• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polyurea coating for foamed concrete panel:An efficient way to resist explosion

    2020-04-09 18:40:00YishunChenBoWngBeiZhngQingZhengJinnnZhouFengninJinHulinFn
    Defence Technology 2020年1期

    Yi-shun Chen ,Bo Wng ,Bei Zhng ,Qing Zheng ,Jin-nn Zhou ,Feng-nin Jin ,Hu-lin Fn ,c,*

    a State Key Laboratory for Disaster Prevention&Mitigation of Explosion&Impact,Army Engineering University of PLA,Nanjing 210007,China

    b Research Center of Lightweight Structures and Intelligent Manufacturing,State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    c State Key Laboratory of Disaster Reduction in Civil Engineering,Tongji University,Shanghai 200092,China

    Keywords:Autoclaved aerated concrete Polyurea Explosion Failure

    ABSTRACT Autoclaved aerated concrete(AAC)panels have ultra-light weight,excellent thermal insulation and energy absorption,so it is an ideal building material for protective structures.To improve the blast resistance of the AAC panels,three schemes are applied to strengthen the AAC panels through spraying 4 mm thick polyurea coating from top,bottom and double-sides.In three-point bending tests,the polyurea-coated AAC panels have much higher ultimate loads than the un-coated panels,but slightly lower than those strengthened by the carbon fiber reinforced plastics(CFRPs).Close-in explosion experiments reveal the dynamic strengthening effect of the polyurea coating.Critical scaled distances of the strengthened AAC panels are acquired,which are valuable for the engineering application of the AAC panels in the extreme loading conditions.Polyurea coatings efficiently enhance the blast resistance of the bottom and double-sided polyurea-coated AAC panels.It is interesting that the polyurea-coated AAC panels have much more excellent blast resistance than the CFRP reinforced AAC panels,although the latter have better static mechanical properties.?2020 China Ordnance Society.Production and hosting by Elsevier B.V.on behalf of KeAi Communications Co.This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Nowadays,blast resistant ability of constructions has been widely concerned due to growing terrorist attacks.Autoclaved aerated concrete(AAC)is a kind of lightweight,multi-functional and environment-friendly building material[1-3].How ever,AAC panels usually have low impact or blast resistance and must be strengthened under explosion[4,5].Fiber reinforced plastics(FRPs)have been used to strengthen the AAC panels[6-10],which can also reduce secondary injury through restricting spalling and fragments produced by the explosion.Wang et al.[11]applied carbon fiber reinforced plastics(CFRPs)to retro fit the AAC panels.

    Polyurea is a new type of elastic polymer.Compared with the CFRP,it has advantages of high construction efficiency,firm cohesiveness with concrete and good environmental adaptability.Researchers found that the polyurea also displayed excellent protective performance in impact and explosion.Parniani and Toutanji[12]investigated fatigue performance of RC beams retrofitted by polyurea coating.Toutanji et al.[13]applied polyurea coating to high-performance organic cementitious materials.Through experiments,Ha et al.[14]studied strengthening effect of hybrid CFRP-PU on RC panels under blast loading.

    Spraying polyurea material on aerated concrete block wall can effectively improve the anti-explosion performance[15].Under explosion,the polyurea layer can reduce the structural flexure,and turn the global collapse of unreinforced wall into local damage and cracks in the walls.How ever,increasing the thickness of the polyurea coating does not seem to contribute significantly to further reduction of the displacement when compared to the thinner coating[16].It is also noticed that a polyurea coating on the nonblast-facing face tends to be more effective in terms of displacement control[16].

    In this paper,the AAC panels were strengthened by polyurea coatings,and the dynamic strengthening effects were investigated by close-in explosion tests and compared with those of the CFRP strengthened panels.

    The AAC panels used in this research are produced by Nanjing Asahi New Building Materials Co.,Ltd.,with density of 525 kg/m3.The cellular structure,with pore diameter smaller than 1 mm,is shown in Fig.1(a).The AAC is brittle and its physical and mechanical properties are listed in Table 1.The polyurea has quite large deformation and its modulus increases with the strain,as shown in Fig.1(b).Combination of these two materials could create structures with excellent energy absorption.

    In this research, each AAC panel is 1200 mm×600 mm×100 mm,with weight of about 50 kg.These panels are reinforced by double-layer steel rebars,and each layer contains 9 steel rebars with diameter of 5 mm,as shown in Fig.2.The physical and mechanical properties of the polyurea are listed in Table 2.

    The polyurea is sprayed onto the surface of the foamed concrete panel layer by layer.The spraying thickness of each layer is about 0.3 mm.After spraying one layer,the sprayed mass of the polyurea can be read from the machine.The polyurea coating for the foamed concrete panels is 4 mm thick,which will be controlled from the total mass of the sprayed polyurea.

    In this research,three kinds of polyurea-coated AACpanels are designed:(a)top coating,(b)bottom coating and(c)double-sided coating,as shown in Fig.3.CFRP strengthened AAC panels are also tested for comparison,as shown in Fig.4.

    2.Quasi-static three-point bending testing

    Quasi-static three-point bending test is carried out on MTS(material testing system)machine at a loading rate of 1.2 mm/min,with span of 1000 mm.The load-displacement curves and failure modes of the un-strengthened,the CFRP strengthened and the bottom polyurea-coated AAC panels are as shown in Fig.5.

