• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimating the metal acceleration ability of high explosives

    2020-04-09 18:43:48DanyFrem
    Defence Technology 2020年1期

    Dany Frem

    Frem Co.,Beirut,Lebanon

    Keywords:Gurney velocity High explosives Aluminized explosives Combined effects explosives Fragmentation warheads

    ABSTRACT The Gurney method is widely used in the conceptual design stage of explosive fragmentation warheads employed in various weapons systems.This method states that the peak fragment velocity(V0)is a function of the Gurney velocity()and the charge-to-metal weight ratio(C/M).The current study is concerned with finding a practical approach for computing the Gurney velocity of pure and mixed high explosives which will eventually help warhead designers to select the best explosive to fulfill the needs of a particular mission.Using multiple regression analysis technique,a four-variable model was derived and used thereafter to estimate the Gurney velocity of aluminized and non-aluminized explosive formulations.The results show that the new model is particularly accurate in predicting the Gurney velocity of combined effects explosives,which are relatively a new class of high blast,high metal acceleration capability explosive compositions.?2020 China Ordnance Society.Production and hosting by Elsevier B.V.on behalf of KeAi Communications Co.This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    High explosives are an essential part of many types of ammunition used to engage and defeat air,sea and land targets.The damage inflicted on a given target is the result of blast and fragmentation generated following the detonation of the high explosive filler contained within a metal casing.Fragmentation warheads,in particular,can be classified into three categories,namely,natural fragmentation,controlled fragmentation and preformed fragments[1].In the latter two types of warheads,fragments of particular shape,mass and number can be obtained by introducing stress raisers such as grooves on the inside surface of the casing,or by embedding fragments of different geometries(e.g.cubes,spheres,rods,etc…)between the explosive charge and the metal casing.Natural fragmentation warheads,on the other hand,are know n to produce fragments exhibiting a wide range of size and shape of poor lethality which is due,in part,to the fact that nonoptimized irregular shaped-fragments tend to experience high aerodynamic drag forces when flying through the air,resulting in considerable velocity loss[2].The fragments velocity at a given distance from the warhead can be expressed using the following exponential form[3]:

    where Vf(m/s)is the fragment velocity at distance x(m)from the point of detonation,k is the velocity decay constant,ρa(kg/m3)is the air density,m(kg)is fragment mass,S(m2)is the presented area of the fragment and Cdis the drag coefficient,its value depends on both the shape and velocity of the fragment.During WWII,R.W.Gurney came up with an original method to estimate the peak fragment velocity(V0/(km/s))ejected from shells and grenades[4].Gurney's method presumes that for any metal/explosive system the initial potential chemical energy of the explosive is partitioned between the kinetic energy of the fragments and the detonation products cloud.In deriving his model,Gurney has made some assumptions that the explosion gases are of uniform density and that the radial velocity(V)of the detonation gases varies linearly from the axis of symmetry of the explosive to the interface with the metal.How ever,despite these gross assumptions the Gurney model can be successfully applied to a wide range of charge-to metal weight ratio(C/M)and various warhead geometries.The expressions for spherical and cylindrical warheads are shown below:

    The value of Gurney velocity)for military and commercial high explosives is routinely obtained using the cylinder expansion test.The standard cylinder test consists of an explosive fitted inside a right circular cylinder 11.8-inch long,1-inch internal diameter and 0.1-inch thick wall[5].The cylinder is made of oxygen-free high conductivity(OFHC)copper(ρCu=8.94 g/cm3)to reduce spalling.A plane-wave lens generator or a suitable detonator/booster assembly is used to end-initiate the explosive.The wall radial motion is studied using a streak camera or other techniques such as the Velocity Interferometer System for Any Reflector(VISAR)[6]or the Photonic Doppler Velocimetry(PDV)[7]capable of directly measuring the wall velocity.For the 1-inch cylinder test,the wall velocities commonly reported in the literature are those measured at 6 mm and 19 mm wall displacement distances.This stems from the fact that,for head-on and side-on(grazing)detonation,all energy transfer to an adjacent metal is realized by the time the explosion products have reached an expansion volume of V≈2 and V≈7,respectively[8].These expansions correspond to displacement distances of 6 mm and 19 mm in the cylinder test.The 19 mm radial expansion value corresponds to the maximum or terminal wall velocity from which the(for the test explosive can be obtained by applying Gurney's cylinder equation Eq.(2).The high cost of the cylinder test hinders its use to evaluate the available large number of explosive formulations;hence it became necessary to develop alternative means by which the metal pushing ability of high explosives can be easily and rapidly accessed.There have been many equations published by several investigators[9-19,33,34],which provides a practical mean to estimate the Gurney velocity of CHNO-based explosives,although some of these methods can give relatively large deviations from experiment when applied to CHNOAl-based explosives.As a result,the present study aims to develop a simple model capable of accurately predictingfor aluminized and non-aluminized high explosive formulations.

