Eq.(8)-Eq.(13).The Percentage Deviations are shown in Parenthesis.

    Table4 Experimental Gurney VelocitiesAs Compared to Those Calculated by Eq.(8)-Eq.(13).The Percentage Deviations are shown in Parenthesis.

    Note:The heats of formation of CO2(g);H2O(l);HCl(g);HF(g)CaO(s);P4O10(s)and Al2O3(s)used in the calculation of(ΔH oc)were taken from Ref.[27].a[25].b[38].c[30].d[29].e[39].f[40].g[33].h[25,30].i[31].

    3.Conclusions

    Based on w hat has been discussed above,several conclusions can be draw n as follow s:

    1 Multiple regression analysis was used to derive Eq.(8)for predicting the metal acceleration ability of condensed high explosives.

    2 The optimized four-variable model is capable of accurately estimating the Gurney velocity of aluminized and nonaluminized explosives including combined effects explosives.

    3 Eq.(9)-Eq.(12)were found to be unsuitable to estimateof combined effects explosives in that they all result in underestimating the Gurney velocity of such explosives.

    4 Future studies should focus on providing a model for accurate estimation of the Gurney velocity of insensitive explosives.

    List of chemical and atomic com positions of explosive com pound s/form ulations appearing in Tables 1,3 and 4

    C-3:77/4/10/5/1/3 RDX/TNT/Dinitrotoluene/Mononitrotoluene/Ni

    trocellulose/Tetryl

    (C1.90H2.83N2.34O2.60)

    C-4: 91/5.3/2.1/1.6 RDX/Di (2-ethylhexyl) sebacate/Polyisobutylene/Motor oil

    (C1.82H3.54N2.46O2.51)

    Comp A-3:91/9 RDX/WAX(C1.87H3.74N2.46O2.46)

    Comp-B:63/36/1 RDX/TNT/Wax(C2.03H2.64N2.18O2.67)

    Cyclotol 75/25:RDX/TNT(C1.78H2.58N2.36O2.69)

    Cyclotol 77/23:RDX/TNT(C1.750H2.588N2.385O2.689)

    HNS:2,2′,4,4′,6,6′-Hexanitrostilbene(C14H6N6O12)

    H-6: 45/30/20/5/0.5 RDX/TNT/Al/D-2 Wax/CaCl2(C1.89H2.59N1.61O2.01Al0.74Ca0.005Cl0.009)

    HBX-1: 40/38/17/5/0.5 RDX/TNT/Al/D-2 Wax/CaCl2(C2.06H2.62N1.57O2.07Al0.63Ca0.005Cl0.009)

    HMX:1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane(C4H8N8O8)

    HTA-3:49/29/22 HMX/TNT/Al(C1.556H1.963N1.708O2.091Al0.815)

    LX-09:93/4.6/2.4 HMX/DNPA/FEFO(C1.43H2.74N2.59O2.72F0.02)

    LX-10:95/5 HMX/Viton A(C1.41H2.66N2.57O2.57F0.16)

    LX-14:95.5/4.5 HMX/Estane 5702-F1(C1.52H2.92N2.59O2.66)

    Minol II:40/40/20 AN/TNT/Al(C1.233H2.880N1.528O2.556Al0.741)

    NM:Nitromethane(CH3NO2)

    Octol 75/25:HMX/TNT(C1.78H2.58N2.3602.69)

    Octol 78/22:HMX/TNT(C1.732H2.593N2.39902.690)

    PAX-3a: 64/9.5/20/6.5 HMX/BDNPA/F/Al/CAB(C1.384H2.572N1.849O2.183Al0.741)

    PAX-29: 77/4.8/15/3.2 Cl-20/BDNPA/F/Al/CAB(C1.313H1.474N2.169O2.336Al0.556)

    PAX-29n: 77/4.8/15/3.2 Cl-20/BDNPA/F/submicron-Al/CAB(C1.313H1.474N2.169O2.336Al0.556)

    PAX-30: 77/4.8/15/3.2 HMX/BDNPA/F/Al/CAB(C1.299H2.501N2.141O2.308Al0.556)

    PAX-42: 77/4.8/15/3.2 RDX/BDNPA/F/Al/CAB(C1.299H2.501N2.141O2.308Al0.556)

    PETN:Pentaerythritol tetranitrate(C5H8N4O12)

    PBX-9404: 94/3/3 HMX/Nitrocellulose/Tris-β-Chloroethyl phosphate

    (C1.40H2.75N2.57O2.69Cl0.03P0.01)