    Through the flexure curve,the flexural rigidity,B,of the panel can be calculated by

    where F,δ,and l denote the applied force,the mid-span flexure and the span,respectively.For the three panels,the flexural rigidities are 55 k N·m2,109 k N·m2and 96 k N·m2,respectively.It is clear that the strengthened AAC panels have much greater rigidity.As the CFRP is stiffer than the polyurea coating,the CFRP strengthened panel has the greatest rigidity.The peak loads of the three panels are 10.65 k N,19.32 k N and 16.78 k N,respectively.Therefore,both the CFRP and the polyurea coating can enhance the load capacity of the AAC panels,but the improvement from the CFRP is a little better.For the un-strengthened AAC panel,the crack appears suddenly in the shear zone,extends obliquely and penetrates the panel from the support to the mid-span,leading to brittle shear failure.The CFRP strengthened and the bottom polyurea-coated AAC panels fail suddenly due to bending-shearing crack,which initiates at the lower surface and then extends diagonally across the mid-span cross section.

    Fig.1.Structure and mechanical properties of AAC:(a)cellular structure,(b)complete and(c)initial compression curves and(d)failure mode compared with polyurea.

    Table 1 Physical and mechanical properties of AAC.

    Fig.2.Reinforcements of the AAC panels:(a)cross section and(b)top view[11].

    3.Blast responses of AAC panels

    3.1.Experimental schemes

    Seven explosion experiments are performed to investigate the dynamic properties of the polyurea-coated AAC panels under various scaled distances,as listed in Table 3.As shown in Fig.6,the panel is placed on a steel frame with dimensions of 1150 mm×1100 mm×500 mm and constrained by steel rollers.The span of the panel is 1000 mm.The charge is suspended above the central of the panel with standoff distance of 0.8 m with mass varying from 0.1 kg to 0.3 kg.The corresponding scaled distance ranges from 1.195 m/kg1/3to 1.723 m/kg1/3.The reflected wave pressure on the plate surface is measured by the pressure sensor at the mid-span and 1/4 of the width away from the side.The free field pressure is measured by the PCB free field pressure sensor,which is 3 m away from the charge horizontally.The mid-span flexure is measured by a Linear Variable Displacement Transducer(LVDT),whose maximum range is 100 mm with 10 k Hz sampling rate.The strain of the polyurea coating is measured by three strain gauges at the bottom of the panel,w hose maximum range is 10000με.

    3.2.Pressure analysis

    The pressure curves measured by the PCB free field pressure sensor and the pressure sensor on the AAC panel with scaled distances of 1.723 m/kg1/3,1.368 m/kg1/3and 1.195 m/kg1/3are displayed in Fig.7.

    To compare the difference between the experimental and calculated values[17],the experimental error is evaluated and listed in Table 4,where Piand Prrepresent the peak pressures of the free field and the reflection,and can be calculated by Ref.[17].

    Fig.3.Schematic diagrams for the polyurea strengthened methods of(a)top coating,(b)bottom coating and(c)double-sided coating.

    where C is the weight of TNT,h is the distance from the measure point to the TNT.

    The reflected peak pressure Pr,is determined by

    where the reflective coefficient,r,can be determined by the incident peak pressure Piand the incident angle α through Fig.8.The experimental errors of Pimeasured by PCB are relatively small.The errors of the reflected pressures measured by the pressure sensors on the surface of the panel are also acceptable.Information about the measured pressures is limited.As the calculation is consistent with the experiment,the detailed distribution of the reflected pressure can be calculated by Eq.(1)and Eq.(2).

    3.3.Blast-resistant ability

    Three explosion experiments with scaled distances of 1.723 m/kg1/3,1.368 m/kg1/3and 1.195 m/kg1/3are carried out on the bottom polyurea-coated AAC panels(B-1,B-2 and B-3)respectively,as shown in Fig.9.

    There is no damage found in B-1 after explosion,as shown in Fig.9(a),and its permanent deflection is zero,which means the panel has no plastic deformation during explosion.For B-2 panel,small cracks appear on its upper surface,with directions parallel to the long side of the panel,as shown in Fig.9(b).Seen from displacement-time curve,B-2 has no permanent deformation either,indicating that the explosion causes no destructive damage to the panel,and the polyurea on the lower surface plays an important role in strengthening.The damage of B-3 in explosion has showed obvious characteristics of bending-shear failure,with transverse cracks perpendicular to the long side on the upper surface,as shown in Fig.9(c).From the flexure curve,the permanent deflection is 2.71 mm,which means that B-3 has been severely damaged.How ever,scattered fragments are hardly seen after destruction,indicating that bottom polyurea coating can effectively control the splashing of the fragments.

    Tw o explosions with scaled distances of 1.368 m/kg1/3and 1.195 m/kg1/3are conducted on the double-sided polyurea-coated AAC panels(D-1 and D-2),as shown in Fig.10.There was no damage found in D-1 after explosion.Bending-shearing coupling failure occurs in D-2.No cracks are observed on the upper and lower surfaces of D-2,but there are some slanting cracks on the side.The flexure curve shows that it produces permanent deflection of 5.28 mm and overall destruction has occurred.

    Two explosions with scaled distances of 1.723 m/kg1/3and 1.368 m/kg1/3are performed on the top-polyurea-coated AAC panels(T-1 and T-2),as shown in Fig.11.No cracks are observed on the surface of T-1,but its permanent deflection is 1.03 mm,indicating the panel has been damaged inside.A slanting crack appears on the side of T-2 with obvious characteristics of bending-shearing coupling failure.With much more severe damage than T-1,T-2 has a permanent deflection of 4.32 mm.