    2.Result and discussion

    2.1.Developing the multivariate model

    The new method should provide a reduced computational effort to facilitate the fast screening of energetic materials.This requirement means that the derived model should include the minimum number of terms and the terms themselves need to be easily calculable from available data.The first and most obvious term to consider is the density(ρ),which is justified by the fact that all of the detonation performance parameters,including the Gurney velocity,depend on it.A limited number of studies have addressed the relationship between explosive properties and the heat of combustion.Linear correlations were found to exist between the detonation velocity(D)[20],the relative explosive strength[21]and the specific heat of combustion(ΔHoc)in(k J/g)for a number of nitramine-based plastic bonded explosives.Furthermore,the heat of combustion was successfully used to evaluate the TNT equivalency of explosives with respect to quasi-static pressure in confined volumes[22].These findings suggest that the heat of combustion may also be used to estimateThe experimental heat of combustion can be obtained by burning a small sample(usually 1-2 g)in a bomb calorimeter in the presence of excess of oxygen(O2)[23].The measured energy of combustion(ΔUc)in(k J/mol)is converted to(ΔHc)using follow ing expression:

    where R is the gas constant 8.314.10-3(k J/mol·K),T(K)is the temperature and Δngis the change in the number of moles of gas for the reaction.For an explosive with the general formula CaHbNcOdAlethe theoretical combustion equation in the presence of oxygen can be represented as follow s:

    The combustion products CO2and N2are in the gaseous phase while H2O and Al2O3are in the liquid and solid phase,respectively.In this study,(ΔHoc)was calculated using the know n heat of formation(ΔHof)values of the products and reactants according to Eq.(6):

    Multiple regression analysis was used to f i t experimentaldata using the density and the specific heat of combustion as variables.The data set includes pure and mixed explosives as well as aluminized and combined effects explosives.The goodness of the fit of the resultant two-variable model was ascertained from the coefficient of determination(R2=0.848)and the corresponding adjusted coefficient of determination(R2Adj=0.826),which represents the fraction of variation of the response explained and predicted by the obtained model[24].Subsequent studies and analysis have shown that the predictive power of the model can be significantly increased by including two more parameters,namely,(ζ)and(φ).The term(ζ)represents the total weight fraction of nitroaromatic explosives present in any composition.Moreover,if an aluminized formulation contains a nitroaromatic,then the weight fraction of the aluminum plus that of the nitroaromatic should be accounted for in the calculation of(ζ).The second term(φ),is merely a dummy parameter which can only have two values“0”and“1”.It is equal to“1”if the studied composition is a combined effects explosive;otherwise,it takes the value of“0”.

    A four-variable expression for the estimation of the Gurney velocity is shown below:

    The intercept X1and the regression coefficients C1-C4were obtained from the multiple regression analysis and a data set made of seventeen experimentalshown in Table 1.The resultant final regression equation is as follows:

    Multivariate results reported in Table 2 shows that all the independent variables are significant which is evident from P-values,which were all less than 0.05 for 95% confidence interval.Furthermore,inclusion of(ρ),(ΔHoc),(ζ)and(φ)variables explains 98.6%of the variability of the data.The small Significance of F(4.31×10-11)led to the rejection of the null hypothesis and confirms the validity of the regression output.

    Table1 Experimental Gurney Velocities(As Compared to Those Calculated by Eq.(8).The Percentage Deviations are shown in Parenthesis.

    Table1 Experimental Gurney Velocities(As Compared to Those Calculated by Eq.(8).The Percentage Deviations are shown in Parenthesis.

    b The heats of formation of Cellulose Acetate Butyrate(CAB)and CL-20 were taken from Ref.[26].aAll heats of formation(ΔHof)and Gurney velocities,unless otherwise noted,were taken from Ref.[25].c The heats of formation of CO2(g);H2O(l);HF(g)and Al2O3(s)were taken from Ref.[27].d Average value from two tests[28].e[29].f [30].g[31].

    Table 2Results of multiple regression analysis(R2=0.986 and

    Table 2Results of multiple regression analysis(R2=0.986 and

    As can be seen in Table 1,most of the studied compositions are based on well-known families of explosives such as nitramines,nitroaromatics and nitrate esters.These formulations were carefully chosen so as to cover a wide range of loading densities(ρ=1.14-1.999 g/cm3)and Gurney velocities2.16-3.16 km/s).Furthermore,the computed specific heat of combustion(ΔHoc)according to Eq.(6)span a range from about-8 k J/g to-15 k J/g.The new method properly predicts theof conventional military explosives such as TNT,Comp-B and RDX,commonly used in munitions.The introduction of the variable(φ)into the model,on the other hand,allow s the accurate prediction(within±1%)of the Gurney velocities of combined effects explosives PAX-29 and PAX-42(row s 16-17,Table 1).These specific types of explosives have remarkable high blast energies and metal pushing capabilities compared to traditional aluminized explosives and high-energy plastic-bonded explosives.The poor metal acceleration ability of conventional aluminized explosives is consistent with the fact that little or no aluminum reacts during the early stages of detonation product expansion.This issue has been addressed by using specially formulated combined effects explosives capable of achieving high performance due to the early anaerobic reaction of aluminum with gaseous detonation products such as H2O and CO2to form Al2O3[32]with the release of substantial amounts of energy and,as such,combined effects explosives are potential candidates to be further developed for advanced blast and fragmentation warhead applications.Referring back to Table 1,it is observed that most of the Gurney velocities estimated using Eq.(8)are within few percent(1%-2%)of the actual measured experimental values.