    PBX-9501: 95/2.5/2.5 HMX/Estane/BDNPA-F(C1.47H2.86N2.60O2.69)

    PBX-9502:95/5 TATB/Kel-F 800(C2.30H2.23N2.21O2.21Cl0.038F0.13)

    RDX:1,3,5-Trinitro-1,3,5-triazacyclohexane(C3H6N6O6)

    TACOT: 2,4,8,10-Tetranitro-5H-benzotriazolo [2,1-a]-benzotriazol-6-ium,hydroxide,

    inner salt(C12H4N8O8)

    Tetryl:2,4,6-Trinitrophenyl-N-methylnitramine(C7H5N5O8)

    TNT:2,4,6-Trinitrotoluene(C7H5N3O6)

    Tritonal:80/20 TNT/Al(C2.467H1.762N1.057O2.115Al0.741)

    94/6 RDX/Wax:(C1.70H3.39N2.54O2.54)

    极品少妇高潮喷水抽搐| 久久天堂一区二区三区四区| 午夜福利,免费看| 成在线人永久免费视频| 久久午夜亚洲精品久久| svipshipincom国产片| 99九九在线精品视频| 中文亚洲av片在线观看爽 | videosex国产| 男人操女人黄网站| 高清在线国产一区| 黄色成人免费大全| 久久精品国产亚洲av香蕉五月 | 欧美黄色淫秽网站| av电影中文网址| 欧美日韩亚洲高清精品| 亚洲熟妇熟女久久| 国产精品偷伦视频观看了| 精品久久久久久电影网| 中文字幕高清在线视频| 国产深夜福利视频在线观看| 午夜福利在线免费观看网站| 99热网站在线观看| av电影中文网址| 国产精品影院久久| 叶爱在线成人免费视频播放| 亚洲精品乱久久久久久| 欧美性长视频在线观看| 亚洲美女黄片视频| 国产伦人伦偷精品视频| 精品午夜福利视频在线观看一区 | 精品人妻熟女毛片av久久网站| 啪啪无遮挡十八禁网站| 成人18禁在线播放| 中文亚洲av片在线观看爽 | 超色免费av| 国产精品免费大片| 少妇 在线观看| 国产淫语在线视频| 亚洲av国产av综合av卡| 黑人欧美特级aaaaaa片| 老汉色∧v一级毛片| 黄片小视频在线播放| 母亲3免费完整高清在线观看| 少妇的丰满在线观看| 午夜日韩欧美国产| 在线观看人妻少妇| 亚洲国产精品一区二区三区在线| 国产精品免费大片| 天堂俺去俺来也www色官网| 久久久精品免费免费高清| 国产精品美女特级片免费视频播放器 | 12—13女人毛片做爰片一| 欧美老熟妇乱子伦牲交| 免费观看a级毛片全部| 亚洲国产中文字幕在线视频| 亚洲成国产人片在线观看| 成年女人毛片免费观看观看9 | 老司机亚洲免费影院| 色在线成人网| 国产成人精品无人区| 日韩中文字幕视频在线看片| 亚洲一区中文字幕在线| 少妇被粗大的猛进出69影院| 最近最新免费中文字幕在线| 正在播放国产对白刺激| 欧美日韩黄片免| 亚洲av美国av| 99久久国产精品久久久| 亚洲成人手机| 久久久国产欧美日韩av| 亚洲av第一区精品v没综合| 十分钟在线观看高清视频www| av电影中文网址| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品一区二区大全| 制服人妻中文乱码| 蜜桃国产av成人99| 日韩三级视频一区二区三区| 色婷婷av一区二区三区视频| 国产老妇伦熟女老妇高清| 巨乳人妻的诱惑在线观看| 免费观看av网站的网址| 亚洲欧洲日产国产| 亚洲成人免费电影在线观看| 亚洲精品国产精品久久久不卡| 免费观看a级毛片全部| 国产av国产精品国产| 成人av一区二区三区在线看| 午夜福利在线免费观看网站| 一级片'在线观看视频| 