    Fig.4.(a)Un-coated,(b)polyurea-coated,and(c)CFRPstrengthened AAC panels.

    Fig.5.Failure modes and load-displacement curves of(a)un-strengthened AAC panel,(b)unidirectional CFRP strengthened AAC panel[11]and(c)bottom polyurea-coated AAC panel.

    Table 3 Explosion schemes.

    Fig.6.Explosion experiment setup(Unit:mm).

    Failure styles of the bottom,the double-sided and the top polyurea-coated and the CFRP reinforced AAC panels[11]with scaled distance of 1.368 m/kg1/3are compared,as shown in Fig.9(b),10(a),11(b)and Fig.12.It can be seen that the damage degree of the polyurea-coated AAC panels is much smaller,and that of the CFRP reinforced AAC panels[11]under scaled distance of 1.368 m/kg1/3is comparable to that of the double-sided polyureacoated AAC panel under scaled distance of 1.195 m/kg1/3.

    3.4.Deflection analysis

    Table 5 and Table 6 list the maximum deflection and permanent deflection of the panels.In general,with the decrease of the scaled distance,the maximum deflection of the polyurea-coated AAC panels increases.The magnitude of the permanent deflection indicates the damage degree of the panels.

    Table 4 Pressure error analysis.

    Fig.8.The reflective coefficient[17].

    Figs.9(a)and Fig.10(a)show the response curves of the undamaged panels,w hose permanent deflections are zero.The curves include narrow troughs and wide peaks,caused by the forced downward vibration of the shock wave and the free vibration of the panel,respectively.For undamaged panels,the amplitudes of the wave peak and trough have little differences.Fig.9(c)and Fig.10(b)show the response curves of the damaged panels.They have much greater maximum and permanent deflections.The amplitude of the wave peak is obviously smaller than that of the trough for the seriously damaged panels.These panels have irreversible permanent deflections.

    3.5.Strain analysis

    The charge is suspended above the central of the panel.The strains are larger at the mid-span and smaller on the sides,and increase with decrease of the scaled distance.Fig.13 shows the strain gauge positions and strain-time curves of B-1,which is undamaged in explosion.All these curves have a sharp wave and decay rapidly out of the blast duration.The maximum strain at the central point is larger than 0.01 and finally decays to zero,indicating that there is almost no residual and plastic deformation.

    4.Structural damage evaluations

    4.1.Damage evaluation method

    To evaluate the damage of the panel,a structural damage factor,D is defined by Ref.[11].

    where PIand PDare the ultimate loads of the panel before and after explosion.The structural damage factor can also be defined by

    where BIand BDare the bending rigidities of the panel before and after explosion.

    4.2.Residual flexural performance and damage evaluation

    The undamaged bottom polyurea-coated AAC panel under 1.368 m/kg1/3is bended to obtain its residual load capacity.Wang et al.[11]revealed the load capacities of un-strengthened AAC panels and CFRP strengthened AAC panels before and after explosion.The test results of bottom polyurea-coated AAC panels are compared with them.Fig.14 shows the flexural curves and failure modes of un-strengthened,CFRP strengthened and bottom polyurea-coated AAC panels after explosion.The structural damage is evaluated by Eq.(3)and listed in Table 7.The original load capacity of the bottom polyurea-coated AAC panel is 16.78 k N,higher than that of the un-strengthened AAC panel,10.65 k N,but lower than that of the unidirectional CFRP strengthened AAC panel,19.32 k N.How ever,the residual load capacity of the bottom polyurea-coated AAC panel is the highest.Therefore,the structural damage factor of the bottom polyurea-coated AAC panel is smaller than that of the CFRP strengthened AACpanel,indicating that the former has better blast-resistant ability.

    According to the flexural curves,the residual bending rigidity of the CFRP strengthened panel is 38.8 k N·m2,while that of the polyurea-coated AAC panel is 72.1 k N·m2.The exploded panels become much more flexible.The structural damage can also be evaluated by Eq.(4),as listed in Table 8.The structural damage factor of the bottom polyurea-coated panel is much smaller than that of the CFRP strengthened panel even from the perspective of deformation,indicating that the polyurea-coated panel has better blastresistance.This result is consistent with the residual load capacity.

    4.3.Critical scaled distance

    According to seven groups of explosion experiments,critical scaled distances of polyurea-coated AAC panels with different strengthened methods are listed in Table 9.

    When the scaled distance is less than the critical value,the AAC panel will produce serious damage after the explosion;otherwise,the AAC panel will continue to work safely after the explosion.Therefore,its critical value has great importance in engineering applications of AAC panel under extreme loading conditions.The critical scaled distance of un-strengthened AAC panes is 1.723-1.506 m/kg1/3,while that of CFRP strengthened AAC panel[11]is reduced to 1.506-1.368 m/kg1/3,indicating an improvement in blast resistance.The critical scaled distance of top polyureacoated AAC panels is 1.723-1.368 m/kg1/3.Compared with AAC panels,top polyurea coating enhances the blast ability of AAC panels,but the strengthening effect is not ideal.Bottom polyureacoated and double-sided polyurea-coated AAC panels have the same scaled distance of 1.368-1.195 m/kg1/3,even much smaller than that of CFRP strengthen AAC panels,indicating that bottom polyurea coating and double-sided polyurea coating are more efficient in strengthening than CFRP strengthening technique and can bear more intense blast loading,as shown in Fig.15.