    2.2.Evaluating the predictive performance of current and existing methods for estimating

    A test set made of nineteen explosive compositions was used to further evaluate the newly proposed model.The predictive performance of Eq.(8)was also compared to several predictive existing equations regarding their abilities in estimating the Gurney velocity of various aluminized and non-aluminized explosives.The relationships derived by Cooper[33]and Koch et al.[19]are widely used for the estimation of the Gurney velocity due to their very low mathematical complexity in that they only require the detonation velocity(D)as input as shown below:

    Departing from the previous methods,Locking[34]arrived at a similar relationship,how ever,the constant in the denominator has been replaced by the term(fx)which is function of the explosive material:

    where(ρ)is the density in kg/m3.In a recent paper[35],a method has been provided from which the Gurney velocity of aluminized and non-aluminized explosive formulations can be accurately obtained following Eq.(12):

    where(PBKW)and(γBKW)are the detonation pressure and adiabatic coefficient calculated using the BKW thermochemical code.The empirical correlation proposed by Keshavarz[9]is used here to exclusively estimateof non-aluminized explosives:

    where a,b,c and d are the number of carbon(C),hydrogen(H),nitrogen(N)and oxygen(O)atoms.Eq.(13)offers the advantage of being simple and requires as input the density and the stoichiometry of the explosive.Obviously,in order to use Eq.(9)-Eq.(12)the detonation performance need to be calculated for all the compositions listed in Table 3.This has been carried out using the BKW code which is based on a chemical-equilibrium,steady-state model of detonation.The code computes the detonation properties using the Becker-Kistiakow sky-Wilson Equation of State(BKW-EOS)for the gaseous product and the Cow an EOS for solid explosion products[36].

    The BKW-EOS is written as:

    where(P),(V),(R),(T)and(x eβx)represent the pressure,molar volume of the gaseous products,gas constant,temperature and the imperfection term,respectively,while(Xi)and(ki)are the mole fraction and the co volume of each product species,respectively.(α),(β),(κ)and(θ)are empirical adjustable parameters.The RDX parameter set(α=0.50;β=0.16;κ=10.91;θ=400)was used to calculate the detonation pressures,adiabatic coefficients and most of the detonation velocities.Concurrently,the TNT parameter set(α=0.50;β=0.09585;κ=12.685;θ=400)was used to compute the detonation velocities for those explosives that generate too much solid carbon in the detonation products such as TACOT and PBX-9502(see Table 3).

    The Root-mean-square deviation(RMSD)calculated using Eq.(15)was used as a measure of accuracy of prediction of Eq.(8)-Eq.(13):

    where(Xobs)and(Xpred)denotes the observed(or experimental)and the predicted values,respectively,while(n)is the number of observations.As seen in Table 4,Eq.(8)accurately estimates the Gurney velocities of non-aluminized explosives as 75%of the predicted values were within±1%of the observed values,indicating a good predictive performance.Chemical elements such as calcium(Ca)or phosphorus(P)present in minute amounts in some explosives(e.g.,HBX-1,H-6 and PBX-9404)were converted to their respective oxides(i.e.CaO and P4O10)and their heat contribution was considered in calculating the specific heat of combustion(ΔHoc).Furthermore,halides,such as fluorine(F)and chlorine(Cl)were assumed to react with hydrogen to afford hydrogen fluoride(HF)and hydrogen chloride(HCl)as combustion products,respectively.Remarkably,all of the tested methods were found unsuitable to estimate the metal acceleration ability of reduced sensitivity explosives.For example,both Eq.(10)and Eq.(13)accurately predict the Gurney velocity for TACOT,but fail to do so for PBX-9502 which is also true for the rest of the equations.If the data for TACOT and PBX-9502 were excluded from the analysis,then Eq.(8)and Eq.(12)would have the best performance among the other equations with an RMSD of only 0.03 km/s.In addition,it is noteworthy to note that other investigators have reported similar findings in studying the energy delivered by a detonating explosive in the cylinder test[41].The model derived in Ref.[41]adequatelyreproduces the experimental cylinder energy at seven volumes expansion for relatively sensitive compositions containing(RDX)and(HMX),how ever,it overestimates by about 15%the cylinder energy for insensitive explosives such as nitroguanidine(NQ)and 1,3,5-triamino-2,4,6-trinitrobenzene(TATB).It also seems like many of the insensitive explosives share the characteristic of having low to moderate metal acceleration ability,which puts into question their use in high performance fragmentation weapons.On the other hand,predictions made by Eqs.(9)-(12)grossly underestimate the Gurney velocities of combined effects explosives(PAX-29n and PAX-30),some by as much as 12%.Besides,these results clearly indicate that factors other than detonation performance can also influence the Gurney velocity.For instance,the Gurney velocity of PAX-30 is 8.5%greater than that of Octol 75/25,even though both explosives have almost the same detonation pressure and velocity(see Table 3).In order to shed some light on the factors that may promote the early anaerobic aluminum oxidation,Anderson et al.[42]performed detonation calorimetry experiments and CHEETAH 5.0 thermochemical code calculations on a series of HMX-based aluminized formulations with varying compositions of HMX,aluminum,and binder materials.The results have shown that the binder type(energetic vs inert)was the sole most important factor in promoting aluminum reaction.Cylinder test wall velocity measurements for PAX-29,PAX-30 and PAX-42 also reveal that the aluminum particle size plays a crucial role in the onset of aluminum oxidation.In the case of formulations incorporating large aluminum particles(≥50μm),little or no reaction occurs even at large expansion volumes[43].Furthermore,the extent of aluminum reaction was affected by the available explosive percentages[32].Any potential user of Eq.(8)can identify a combined effects explosives(φ=1)if all of the following conditions are fulfilled:a)the presence of an“energetic”binder(e.g.,cellulose acetate butyrate plasticized with BDNPA/F);b)the use of small aluminum particles(<50μm);and c)the presence of significant amounts(>75 w t%)of an explosive material.If any one of these conditions is not met,then the explosive is classified as a traditional explosive and its(φ)value should be equal to zero(e.g.,PAX-3a,HTA-3,HBX-1).Lastly,referring to Table 4,It can be clearly seen that,Eq.(8)has the low est RMSD(0.05 km/s)compared to other equations which ranged from 0.13 km/s to 0.23 km/s.These results,supports the reliability of the model proposed to predict the Gurney velocity of various explosive materials.