欧美精品啪啪一区二区三区| 成年动漫av网址| 国产精品久久久久久人妻精品电影 | 黄色 视频免费看| 国产欧美日韩精品亚洲av| 如日韩欧美国产精品一区二区三区| 久久久久久久久免费视频了| 在线 av 中文字幕| 国产深夜福利视频在线观看| 男女免费视频国产| 亚洲欧洲精品一区二区精品久久久| 在线观看66精品国产| 久久久欧美国产精品| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 日韩制服丝袜自拍偷拍| 18禁美女被吸乳视频| 少妇的丰满在线观看| 一边摸一边抽搐一进一出视频| av欧美777| 老鸭窝网址在线观看| 成人18禁在线播放| 美女视频免费永久观看网站| 大陆偷拍与自拍| 日韩大片免费观看网站| 色婷婷久久久亚洲欧美| 国产精品免费一区二区三区在线 | 久久这里只有精品19| av电影中文网址| 亚洲国产看品久久| 两性夫妻黄色片| 日日爽夜夜爽网站| 亚洲国产毛片av蜜桃av| 这个男人来自地球电影免费观看| 色视频在线一区二区三区| 欧美日韩亚洲高清精品| 亚洲九九香蕉| 高清在线国产一区| www.自偷自拍.com| 交换朋友夫妻互换小说| xxxhd国产人妻xxx| 日韩成人在线观看一区二区三区| 久久精品成人免费网站| 免费一级毛片在线播放高清视频 | av一本久久久久| 黄网站色视频无遮挡免费观看| 十八禁网站免费在线| av天堂在线播放| 国产伦人伦偷精品视频| 黄片播放在线免费| 免费看a级黄色片| 肉色欧美久久久久久久蜜桃| 国产精品 欧美亚洲| 五月天丁香电影| 亚洲成人国产一区在线观看| 午夜老司机福利片| 欧美日韩精品网址| 啦啦啦 在线观看视频| 99热国产这里只有精品6| 2018国产大陆天天弄谢| 国产97色在线日韩免费| 日韩三级视频一区二区三区| 19禁男女啪啪无遮挡网站| 亚洲黑人精品在线| 99久久国产精品久久久| 欧美中文综合在线视频| 欧美乱码精品一区二区三区| 日韩一区二区三区影片| 久久久久久久国产电影| 国产深夜福利视频在线观看| 国产欧美日韩一区二区三| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区黑人| 18在线观看网站| 亚洲国产av新网站| 国产精品免费大片| 一区二区三区国产精品乱码| 国产精品亚洲一级av第二区| 日韩成人在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 两性夫妻黄色片| 精品卡一卡二卡四卡免费| 欧美精品高潮呻吟av久久| 丝袜人妻中文字幕| 亚洲欧美一区二区三区久久| 男女床上黄色一级片免费看| 成人国产av品久久久| 美女高潮喷水抽搐中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 色婷婷久久久亚洲欧美| 美女高潮喷水抽搐中文字幕| aaaaa片日本免费| 精品福利观看| 久久精品人人爽人人爽视色| av天堂久久9| 飞空精品影院首页| 纵有疾风起免费观看全集完整版| 精品少妇内射三级| 午夜福利欧美成人| 黄片大片在线免费观看| 日韩免费高清中文字幕av| 国产精品久久久av美女十八| 69精品国产乱码久久久| 国产精品免费视频内射| 中文字幕另类日韩欧美亚洲嫩草| 国产成人av激情在线播放| 新久久久久国产一级毛片| 亚洲黑人精品在线| 搡老熟女国产l中国老女人| 久久精品国产亚洲av香蕉五月 | 日日爽夜夜爽网站| 久热这里只有精品99| 久9热在线精品视频| 欧美性长视频在线观看| 视频区欧美日本亚洲| 色综合欧美亚洲国产小说| 蜜桃国产av成人99| 国产亚洲精品久久久久5区| √禁漫天堂资源中文www| 女人被躁到高潮嗷嗷叫费观| 亚洲国产欧美一区二区综合| 99久久99久久久精品蜜桃| 亚洲精品久久成人aⅴ小说| 在线观看免费午夜福利视频| 