    Fig.9.Failure styles and flexure curves of AAC panels:(a)B-1,(b)B-2 and(c)B-3.

    Fig.10.Failure styles and flexure curves of AAC panels:(a)D-1,(b)D-2.

    Fig.11.Failure styles and flexure curves of AAC panels:(a)T-1,(b)T-2.

    5.Discussions

    Restricted by the low strength of the AAC,strength of the strengthening material CFRP cannot be fully utilized,and the panel will fail at AAC shear or tensile failure,or debonding.Therefore,polyurea coated AAC panels have better dynamic performance than CFRP strengthened AAC panels.The advantages of polyurea in dynamic strengthening can be explained in the following aspects.

    Firstly,the adhesive strength between the polyurea and the AAC is much stronger.Debonding occurs in blast-loaded CFRP strengthened AAC panels,reducing its strengthening effect.However,in polyurea coated AAC panels,the debonding is not observed and cracks usually form and develop in the AAC.

    Fig.12.Failure style of CFRP reinforced AAC panel[11]under explosion with scaled distance of 1.368 m/kg1/3.

    Secondly,the equivalent static load,Ps,is always applied toevaluate the blast resistance of beams.

    Table 5 Displacements of polyurea-coated AAC panels.

    Table 6 Displacements of CFRP strengthened AAC panels[11].

    Fig.13.Strain gauges position(a)and strain-time curves of(b)left strain,(c)middle strain and(d)right strain.

    Fig.14.Quasi-static flexural curves and failure modes of(a)CFRP strengthened AAC panel UCRAP-2[11]and(b)bottom polyurea-coated AAC panel B-2 after explosion.

    Table 7 Structural damage evaluation through residual load capacity.

    Table 8 Structural damage evaluation through residual bending rigidity.

    Table 9 Critical scaled distances of AAC panels with different strengthened methods.

    where Pmis the uniform peak pressure,P0is the maximum peak pressure of the shock wave,κ is a distribution factor of blast wave,and k is the dynamic coefficient.For ordinary chemistry explosion,the shock duration,T,is usually within 1 ms.The pressure contour on the panel is shown in Fig.16,where the peak pressure is calculated by CONWEP.The distribution factor is also suggested in Table 10.

    Fig.15.Peak pressure sustained by AAC panels with different strengthening scheme.

    Fig.16.Peak reflective pressures on the front surface of the panel under explosion with scaled distance of(a)1.723 m/kg1/3,(b)1.368 m/kg1/3 and(c)1.195 m/kg1/3.

    Table 10 Constants of blast wave calculated by CONWEP.

    Fig.17.Dynamic coefficient varying with ω T.

    The dynamic coefficient is related to ω T as

    where T is the blast wave duration,and ω is the fundamental frequency of the structure and given by Ref.[17].

    where l is the span,m is the mass per unit length,B is the bending rigidity and Ω=9.87 for simply-supported beam.As shown in Fig.17,when ωT is large enough,the dynamic load acts as quasistatic load and the dynamic coefficient tends to 1.0.When ωT is small,the dynamic load acts as a pulse and the dynamic coefficient is very small,even smaller than 0.1.

    The flexural rigidities of the three panels are different,inducing different ω.Smaller k is acquired from smaller ω T according to Eq.(7).The dynamic coefficient is smaller than 0.1,as listed in Table 11 and compared in Fig.18(a).With smaller elastic modulus than the AAC,polyurea coating has little influence to the flexural rigidity of the AAC panel,while CFRP layer can obviously enhance the rigidity,thus improving the fundamental frequency of the panel and leading to much larger dynamic coefficient k.Therefore,although the equivalent static load-bearing capacity of the CFRP strengthenedAAC panel is much better,as shown in Fig.18(b),its anti-blast ability is poorer than that of the polyurea-coated panel,w hose dynamic coefficient is much smaller.

    Table 11 Dynamic coefficients and equivalent static loads.

    The mid-span deflection of the blast-loaded panels can be predicted by

    where b is the width of the panel.The predictions are compared with the tested data in Fig.18(c).The tested deflection of the polyurea-coated panel under scaled distance of 1.368 m/kg1/3,3.91 mm,has great difference with the theoretical prediction,which is most likely caused by measurement mistakes.Other errors of the predictions for the polyurea-coated panels are acceptable.The prediction results are a little smaller,which may be induced by the underestimated bending rigidity got from the flexure curves.

    6.Conclusions

    By analyzing the results of close-in explosion experiments and quasi-static three-point bending tests,the following conclusions can be reached:

    1)The polyurea coating efficiently enhances the mechanical properties of the AAC panels.The original load capacity of the bottom polyurea-coated AAC panel is higher than that of the unstrengthened AAC panel,but lower than that of the unidirectional CFRP strengthened AAC panel.

    2)The blast-resistant ability of the top polyurea-coated AAC panel is not obviously enhanced,weaker than the bottom and doubleside polyurea-coated AAC panels.

    3)Compared with the bottom polyurea-coated AAC panel,the blast-resistant ability of the double-side polyurea-coated AAC panel is not enhanced obviously.Therefore,the blast-resistant ability of the polyurea-coated AAC panel mainly depends on the bottom coating.