    Table 3 Detonation performance calculated using the BKW thermochemical code.

    Table4 Experimental Gurney VelocitiesAs Compared to Those Calculated by Eq.(8)-Eq.(13).The Percentage Deviations are shown in Parenthesis.

    Table4 Experimental Gurney VelocitiesAs Compared to Those Calculated by Eq.(8)-Eq.(13).The Percentage Deviations are shown in Parenthesis.

    Note:The heats of formation of CO2(g);H2O(l);HCl(g);HF(g)CaO(s);P4O10(s)and Al2O3(s)used in the calculation of(ΔH oc)were taken from Ref.[27].a[25].b[38].c[30].d[29].e[39].f[40].g[33].h[25,30].i[31].

    3.Conclusions

    Based on w hat has been discussed above,several conclusions can be draw n as follow s:

    1 Multiple regression analysis was used to derive Eq.(8)for predicting the metal acceleration ability of condensed high explosives.

    2 The optimized four-variable model is capable of accurately estimating the Gurney velocity of aluminized and nonaluminized explosives including combined effects explosives.

    3 Eq.(9)-Eq.(12)were found to be unsuitable to estimateof combined effects explosives in that they all result in underestimating the Gurney velocity of such explosives.

    4 Future studies should focus on providing a model for accurate estimation of the Gurney velocity of insensitive explosives.

    List of chemical and atomic com positions of explosive com pound s/form ulations appearing in Tables 1,3 and 4

    C-3:77/4/10/5/1/3 RDX/TNT/Dinitrotoluene/Mononitrotoluene/Ni

    trocellulose/Tetryl

    (C1.90H2.83N2.34O2.60)

    C-4: 91/5.3/2.1/1.6 RDX/Di (2-ethylhexyl) sebacate/Polyisobutylene/Motor oil

    (C1.82H3.54N2.46O2.51)

    Comp A-3:91/9 RDX/WAX(C1.87H3.74N2.46O2.46)

    Comp-B:63/36/1 RDX/TNT/Wax(C2.03H2.64N2.18O2.67)

    Cyclotol 75/25:RDX/TNT(C1.78H2.58N2.36O2.69)

    Cyclotol 77/23:RDX/TNT(C1.750H2.588N2.385O2.689)

    HNS:2,2′,4,4′,6,6′-Hexanitrostilbene(C14H6N6O12)

    H-6: 45/30/20/5/0.5 RDX/TNT/Al/D-2 Wax/CaCl2(C1.89H2.59N1.61O2.01Al0.74Ca0.005Cl0.009)

    HBX-1: 40/38/17/5/0.5 RDX/TNT/Al/D-2 Wax/CaCl2(C2.06H2.62N1.57O2.07Al0.63Ca0.005Cl0.009)

    HMX:1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane(C4H8N8O8)

    HTA-3:49/29/22 HMX/TNT/Al(C1.556H1.963N1.708O2.091Al0.815)

    LX-09:93/4.6/2.4 HMX/DNPA/FEFO(C1.43H2.74N2.59O2.72F0.02)

    LX-10:95/5 HMX/Viton A(C1.41H2.66N2.57O2.57F0.16)

    LX-14:95.5/4.5 HMX/Estane 5702-F1(C1.52H2.92N2.59O2.66)

    Minol II:40/40/20 AN/TNT/Al(C1.233H2.880N1.528O2.556Al0.741)

    NM:Nitromethane(CH3NO2)

    Octol 75/25:HMX/TNT(C1.78H2.58N2.3602.69)

    Octol 78/22:HMX/TNT(C1.732H2.593N2.39902.690)

    PAX-3a: 64/9.5/20/6.5 HMX/BDNPA/F/Al/CAB(C1.384H2.572N1.849O2.183Al0.741)

    PAX-29: 77/4.8/15/3.2 Cl-20/BDNPA/F/Al/CAB(C1.313H1.474N2.169O2.336Al0.556)

    PAX-29n: 77/4.8/15/3.2 Cl-20/BDNPA/F/submicron-Al/CAB(C1.313H1.474N2.169O2.336Al0.556)

    PAX-30: 77/4.8/15/3.2 HMX/BDNPA/F/Al/CAB(C1.299H2.501N2.141O2.308Al0.556)

    PAX-42: 77/4.8/15/3.2 RDX/BDNPA/F/Al/CAB(C1.299H2.501N2.141O2.308Al0.556)

    PETN:Pentaerythritol tetranitrate(C5H8N4O12)

    PBX-9404: 94/3/3 HMX/Nitrocellulose/Tris-β-Chloroethyl phosphate

    (C1.40H2.75N2.57O2.69Cl0.03P0.01)

    PBX-9501: 95/2.5/2.5 HMX/Estane/BDNPA-F(C1.47H2.86N2.60O2.69)