欧美性长视频在线观看| 国产免费现黄频在线看| 欧美另类亚洲清纯唯美| 亚洲少妇的诱惑av| 麻豆av在线久日| 99精品在免费线老司机午夜| 欧美黑人精品巨大| 国产极品粉嫩免费观看在线| 国产视频一区二区在线看| 成人亚洲精品一区在线观看| 男女高潮啪啪啪动态图| 无遮挡黄片免费观看| 制服诱惑二区| 手机成人av网站| 捣出白浆h1v1| 成人影院久久| 丁香欧美五月| 国产一区二区在线观看av| 一二三四在线观看免费中文在| 色94色欧美一区二区| 多毛熟女@视频| 18禁观看日本| 最新的欧美精品一区二区| 99国产精品99久久久久| 99re6热这里在线精品视频| 日本wwww免费看| 亚洲专区国产一区二区| 亚洲人成77777在线视频| 多毛熟女@视频| 久久精品国产a三级三级三级| 久久精品成人免费网站| 欧美国产精品va在线观看不卡| 男女床上黄色一级片免费看| 精品欧美一区二区三区在线| 亚洲av成人不卡在线观看播放网| 波多野结衣一区麻豆| 手机成人av网站| 日韩熟女老妇一区二区性免费视频| www.熟女人妻精品国产| 黑人巨大精品欧美一区二区蜜桃| 一区在线观看完整版| 欧美人与性动交α欧美软件| 亚洲av日韩精品久久久久久密| 国产人伦9x9x在线观看| 人妻 亚洲 视频| 亚洲人成伊人成综合网2020| 欧美 日韩 精品 国产| 午夜福利在线观看吧| 91九色精品人成在线观看| 天堂动漫精品| 一级片'在线观看视频| 乱人伦中国视频| 欧美成狂野欧美在线观看| 亚洲一区中文字幕在线| 免费观看人在逋| xxxhd国产人妻xxx| 美女高潮喷水抽搐中文字幕| 91大片在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲熟女精品中文字幕| 一级毛片电影观看| 自线自在国产av| 青草久久国产| 老司机在亚洲福利影院| 高清黄色对白视频在线免费看| 99久久99久久久精品蜜桃| 十八禁网站免费在线| 黄色丝袜av网址大全| 国产日韩欧美在线精品| 夜夜夜夜夜久久久久| 纯流量卡能插随身wifi吗| av网站免费在线观看视频| 人人妻人人添人人爽欧美一区卜| 欧美成人午夜精品| 一级毛片精品| 中文亚洲av片在线观看爽 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲五月色婷婷综合| 国产欧美日韩综合在线一区二区| 麻豆av在线久日| 久久人妻福利社区极品人妻图片| 精品亚洲成国产av| 久久久国产欧美日韩av| 一进一出好大好爽视频| 两个人免费观看高清视频| 免费在线观看完整版高清| 1024香蕉在线观看| 国产一区二区三区综合在线观看| 国产三级黄色录像| 高清视频免费观看一区二区| 亚洲精品粉嫩美女一区| 黑丝袜美女国产一区| 久久精品成人免费网站| 国产精品亚洲av一区麻豆| 91麻豆av在线| 两个人看的免费小视频| 王馨瑶露胸无遮挡在线观看| a级毛片黄视频| 黄色 视频免费看| 在线观看人妻少妇| 午夜福利,免费看| 天堂中文最新版在线下载| 99国产精品一区二区蜜桃av | 80岁老熟妇乱子伦牲交| 亚洲中文av在线| 欧美精品一区二区大全| 两性夫妻黄色片| 少妇的丰满在线观看| 欧美久久黑人一区二区| 色播在线永久视频| 国产精品免费视频内射| 好男人电影高清在线观看| 天天影视国产精品| 啦啦啦 在线观看视频| 成人免费观看视频高清| 最近最新中文字幕大全免费视频| 日韩大码丰满熟妇| 菩萨蛮人人尽说江南好唐韦庄| 制服人妻中文乱码| 日韩免费高清中文字幕av| 日韩中文字幕欧美一区二区| 久久精品国产a三级三级三级| 国产精品免费视频内射| 另类精品久久| 国产亚洲精品第一综合不卡| 一区福利在线观看| 国产男女超爽视频在线观看| 男人操女人黄网站| 国产区一区二久久| 国产精品 欧美亚洲| 男男h啪啪无遮挡| 麻豆成人av在线观看| 国产在线一区二区三区精| 丝袜美腿诱惑在线| 视频区图区小说| 欧美国产精品va在线观看不卡| 人妻 亚洲 视频| 91成年电影在线观看| 制服诱惑二区| 亚洲欧美日韩高清在线视频 | 亚洲精品国产区一区二| 成人av一区二区三区在线看| 亚洲美女黄片视频| 欧美激情 高清一区二区三区| 国产精品二区激情视频| 亚洲人成77777在线视频| 交换朋友夫妻互换小说| 黄色片一级片一级黄色片| 熟女少妇亚洲综合色aaa.