    4)Critical scaled distances of the polyurea-coated AAC panels with different strengthened methods have been acquired.These data are of great importance for promoting engineering applications of the AAC panel in extreme loading conditions.

    5)From the perspective of structural damage factors and critical scaled distances,the blast-resistant ability of the bottom and double-sided polyurea-coated AAC panels are stronger than that of the CFRP strengthened AAC panel.Excellent adhesion and ductility make polyurea coating an alternative to existed strengthening techniques in protective structures against explosion.

    Fig.18.(a)Dynamic coefficients and(b)equivalent static loads of AAC panels and(c)predicted mid-span deflections by equivalent static load method.

    Acknowledgments

    Supports from the National Natural Science Foundation of China(11672130,51508567,51478465,and 51308544),the State Key Laboratory of Mechanics and Control of Mechanical Structures(MCMS-0217G03)and the State Key Laboratory for Disaster Reduction in Civil Engineering(SLDRCE16-01)are gratefully acknowledged.

    日本免费a在线| 国产精品一区二区在线观看99 | 国产国拍精品亚洲av在线观看| 久久97久久精品| 国产麻豆成人av免费视频| 丝袜喷水一区| 三级经典国产精品| 亚洲熟女精品中文字幕| 久久久久久国产a免费观看| 精品久久久精品久久久| 国产91av在线免费观看| 亚洲最大成人中文| 亚洲成人精品中文字幕电影| 久久久精品欧美日韩精品| 99久久精品国产国产毛片| 高清毛片免费看| 免费看光身美女| 只有这里有精品99| 综合色av麻豆| 日韩 亚洲 欧美在线| 免费少妇av软件| 美女脱内裤让男人舔精品视频| 国产不卡一卡二| 欧美日韩视频高清一区二区三区二| 99热6这里只有精品| 大又大粗又爽又黄少妇毛片口| 在线天堂最新版资源| 久久99热这里只有精品18| 欧美zozozo另类| 女人被狂操c到高潮| 免费av观看视频| 久久久亚洲精品成人影院| 天堂√8在线中文| 亚洲四区av| 丝袜喷水一区| 国产有黄有色有爽视频| 日日撸夜夜添| 一个人观看的视频www高清免费观看| 国产一级毛片在线| 国产伦一二天堂av在线观看| 久久99精品国语久久久| 国产高清不卡午夜福利| 日韩不卡一区二区三区视频在线| 免费观看性生交大片5| 国产69精品久久久久777片| 看黄色毛片网站| 中文字幕av成人在线电影| 日本猛色少妇xxxxx猛交久久| 在现免费观看毛片| 成人美女网站在线观看视频| 亚洲第一区二区三区不卡| 国产精品一及| 禁无遮挡网站| 别揉我奶头 嗯啊视频| 日韩在线高清观看一区二区三区| 国产精品国产三级专区第一集| 欧美另类一区| 三级毛片av免费| 午夜免费观看性视频| 永久网站在线| 亚洲熟妇中文字幕五十中出| 国产精品嫩草影院av在线观看| 国产成人精品一,二区| 日本-黄色视频高清免费观看| 我的女老师完整版在线观看| 婷婷色综合www| 国产 一区 欧美 日韩| 你懂的网址亚洲精品在线观看| 麻豆成人午夜福利视频| 亚洲久久久久久中文字幕| 伦理电影大哥的女人| 亚洲国产精品sss在线观看| 天美传媒精品一区二区| 干丝袜人妻中文字幕| 尾随美女入室| 美女大奶头视频| 嫩草影院新地址| 亚洲成人一二三区av| 欧美+日韩+精品| 国产一区二区三区av在线| 天美传媒精品一区二区| 亚洲久久久久久中文字幕| av福利片在线观看| 亚洲av.av天堂| 最近手机中文字幕大全| 国产精品麻豆人妻色哟哟久久 | 麻豆精品久久久久久蜜桃| 在线播放无遮挡| 