    PBX-9502:95/5 TATB/Kel-F 800(C2.30H2.23N2.21O2.21Cl0.038F0.13)

    RDX:1,3,5-Trinitro-1,3,5-triazacyclohexane(C3H6N6O6)

    TACOT: 2,4,8,10-Tetranitro-5H-benzotriazolo [2,1-a]-benzotriazol-6-ium,hydroxide,

    inner salt(C12H4N8O8)

    Tetryl:2,4,6-Trinitrophenyl-N-methylnitramine(C7H5N5O8)

    TNT:2,4,6-Trinitrotoluene(C7H5N3O6)

    Tritonal:80/20 TNT/Al(C2.467H1.762N1.057O2.115Al0.741)

    94/6 RDX/Wax:(C1.70H3.39N2.54O2.54)

    国产又色又爽无遮挡免| 色婷婷久久久亚洲欧美| 日韩精品有码人妻一区| 小蜜桃在线观看免费完整版高清| 嘟嘟电影网在线观看| 日本欧美国产在线视频| 一级毛片久久久久久久久女| 国产亚洲欧美精品永久| 国产成人91sexporn| 亚洲av中文av极速乱| 亚洲色图av天堂| 中文字幕久久专区| 国产深夜福利视频在线观看| 一级黄片播放器| 能在线免费看毛片的网站| 一二三四中文在线观看免费高清| 欧美精品国产亚洲| 91久久精品电影网| 国产精品一区二区在线观看99| 91精品一卡2卡3卡4卡| 丝袜喷水一区| 91精品国产九色| 精品一区二区三区视频在线| 偷拍熟女少妇极品色| 国产亚洲欧美精品永久| 搡女人真爽免费视频火全软件| 国产女主播在线喷水免费视频网站| 成人高潮视频无遮挡免费网站| 欧美一级a爱片免费观看看| 色视频www国产| 狂野欧美激情性bbbbbb| 一区二区三区乱码不卡18| 国产精品女同一区二区软件| 2018国产大陆天天弄谢| 搡女人真爽免费视频火全软件| 国产极品天堂在线| 看免费成人av毛片| 91精品一卡2卡3卡4卡| 免费人成在线观看视频色| 中文字幕免费在线视频6| 麻豆精品久久久久久蜜桃| 国产人妻一区二区三区在| 丰满少妇做爰视频| 美女福利国产在线 | 成人国产麻豆网| 国产精品国产三级专区第一集| 大话2 男鬼变身卡| 99国产精品免费福利视频| 国产成人a区在线观看| 精品99又大又爽又粗少妇毛片| 男人爽女人下面视频在线观看| 青青草视频在线视频观看| 国产欧美另类精品又又久久亚洲欧美| 日本wwww免费看| 国产精品成人在线| 高清黄色对白视频在线免费看 | 人妻一区二区av| 亚洲经典国产精华液单| 久久99蜜桃精品久久| 成年美女黄网站色视频大全免费 | 亚洲精品国产成人久久av| 菩萨蛮人人尽说江南好唐韦庄| 日产精品乱码卡一卡2卡三| 国产av码专区亚洲av| 国产毛片在线视频| av视频免费观看在线观看| 中文在线观看免费www的网站| 久久久久久人妻| 一级av片app| 99热全是精品| 精品一区二区三区视频在线| 五月天丁香电影| 毛片女人毛片| 国模一区二区三区四区视频| 久久 成人 亚洲| 欧美性感艳星| 欧美另类一区| 啦啦啦在线观看免费高清www| 观看av在线不卡| 永久网站在线| 高清黄色对白视频在线免费看 | 久久亚洲国产成人精品v| 免费少妇av软件| 亚洲国产精品国产精品| 久久久久久久国产电影| 少妇熟女欧美另类| 亚洲精品成人av观看孕妇| 男人爽女人下面视频在线观看| 国产在线免费精品| 久久av网站| 波野结衣二区三区在线| 精品少妇黑人巨大在线播放| 尾随美女入室| 人妻 亚洲 视频| 国产欧美日韩精品一区二区| 黄色欧美视频在线观看| 观看免费一级毛片| av黄色大香蕉| videos熟女内射| 高清在线视频一区二区三区| 蜜桃亚洲精品一区二区三区| 美女高潮的动态| 麻豆乱淫一区二区| 亚洲精品成人av观看孕妇| 亚洲欧美中文字幕日韩二区| 在线免费十八禁| 亚洲国产精品成人久久小说| 国产精品99久久99久久久不卡 | 国产精品一区www在线观看| 嫩草影院入口| 毛片一级片免费看久久久久| 在线观看美女被高潮喷水网站| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品国产av蜜桃| 久久人人爽人人片av| 狂野欧美白嫩少妇大欣赏| 2021少妇久久久久久久久久久| 毛片一级片免费看久久久久| 日日摸夜夜添夜夜爱| 日韩成人av中文字幕在线观看| 国模一区二区三区四区视频| 精品少妇久久久久久888优播| 大片免费播放器 马上看| 色视频在线一区二区三区| av国产精品久久久久影院| 久久韩国三级中文字幕| 午夜免费鲁丝| 