| 久久国产亚洲av麻豆专区| 九色亚洲精品在线播放| 黑人巨大精品欧美一区二区蜜桃| 亚洲第一青青草原| 天堂中文最新版在线下载| tocl精华| 老司机福利观看| 国产成人av激情在线播放| 在线观看66精品国产| 少妇粗大呻吟视频| 国产精品香港三级国产av潘金莲| 亚洲男人天堂网一区| 国产亚洲精品久久久久5区| 亚洲一区二区三区欧美精品| 别揉我奶头~嗯~啊~动态视频| 可以免费在线观看a视频的电影网站| 久久久久精品国产欧美久久久| 欧美精品人与动牲交sv欧美| 女人高潮潮喷娇喘18禁视频| 巨乳人妻的诱惑在线观看| 国产av一区二区精品久久| 亚洲成av片中文字幕在线观看| 人妻一区二区av| 久久中文看片网| 国产亚洲精品第一综合不卡| 国产免费av片在线观看野外av| 十八禁网站网址无遮挡| 亚洲av第一区精品v没综合| 日韩大码丰满熟妇| 国产精品免费大片| 亚洲色图综合在线观看| 中文字幕最新亚洲高清| av不卡在线播放| 国产精品一区二区精品视频观看| 女人高潮潮喷娇喘18禁视频| 久久狼人影院| 国产欧美日韩精品亚洲av| 极品教师在线免费播放| 久久久久国内视频| 成人国产av品久久久| 免费久久久久久久精品成人欧美视频| √禁漫天堂资源中文www| av国产精品久久久久影院| 欧美日韩av久久| 亚洲精品中文字幕在线视频| 巨乳人妻的诱惑在线观看| 黄色视频不卡| 中亚洲国语对白在线视频| 性少妇av在线| 国产亚洲精品一区二区www | 亚洲一区中文字幕在线| 巨乳人妻的诱惑在线观看| 午夜福利在线免费观看网站| 最新在线观看一区二区三区| 在线观看免费高清a一片| 热re99久久精品国产66热6| 美女高潮喷水抽搐中文字幕| 欧美日韩一级在线毛片| 香蕉久久夜色| 一区福利在线观看| 国产欧美日韩综合在线一区二区| 啦啦啦视频在线资源免费观看| 国产精品影院久久| 极品教师在线免费播放| 久久久久国产一级毛片高清牌| 国产精品99久久99久久久不卡| 久久久国产欧美日韩av| 大陆偷拍与自拍| 国产精品美女特级片免费视频播放器 | 国产欧美日韩综合在线一区二区| 中文字幕av电影在线播放| 老熟妇仑乱视频hdxx| 成年人免费黄色播放视频| 国产极品粉嫩免费观看在线| 咕卡用的链子| 日韩视频在线欧美| 日韩人妻精品一区2区三区| 亚洲精品国产色婷婷电影| 热99国产精品久久久久久7| 美国免费a级毛片| 菩萨蛮人人尽说江南好唐韦庄| 不卡av一区二区三区| 精品第一国产精品| av欧美777| 一级毛片女人18水好多| 黄片播放在线免费| 在线观看www视频免费| avwww免费| 最近最新中文字幕大全免费视频| 一区二区三区激情视频| tube8黄色片| 国产av精品麻豆| 可以免费在线观看a视频的电影网站| 免费日韩欧美在线观看| 亚洲成人国产一区在线观看| 中文字幕人妻熟女乱码| 欧美乱码精品一区二区三区| 黄色 视频免费看| 少妇被粗大的猛进出69影院| 波多野结衣一区麻豆| 丁香六月欧美| 国产xxxxx性猛交| 最新的欧美精品一区二区| 啦啦啦视频在线资源免费观看| 久久影院123| 妹子高潮喷水视频| 国产一区二区激情短视频| 欧美黄色淫秽网站| 一区二区三区国产精品乱码| 人人妻,人人澡人人爽秒播| 99国产综合亚洲精品| 法律面前人人平等表现在哪些方面| 建设人人有责人人尽责人人享有的| 国产免费av片在线观看野外av| 