黄片无遮挡物在线观看| 一区二区三区四区激情视频| 亚洲图色成人| 国产有黄有色有爽视频| 天堂√8在线中文| 熟女人妻精品中文字幕| 国产精品不卡视频一区二区| 国产真实伦视频高清在线观看| 免费观看性生交大片5| 免费黄网站久久成人精品| 黄色日韩在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲四区av| 一级毛片aaaaaa免费看小| 午夜福利高清视频| 青春草亚洲视频在线观看| 亚洲成人一二三区av| 少妇熟女aⅴ在线视频| 成人国产麻豆网| 97热精品久久久久久| 久久久久久久亚洲中文字幕| 国产高潮美女av| 一级毛片电影观看| 欧美丝袜亚洲另类| 不卡视频在线观看欧美| 婷婷六月久久综合丁香| 国产亚洲av嫩草精品影院| 精品国内亚洲2022精品成人| 男人舔奶头视频| 亚洲av电影在线观看一区二区三区 | 建设人人有责人人尽责人人享有的 | 久久韩国三级中文字幕| 在线观看人妻少妇| 一区二区三区高清视频在线| 青春草亚洲视频在线观看| 亚洲精品456在线播放app| 国产黄片美女视频| 丰满人妻一区二区三区视频av| 在现免费观看毛片| 在线播放无遮挡| eeuss影院久久| 国产精品久久视频播放| 中文字幕久久专区| 日韩av不卡免费在线播放| 欧美性感艳星| 国产久久久一区二区三区| 国产熟女欧美一区二区| 国产一区亚洲一区在线观看| 51国产日韩欧美| 国产伦理片在线播放av一区| 国内揄拍国产精品人妻在线| 午夜福利视频1000在线观看| 日韩一区二区视频免费看| 国产av在哪里看| 嫩草影院新地址| 高清在线视频一区二区三区| 午夜福利网站1000一区二区三区| 免费大片18禁| 日韩欧美国产在线观看| 一区二区三区高清视频在线| 天美传媒精品一区二区| 精品人妻一区二区三区麻豆| 男女啪啪激烈高潮av片| av在线播放精品| 亚洲国产精品国产精品| av在线蜜桃| 精品久久国产蜜桃| 成人鲁丝片一二三区免费| 久久久久国产网址| 色吧在线观看| 日韩 亚洲 欧美在线| 麻豆成人av视频| 精品久久久久久久久亚洲| 国产成人a∨麻豆精品| 亚洲天堂国产精品一区在线| 久久精品人妻少妇| 69av精品久久久久久| 观看免费一级毛片| 国产精品国产三级专区第一集| 欧美zozozo另类| 免费少妇av软件| 亚洲精品,欧美精品| 欧美成人a在线观看| 精品国内亚洲2022精品成人| 日本午夜av视频| 能在线免费看毛片的网站| 天堂av国产一区二区熟女人妻| 少妇人妻一区二区三区视频| 插阴视频在线观看视频| 简卡轻食公司| 伊人久久精品亚洲午夜| 亚洲国产精品专区欧美| 国产黄色视频一区二区在线观看| 久久久久国产网址| 天堂√8在线中文| 国产单亲对白刺激| 高清午夜精品一区二区三区| 激情 狠狠 欧美| 亚洲久久久久久中文字幕| 成人毛片60女人毛片免费| 观看美女的网站| 国产大屁股一区二区在线视频| 三级国产精品欧美在线观看| 免费看美女性在线毛片视频| 国产 一区 欧美 日韩| 婷婷色麻豆天堂久久| 在线观看免费高清a一片| 欧美97在线视频| 亚洲熟女精品中文字幕| 日韩亚洲欧美综合| 国产成人freesex在线| 亚洲精品乱久久久久久| 日本黄色片子视频| 亚洲电影在线观看av| 免费看美女性在线毛片视频| av在线老鸭窝| 97人妻精品一区二区三区麻豆| 日本一二三区视频观看| 亚洲国产日韩欧美精品在线观看| 亚洲伊人久久精品综合| 少妇熟女欧美另类| 熟女电影av网| 天美传媒精品一区二区| 啦啦啦韩国在线观看视频| 美女大奶头视频| 午夜精品在线福利| 内射极品少妇av片p| 亚洲一级一片aⅴ在线观看| 日本黄色片子视频| av在线蜜桃| 久久97久久精品| 免费人成在线观看视频色| 97人妻精品一区二区三区麻豆| 在现免费观看毛片| 岛国毛片在线播放| 久久精品综合一区二区三区| 高清毛片免费看| 男人舔奶头视频| 丰满少妇做爰视频| 人妻一区二区av| 日韩大片免费观看网站| 久热久热在线精品观看| 永久免费av网站大全| 两个人视频免费观看高清| 午夜精品一区二区三区免费看| 亚洲熟女精品中文字幕| 水蜜桃什么品种好| 久久久久久久久久久免费av| 男女国产视频网站| 老女人水多毛片| 国产真实伦视频高清在线观看| 日韩亚洲欧美综合| 国产黄片美女视频| 欧美性感艳星| 联通29元200g的流量卡| 亚洲怡红院男人天堂| 久久精品国产亚洲网站| 美女脱内裤让男人舔精品视频| 欧美日韩视频高清一区二区三区二| 精品久久久噜噜| 在线观看一区二区三区| 国产中年淑女户外野战色| 精品国产露脸久久av麻豆 | 国产淫语在线视频| 美女大奶头视频| 久久国内精品自在自线图片| 欧美人与善性xxx| av免费在线看不卡| 国产一级毛片在线| 国内少妇人妻偷人精品xxx网站| 最近视频中文字幕2019在线8| 国产在视频线在精品| 亚洲乱码一区二区免费版| 精品一区二区三区视频在线| av天堂中文字幕网| 在线观看美女被高潮喷水网站| 亚洲三级黄色毛片| 久久99热这里只有精品18| 