久久99热这里只频精品6学生| 亚洲高清免费不卡视频| 久久韩国三级中文字幕| 国产精品女同一区二区软件| 欧美少妇被猛烈插入视频| 国产精品女同一区二区软件| 国产免费视频播放在线视频| 91精品国产国语对白视频| 欧美zozozo另类| 高清不卡的av网站| 97热精品久久久久久| 水蜜桃什么品种好| 亚洲欧美日韩另类电影网站 | 亚洲av中文字字幕乱码综合| 免费看光身美女| 国产精品不卡视频一区二区| 亚洲人成网站高清观看| 尤物成人国产欧美一区二区三区| 欧美日韩亚洲高清精品| 三级国产精品片| 国产人妻一区二区三区在| av女优亚洲男人天堂| 少妇猛男粗大的猛烈进出视频| 免费观看性生交大片5| 春色校园在线视频观看| 最后的刺客免费高清国语| 狂野欧美激情性bbbbbb| 久久久久精品性色| 高清毛片免费看| videos熟女内射| 久久亚洲国产成人精品v| 亚洲av中文字字幕乱码综合| 99国产精品免费福利视频| 国产精品一区二区三区四区免费观看| 午夜福利在线观看免费完整高清在| 日本免费在线观看一区| 免费看光身美女| 看十八女毛片水多多多| 人体艺术视频欧美日本| www.av在线官网国产| 免费av不卡在线播放| 在线天堂最新版资源| 婷婷色麻豆天堂久久| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利在线观看免费完整高清在| 日本免费在线观看一区| 99视频精品全部免费 在线| 日韩欧美 国产精品| 亚洲真实伦在线观看| 最新中文字幕久久久久| 色婷婷av一区二区三区视频| 少妇人妻久久综合中文| av免费在线看不卡| 亚州av有码| 国产真实伦视频高清在线观看| 成人毛片60女人毛片免费| 久久久久国产精品人妻一区二区| 国产亚洲一区二区精品| 亚洲性久久影院| 日本色播在线视频| 18禁在线播放成人免费| a级毛色黄片| 久热久热在线精品观看| 亚洲美女搞黄在线观看| 联通29元200g的流量卡| 99久久精品一区二区三区| 精品酒店卫生间| 久久久久国产网址| 永久免费av网站大全| 国产成人精品福利久久| 国产欧美亚洲国产| 边亲边吃奶的免费视频| 午夜福利在线观看免费完整高清在| 男女免费视频国产| 身体一侧抽搐| 欧美xxⅹ黑人| 日本av免费视频播放| 3wmmmm亚洲av在线观看| 中文精品一卡2卡3卡4更新| a级毛片免费高清观看在线播放| 嫩草影院新地址| 99久久精品国产国产毛片| 国产成人aa在线观看| 亚洲av在线观看美女高潮| 一级毛片aaaaaa免费看小| 国产伦理片在线播放av一区| 看十八女毛片水多多多| 久久人妻熟女aⅴ| 久久久亚洲精品成人影院| 日本午夜av视频| 高清av免费在线| 人人妻人人添人人爽欧美一区卜 | 一级二级三级毛片免费看| 91在线精品国自产拍蜜月| 日韩欧美精品免费久久| 久久人人爽人人片av| 久久久久久人妻| videos熟女内射| 国产成人freesex在线| 波野结衣二区三区在线| 一级毛片黄色毛片免费观看视频| 国产高潮美女av| 午夜福利网站1000一区二区三区| 自拍偷自拍亚洲精品老妇| 免费播放大片免费观看视频在线观看| 国产国拍精品亚洲av在线观看| 观看美女的网站| 日本一二三区视频观看| 亚洲av综合色区一区| 免费黄频网站在线观看国产| 国产色婷婷99| 高清视频免费观看一区二区| 大话2 男鬼变身卡| av免费观看日本| 久久久国产一区二区| 成人漫画全彩无遮挡| av国产精品久久久久影院| 国产精品久久久久久精品电影小说 | 最近中文字幕高清免费大全6| 一二三四中文在线观看免费高清| 天天躁日日操中文字幕| 性色av一级| 亚洲欧美日韩另类电影网站 | 一本久久精品| 在线观看国产h片| 又粗又硬又长又爽又黄的视频| 日本与韩国留学比较| 永久网站在线| 欧美+日韩+精品| av在线app专区| 久久人人爽人人片av| 王馨瑶露胸无遮挡在线观看| 精品一区在线观看国产| 七月丁香在线播放| 三级国产精品欧美在线观看| 久久亚洲国产成人精品v| 直男gayav资源| 久久人人爽人人片av| 99九九线精品视频在线观看视频| 美女国产视频在线观看| 91午夜精品亚洲一区二区三区| 三级国产精品欧美在线观看| 亚洲欧美日韩东京热| av福利片在线观看| 久久精品人妻少妇| 久久久久精品久久久久真实原创| 亚洲综合色惰| 97在线视频观看| 国产免费视频播放在线视频| 简卡轻食公司| 欧美丝袜亚洲另类| 五月天丁香电影| 久久精品国产a三级三级三级| 中文资源天堂在线| 高清黄色对白视频在线免费看 | 免费高清在线观看视频在线观看| 亚洲熟女精品中文字幕| 国产精品秋霞免费鲁丝片| 国产亚洲最大av| 久久久色成人| 亚洲精品乱码久久久v下载方式| 免费看不卡的av| 国产av码专区亚洲av| 