国产色视频综合| 一区二区三区乱码不卡18| 亚洲国产看品久久| 欧美精品一区二区免费开放| 一级毛片精品| 国产xxxxx性猛交| 香蕉国产在线看| 超碰成人久久| 亚洲成av片中文字幕在线观看| 国产成人免费观看mmmm| 九色亚洲精品在线播放| 大香蕉久久网| 欧美乱妇无乱码| 精品少妇内射三级| 免费少妇av软件| 大香蕉久久成人网| 国产精品 欧美亚洲| 欧美亚洲日本最大视频资源| 国产伦人伦偷精品视频| 人人妻人人添人人爽欧美一区卜| 乱人伦中国视频| 日韩人妻精品一区2区三区| 亚洲精品久久午夜乱码| 国产不卡一卡二| 午夜老司机福利片| 国产在视频线精品| 亚洲久久久国产精品| 18禁黄网站禁片午夜丰满| av免费在线观看网站| 捣出白浆h1v1| 亚洲第一欧美日韩一区二区三区 | 91老司机精品| 国产深夜福利视频在线观看| 国产有黄有色有爽视频| 成人18禁高潮啪啪吃奶动态图| 乱人伦中国视频| 一区二区三区精品91| 亚洲成人手机| 亚洲成人免费av在线播放| 久久九九热精品免费| 一区二区三区乱码不卡18| 人妻一区二区av| 成人国语在线视频| 丰满饥渴人妻一区二区三| 51午夜福利影视在线观看| 国产高清国产精品国产三级| 成人国产一区最新在线观看| 大型av网站在线播放| 男男h啪啪无遮挡| 日韩欧美一区视频在线观看| 夜夜夜夜夜久久久久| 国产精品99久久99久久久不卡| 亚洲av日韩精品久久久久久密| 国产高清videossex| 亚洲成人免费电影在线观看| 满18在线观看网站| 啦啦啦在线免费观看视频4| 国产欧美日韩一区二区三| 欧美日韩福利视频一区二区| 亚洲色图av天堂| 男女之事视频高清在线观看| 国产成人免费无遮挡视频| 久久久欧美国产精品| 亚洲综合色网址| 国产不卡一卡二| 热99re8久久精品国产| 亚洲精品成人av观看孕妇| 美女高潮喷水抽搐中文字幕| 欧美大码av| 国产又色又爽无遮挡免费看| 欧美人与性动交α欧美精品济南到| 欧美日韩黄片免| a级毛片在线看网站| 不卡av一区二区三区| 男女之事视频高清在线观看| 精品少妇久久久久久888优播| 人妻 亚洲 视频| 日韩一卡2卡3卡4卡2021年| 亚洲欧美激情在线| 丝袜美腿诱惑在线| 国产精品电影一区二区三区 | 丰满少妇做爰视频| 久久毛片免费看一区二区三区| 国产激情久久老熟女| 亚洲美女黄片视频| 热99re8久久精品国产| 国产亚洲一区二区精品| 亚洲人成电影观看| 国产精品1区2区在线观看. | 日韩成人在线观看一区二区三区| 99国产精品一区二区蜜桃av | 夜夜夜夜夜久久久久| 亚洲全国av大片| 国产熟女午夜一区二区三区| 一二三四在线观看免费中文在| 又大又爽又粗| 变态另类成人亚洲欧美熟女 | 丝袜在线中文字幕| 高清黄色对白视频在线免费看| 中文字幕高清在线视频| 欧美精品高潮呻吟av久久| 欧美人与性动交α欧美精品济南到| 成年人午夜在线观看视频| 18禁美女被吸乳视频| 一本大道久久a久久精品| 成人免费观看视频高清| 国产成人av激情在线播放| 他把我摸到了高潮在线观看 | 久久天躁狠狠躁夜夜2o2o| 亚洲avbb在线观看| 亚洲成人免费av在线播放| 国产黄频视频在线观看| 国产精品久久久久成人av| 国产一区二区三区综合在线观看| 欧美大码av| 一区福利在线观看| 狂野欧美激情性xxxx| 日韩免费av在线播放| 欧美日韩视频精品一区| 亚洲精品中文字幕在线视频| 人成视频在线观看免费观看| 亚洲中文日韩欧美视频| 在线天堂中文资源库| 黄片播放在线免费| 欧美午夜高清在线| 亚洲欧洲精品一区二区精品久久久| 91字幕亚洲| 久久久国产成人免费| 一区二区三区激情视频| 这个男人来自地球电影免费观看| 在线观看免费视频日本深夜| 交换朋友夫妻互换小说| 我要看黄色一级片免费的| 成人亚洲精品一区在线观看| 我的亚洲天堂| 人妻一区二区av| 看免费av毛片|