美女高潮的动态| 身体一侧抽搐| 大片免费播放器 马上看| 日韩成人伦理影院| 高清av免费在线| 伊人久久国产一区二区| 97人妻精品一区二区三区麻豆| 国产精品美女特级片免费视频播放器| 人体艺术视频欧美日本| 久久6这里有精品| 中文字幕av在线有码专区| 最近最新中文字幕免费大全7| 国产一级毛片在线| 免费高清在线观看视频在线观看| 老司机影院成人| 国产精品一区二区在线观看99 | 久久精品熟女亚洲av麻豆精品 | 一级av片app| 国产乱人视频| 国产亚洲精品久久久com| 精品酒店卫生间| 嫩草影院精品99| 天堂网av新在线| 国产精品av视频在线免费观看| 又爽又黄无遮挡网站| 男女啪啪激烈高潮av片| 在线 av 中文字幕| 亚洲色图av天堂| 美女xxoo啪啪120秒动态图| 成人欧美大片| 亚洲精品色激情综合| 日本三级黄在线观看| 美女大奶头视频| 少妇熟女欧美另类| 国产乱人视频| av女优亚洲男人天堂| 在线a可以看的网站| 久久6这里有精品| 色5月婷婷丁香| 国产亚洲午夜精品一区二区久久 | 免费观看av网站的网址| 天天躁日日操中文字幕| 看免费成人av毛片| 观看美女的网站| 欧美高清成人免费视频www| 国产男人的电影天堂91| 日韩欧美国产在线观看| 久久久成人免费电影| 如何舔出高潮| 97人妻精品一区二区三区麻豆| 国产乱来视频区| 国产精品综合久久久久久久免费| 一本一本综合久久| 欧美日韩一区二区视频在线观看视频在线 | 97在线视频观看| 天堂网av新在线| 七月丁香在线播放| 亚洲国产精品国产精品| 亚洲国产av新网站| 欧美高清性xxxxhd video| 亚洲熟女精品中文字幕| 婷婷色av中文字幕| 91aial.com中文字幕在线观看| 久久精品夜色国产| 久久精品人妻少妇| 国产麻豆成人av免费视频| 1000部很黄的大片| 精品一区二区三区视频在线| 国产免费一级a男人的天堂| 日韩欧美精品免费久久| 欧美日韩综合久久久久久| 国产成人a∨麻豆精品| 看免费成人av毛片| 国精品久久久久久国模美| 99re6热这里在线精品视频| 欧美性猛交╳xxx乱大交人| 国产在线男女| 久久精品综合一区二区三区| 大香蕉久久网| 两个人视频免费观看高清| 精品少妇黑人巨大在线播放| 搡老妇女老女人老熟妇| 久久久精品免费免费高清| 久久人人爽人人爽人人片va| 国产探花在线观看一区二区| 国产成人福利小说| 亚洲丝袜综合中文字幕| 国国产精品蜜臀av免费| 中文字幕av在线有码专区| 夫妻午夜视频| 国产淫语在线视频| 国产亚洲91精品色在线| 一级爰片在线观看| 亚洲一级一片aⅴ在线观看| 天堂影院成人在线观看| 美女国产视频在线观看| videos熟女内射| 菩萨蛮人人尽说江南好唐韦庄| 欧美高清性xxxxhd video| 最新中文字幕久久久久| 精品久久久久久成人av| 日本wwww免费看| 欧美日韩亚洲高清精品| 亚洲欧美成人综合另类久久久| 99热这里只有精品一区| 菩萨蛮人人尽说江南好唐韦庄| 别揉我奶头 嗯啊视频| 日韩欧美精品v在线| 国产单亲对白刺激| 看非洲黑人一级黄片| 女的被弄到高潮叫床怎么办| 男女下面进入的视频免费午夜| 亚洲人成网站在线播| 国产不卡一卡二| 国产91av在线免费观看| 草草在线视频免费看| 亚洲不卡免费看| 国内揄拍国产精品人妻在线| 尤物成人国产欧美一区二区三区| 爱豆传媒免费全集在线观看| 免费少妇av软件| 亚洲av成人av| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 日韩在线高清观看一区二区三区| av在线天堂中文字幕| 国产精品不卡视频一区二区| 搡老乐熟女国产| kizo精华| 免费观看性生交大片5| 大香蕉久久网| 18禁在线无遮挡免费观看视频| 亚洲成人av在线免费| 亚洲国产最新在线播放| 寂寞人妻少妇视频99o| 亚洲国产色片| 国产极品天堂在线| 女人被狂操c到高潮| av国产免费在线观看| 狠狠精品人妻久久久久久综合| 亚洲av成人精品一二三区| 亚洲国产精品国产精品| 精品午夜福利在线看| 午夜精品一区二区三区免费看| 日韩av免费高清视频| 国产在线男女| 日本免费a在线| 黄色一级大片看看| 一级毛片我不卡| 国产一级毛片七仙女欲春2| 国产精品久久久久久精品电影小说 | 日本一本二区三区精品| 国产精品三级大全| 色5月婷婷丁香| 91在线精品国自产拍蜜月| 三级经典国产精品| 2021少妇久久久久久久久久久| 亚洲精品aⅴ在线观看| 国产成人aa在线观看| 人人妻人人澡欧美一区二区| 中文字幕免费在线视频6| 草草在线视频免费看| 亚洲美女搞黄在线观看| 亚洲自拍偷在线| 少妇熟女欧美另类| 免费观看在线日韩| 啦啦啦中文免费视频观看日本| 可以在线观看毛片的网站| 国产精品一区二区三区四区久久| 真实男女啪啪啪动态图| 99久久中文字幕三级久久日本| 国产大屁股一区二区在线视频| 99久久中文字幕三级久久日本| 中文在线观看免费www的网站| 男人舔女人下体高潮全视频| 