日韩av不卡免费在线播放| 久久99热这里只有精品18| 亚洲av福利一区| 亚洲成人手机| 日韩一区二区三区影片| 美女中出高潮动态图| 性高湖久久久久久久久免费观看| 日韩人妻高清精品专区| 在线观看一区二区三区| 亚洲精品色激情综合| 91久久精品国产一区二区成人| 女性被躁到高潮视频| 欧美高清性xxxxhd video| 人人妻人人看人人澡| 夜夜看夜夜爽夜夜摸| 视频区图区小说| 综合色丁香网| 日韩亚洲欧美综合| 欧美日韩亚洲高清精品| 亚洲国产精品999| 在线观看av片永久免费下载| 精品午夜福利在线看| 亚洲国产最新在线播放| 亚洲精品乱码久久久v下载方式| 亚洲久久久国产精品| 欧美精品一区二区大全| 国产综合精华液| 蜜桃亚洲精品一区二区三区| a级一级毛片免费在线观看| 亚洲欧美日韩无卡精品| 国产免费视频播放在线视频| 国产精品久久久久久久久免| 国产精品人妻久久久久久| 成人毛片60女人毛片免费| 日韩不卡一区二区三区视频在线| 亚洲一级一片aⅴ在线观看| 一级a做视频免费观看| 亚洲成人手机| 在线 av 中文字幕| 极品教师在线视频| 国产69精品久久久久777片| 亚洲国产色片| 热re99久久精品国产66热6| 亚洲精品国产av蜜桃| av黄色大香蕉| h视频一区二区三区| 99re6热这里在线精品视频| 性高湖久久久久久久久免费观看| 久久女婷五月综合色啪小说| 欧美最新免费一区二区三区| 国产av码专区亚洲av| 亚洲av日韩在线播放| 日韩中字成人| 国产男女内射视频| videossex国产| 婷婷色av中文字幕| 久久久精品免费免费高清| 寂寞人妻少妇视频99o| 欧美精品国产亚洲| 美女高潮的动态| 免费看光身美女| 亚洲熟女精品中文字幕| 日韩成人av中文字幕在线观看| 啦啦啦啦在线视频资源| 尾随美女入室| 亚洲欧美精品专区久久| 激情 狠狠 欧美| 香蕉精品网在线| 国产精品.久久久| 日本wwww免费看| 欧美日韩国产mv在线观看视频 | 亚洲成人av在线免费| 国产成人91sexporn| 欧美xxxx黑人xx丫x性爽| 亚洲美女搞黄在线观看| 三级经典国产精品| 少妇被粗大猛烈的视频| 免费观看性生交大片5| 男人狂女人下面高潮的视频| 不卡视频在线观看欧美| 黄片wwwwww| 91精品伊人久久大香线蕉| 国产爽快片一区二区三区| 欧美区成人在线视频| 亚洲精品乱久久久久久| 亚洲精品日本国产第一区| 精品视频人人做人人爽| 久久久亚洲精品成人影院| 国产视频首页在线观看| 国产精品一二三区在线看| 久久精品国产亚洲av涩爱| 久久精品久久久久久噜噜老黄| 卡戴珊不雅视频在线播放| 一级av片app| 伦理电影大哥的女人| 国产精品av视频在线免费观看| 欧美xxxx黑人xx丫x性爽| 国产亚洲av片在线观看秒播厂| 日本-黄色视频高清免费观看| 日韩av免费高清视频| 久久久久国产精品人妻一区二区| 亚洲精品一二三| 久久精品国产自在天天线| 美女内射精品一级片tv| 日本欧美视频一区| 午夜福利网站1000一区二区三区| 男女边吃奶边做爰视频| 国产亚洲一区二区精品| 久久鲁丝午夜福利片| 视频区图区小说| 婷婷色综合www| 赤兔流量卡办理| 久久99蜜桃精品久久| 欧美成人一区二区免费高清观看| 亚洲国产毛片av蜜桃av| 日韩av不卡免费在线播放| 国产成人aa在线观看| 国产探花极品一区二区| 精华霜和精华液先用哪个| 在线 av 中文字幕| 小蜜桃在线观看免费完整版高清| 久久99蜜桃精品久久| 国产成人免费无遮挡视频| 最近最新中文字幕大全电影3| 国产成人精品久久久久久| 又粗又硬又长又爽又黄的视频| 国产美女午夜福利| 亚洲,欧美,日韩| 亚洲综合色惰| 亚洲国产精品成人久久小说| 日韩在线高清观看一区二区三区| 成人黄色视频免费在线看| 好男人视频免费观看在线| 国产日韩欧美在线精品| 这个男人来自地球电影免费观看 | 成人18禁高潮啪啪吃奶动态图 | 亚洲,欧美,日韩| 草草在线视频免费看| 久久久久网色| 亚洲无线观看免费| 精品久久久久久电影网| 中文乱码字字幕精品一区二区三区| 免费看不卡的av| 日韩精品有码人妻一区| 免费观看的影片在线观看| 午夜视频国产福利| 最黄视频免费看| 美女cb高潮喷水在线观看| 国产精品国产av在线观看| 五月伊人婷婷丁香| 日韩免费高清中文字幕av| 午夜视频国产福利| 观看av在线不卡| 国产精品久久久久成人av| 中文资源天堂在线| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产色片| 人妻制服诱惑在线中文字幕| 各种免费的搞黄视频| 秋霞在线观看毛片| 女人久久www免费人成看片| 欧美精品国产亚洲| 国产无遮挡羞羞视频在线观看| av福利片在线观看| 日本猛色少妇xxxxx猛交久久| 欧美 日韩 精品 国产| 精品熟女少妇av免费看| 成人18禁高潮啪啪吃奶动态图 | 亚洲最大成人中文| 国内精品宾馆在线| 国产乱来视频区| 熟女电影av网| 中国国产av一级| 国产日韩欧美亚洲二区| 国产乱人视频| 国产免费一区二区三区四区乱码| 欧美变态另类bdsm刘玥| 亚洲美女视频黄频| 秋霞在线观看毛片| 欧美区成人在线视频| 成人18禁高潮啪啪吃奶动态图 | 国产男女超爽视频在线观看| 免费久久久久久久精品成人欧美视频 | 精品熟女少妇av免费看| 在线观看美女被高潮喷水网站| 又黄又爽又刺激的免费视频.