干丝袜人妻中文字幕| 国产乱人视频| 国产成人aa在线观看| 欧美精品一区二区大全| 在线 av 中文字幕| 在线天堂最新版资源| 日本av手机在线免费观看| 夜夜爽夜夜爽视频| 国产精品av视频在线免费观看| 国产精品伦人一区二区| 日韩精品青青久久久久久| 男插女下体视频免费在线播放| 国产黄片美女视频| 国产成人a∨麻豆精品| 国产探花极品一区二区| 欧美性感艳星| 久久久久久久久久成人| 国产精品女同一区二区软件| 亚洲,欧美,日韩| 少妇裸体淫交视频免费看高清| 波多野结衣巨乳人妻| 国产欧美另类精品又又久久亚洲欧美| 丝袜喷水一区| 国产不卡一卡二| 亚洲久久久久久中文字幕| 街头女战士在线观看网站| 国产精品国产三级国产专区5o| 国产三级在线视频| 人妻系列 视频| 国产av在哪里看| 简卡轻食公司| 亚洲精品亚洲一区二区| 99热6这里只有精品| 亚洲精品日韩在线中文字幕| 亚洲va在线va天堂va国产| 亚洲欧美一区二区三区黑人 | 一二三四中文在线观看免费高清| 国产伦一二天堂av在线观看| 搡老乐熟女国产| 国产伦理片在线播放av一区| 一个人免费在线观看电影| 欧美人与善性xxx| 一级毛片久久久久久久久女| 看免费成人av毛片| 综合色丁香网| 日韩,欧美,国产一区二区三区| 成人午夜高清在线视频| 麻豆成人av视频| 天美传媒精品一区二区| 国产探花极品一区二区| 亚洲aⅴ乱码一区二区在线播放| 一个人看视频在线观看www免费| 欧美日韩视频高清一区二区三区二| 日日摸夜夜添夜夜添av毛片| av在线天堂中文字幕| 天天一区二区日本电影三级| 91久久精品国产一区二区成人| 三级男女做爰猛烈吃奶摸视频| 丝袜美腿在线中文| 天天一区二区日本电影三级| 欧美激情在线99| 精品不卡国产一区二区三区| 午夜老司机福利剧场| 看十八女毛片水多多多| 成人无遮挡网站| 欧美xxⅹ黑人| 狂野欧美白嫩少妇大欣赏| 国产三级在线视频| 国产精品伦人一区二区| 深夜a级毛片| 久热久热在线精品观看| 草草在线视频免费看| 又黄又爽又刺激的免费视频.| 亚洲一级一片aⅴ在线观看| 高清在线视频一区二区三区| 日韩三级伦理在线观看| 麻豆成人av视频| 午夜免费激情av| 国产亚洲5aaaaa淫片| 日本三级黄在线观看| 国产一区二区亚洲精品在线观看| 白带黄色成豆腐渣| 最近2019中文字幕mv第一页| 久久这里只有精品中国| 小蜜桃在线观看免费完整版高清| 大片免费播放器 马上看| 精品人妻偷拍中文字幕| 欧美成人午夜免费资源| 夫妻午夜视频| 2021天堂中文幕一二区在线观| 国产91av在线免费观看| 少妇的逼好多水| 日韩,欧美,国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 亚洲精品亚洲一区二区| 伊人久久国产一区二区| 舔av片在线| 夫妻性生交免费视频一级片| 最近的中文字幕免费完整| 婷婷六月久久综合丁香| 国产成人午夜福利电影在线观看| 午夜福利在线观看吧| 亚洲精品亚洲一区二区| 又爽又黄a免费视频| 乱人视频在线观看| 日本免费在线观看一区| 又爽又黄无遮挡网站| 亚洲18禁久久av| 内射极品少妇av片p| 国产精品熟女久久久久浪| 精品人妻视频免费看| 国产成人精品一,二区| 亚洲精品久久午夜乱码| 国内精品美女久久久久久| 国产单亲对白刺激| 亚洲av成人av| 亚洲色图av天堂| 在线免费观看不下载黄p国产| 九九久久精品国产亚洲av麻豆| 中文字幕av在线有码专区| 欧美日韩国产mv在线观看视频 | 身体一侧抽搐| 成人亚洲精品av一区二区| 久久久国产一区二区| 国产精品.久久久| 免费黄色在线免费观看| 我的女老师完整版在线观看| 内射极品少妇av片p| 亚洲国产色片| 九九久久精品国产亚洲av麻豆| 亚洲欧美成人精品一区二区| 最后的刺客免费高清国语| 久久99蜜桃精品久久| 午夜精品一区二区三区免费看| 亚洲aⅴ乱码一区二区在线播放| 国产永久视频网站| 日日啪夜夜爽| 18禁在线播放成人免费| 国产成人精品久久久久久| 成人亚洲精品av一区二区| 色综合站精品国产| 国产有黄有色有爽视频| 极品教师在线视频| 精品久久久久久久久av| 亚洲成人av在线免费| 婷婷色av中文字幕| 一级a做视频免费观看| 欧美最新免费一区二区三区| 成年免费大片在线观看| 亚洲av成人av| 国产精品一区二区在线观看99 | 国产永久视频网站| 精品人妻一区二区三区麻豆| 天美传媒精品一区二区| 久久热精品热| 国产 一区 欧美 日韩| 两个人视频免费观看高清| 亚洲精品自拍成人| av在线老鸭窝| 国产免费视频播放在线视频 | 亚洲精品一区蜜桃| 偷拍熟女少妇极品色| 一区二区三区高清视频在线| 高清在线视频一区二区三区| 日本av手机在线免费观看| 日韩一本色道免费dvd| 国产亚洲av片在线观看秒播厂 | 国产精品不卡视频一区二区| 在现免费观看毛片| 亚洲国产av新网站| 久久精品国产亚洲av涩爱| 亚洲成人久久爱视频| 高清日韩中文字幕在线| 91狼人影院|