| 中文欧美无线码| 最近手机中文字幕大全| 日韩在线高清观看一区二区三区| 日韩制服骚丝袜av| 人妻系列 视频| 久久人妻熟女aⅴ| 亚洲色图综合在线观看| 成年女人在线观看亚洲视频| 久久久久精品久久久久真实原创| 欧美精品亚洲一区二区| 黄色日韩在线| 久久久久人妻精品一区果冻| 尤物成人国产欧美一区二区三区| 日产精品乱码卡一卡2卡三| 插阴视频在线观看视频| 欧美+日韩+精品| 国产精品人妻久久久影院| 国产欧美日韩一区二区三区在线 | 一区二区三区乱码不卡18| 麻豆成人av视频| 精品久久久久久久久av| 久久久久久久久久久丰满| av在线观看视频网站免费| 99久国产av精品国产电影| 人妻制服诱惑在线中文字幕| 亚洲欧洲日产国产| 国产久久久一区二区三区| 国产精品偷伦视频观看了| 日韩亚洲欧美综合| 久久女婷五月综合色啪小说| 一级毛片久久久久久久久女| 青春草视频在线免费观看| 精品久久久久久电影网| 美女高潮的动态| 交换朋友夫妻互换小说| 日韩欧美精品免费久久| 亚洲在久久综合| 国产亚洲最大av| 一个人免费看片子| 99热国产这里只有精品6| 韩国高清视频一区二区三区| 亚洲欧美日韩另类电影网站 | 亚洲精品日韩av片在线观看| 超碰97精品在线观看| 免费高清在线观看视频在线观看| 热99国产精品久久久久久7| 国产白丝娇喘喷水9色精品| 成人影院久久| 国产淫语在线视频| 99热网站在线观看| 免费黄网站久久成人精品| 久久99精品国语久久久| 男人爽女人下面视频在线观看| 黑丝袜美女国产一区| 人人妻人人添人人爽欧美一区卜 | 人妻夜夜爽99麻豆av| 丰满少妇做爰视频| h日本视频在线播放| 中国国产av一级| 久久久精品免费免费高清| 大码成人一级视频| 99久久人妻综合| 草草在线视频免费看| 国产欧美日韩一区二区三区在线 | 麻豆精品久久久久久蜜桃| 国内少妇人妻偷人精品xxx网站| 2021少妇久久久久久久久久久| 夫妻性生交免费视频一级片| 精品少妇久久久久久888优播| 国产伦理片在线播放av一区| 国产亚洲欧美精品永久| 少妇精品久久久久久久| 国产成人91sexporn| 成年av动漫网址| 在线观看一区二区三区| 国产一级毛片在线| 欧美精品一区二区免费开放| 人妻系列 视频| 亚洲av国产av综合av卡| 下体分泌物呈黄色| 在线看a的网站| 在线 av 中文字幕| 亚洲av日韩在线播放| 国内精品宾馆在线| 欧美日韩一区二区视频在线观看视频在线| 久久97久久精品| 一个人看视频在线观看www免费| 久久影院123| kizo精华| 我要看日韩黄色一级片| 午夜免费男女啪啪视频观看| 免费av中文字幕在线| 日韩电影二区| 亚洲内射少妇av| 亚洲三级黄色毛片| 啦啦啦在线观看免费高清www| 涩涩av久久男人的天堂| 美女国产视频在线观看| 亚洲精品乱码久久久v下载方式| 精品国产乱码久久久久久小说| 国产一级毛片在线| 日本色播在线视频| 蜜桃亚洲精品一区二区三区| 国产真实伦视频高清在线观看| 国产亚洲一区二区精品| 在线观看免费日韩欧美大片 | 欧美精品人与动牲交sv欧美| 国内精品宾馆在线| 高清黄色对白视频在线免费看 | 最近手机中文字幕大全| 国产av码专区亚洲av| 亚洲va在线va天堂va国产| 在线天堂最新版资源| 亚洲欧美清纯卡通| 肉色欧美久久久久久久蜜桃| 高清欧美精品videossex| 肉色欧美久久久久久久蜜桃| 男人和女人高潮做爰伦理| 男女免费视频国产| 男人爽女人下面视频在线观看| 人妻夜夜爽99麻豆av| a 毛片基地| 男人舔奶头视频| 日韩一区二区三区影片| 日本与韩国留学比较| 天堂俺去俺来也www色官网| 街头女战士在线观看网站| 蜜桃亚洲精品一区二区三区| 久久国产乱子免费精品| 国产91av在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 伊人久久国产一区二区| av免费在线看不卡| 国产一区有黄有色的免费视频| 久久人人爽人人爽人人片va| 联通29元200g的流量卡| 国产亚洲午夜精品一区二区久久| 国产午夜精品一二区理论片| 18禁在线播放成人免费|