郭 倩,宋 鵬,張周強,周阿維,屈萍鴿
基于OFDM的大氣激光通信湍流抑制關(guān)鍵技術(shù)研究
郭 倩*,宋 鵬,張周強,周阿維,屈萍鴿
西安工程大學(xué)機電工程學(xué)院,陜西 西安 710048
文章在分析無線激光通信(FSO)存在兩種主要的大氣信道問題的基礎(chǔ)上,針對激光大氣信道問題尤其是在復(fù)雜湍流環(huán)境下的頻率選擇性衰落問題和多徑效應(yīng)問題,提出了基于正交頻分復(fù)用(OFDM)的湍流效應(yīng)抑制方法,構(gòu)建了FSO-OFDM系統(tǒng),研究了該系統(tǒng)的基帶模型以及信號的多載波調(diào)制與解調(diào)方法。分析了無線激光通信中存在復(fù)雜湍流環(huán)境下的大氣信道問題,討論了大氣湍流影響下的平面波激光通信系統(tǒng)模型,建立了大氣湍流影響下對數(shù)正態(tài)湍流通道的高斯光束空間光通信系統(tǒng)模型,推導(dǎo)了光波強度的概率密度函數(shù),研究了利用信噪比概率密度函數(shù)分析各種大氣湍流效應(yīng)對系統(tǒng)性能影響的方法;設(shè)計了無線光通信系統(tǒng)的OFDM多載波調(diào)制方案,構(gòu)建了FSO-OFDM系統(tǒng)基帶模式模型,并基于該模型研究了其信號的調(diào)制與解調(diào)原理。最后,采用MATLAB編程實現(xiàn)FSO-OFDM系統(tǒng),對多徑干擾下的FSO通信系統(tǒng)進行仿真實驗,進行了不同保護間隔下的誤碼率特性實驗,驗證了FSO-OFDM系統(tǒng)具有很強的抗多徑干擾和頻譜選擇性衰落能力以及良好的BER性能,可有效解決碼間干擾大、鏈路不可靠的問題,具有非常廣泛的應(yīng)用前景和使用價值。
無線光通信;湍流效應(yīng);正交頻分復(fù)用;多徑衰落;誤碼率
無線光通信屬于大氣波導(dǎo)通信,是近三十年來快速發(fā)展的一種通信速率高、組網(wǎng)靈活、波束窄、保密性好、易于維護的新型通信手段,已成為目前國際上的一大研究熱點[1]。但是大氣信道湍流效應(yīng),會導(dǎo)致無線激光通信(free space optics,F(xiàn)SO)出現(xiàn)碼間干擾大、鏈路不可靠等問題,嚴(yán)重影響無線光通信系統(tǒng)的性能與技術(shù)應(yīng)用。為此,國內(nèi)外學(xué)者開展了許多理論與實驗研究。1981年,Lukin等人對大氣折射率的低頻波動對有限空間光束相位波動的影響進行了研究,給出了大量關(guān)于光波相位起伏統(tǒng)計特性的實驗數(shù)據(jù)[2];2008年以來,西安理工大學(xué)的柯熙政教授等人,研究了大氣湍流效應(yīng)及無線光通信技術(shù)中的大功率、高碼率發(fā)射技術(shù)、PPM調(diào)制技術(shù)等[3],解決了很多關(guān)鍵問題,并研究制成了空間相干光通信系統(tǒng)、無線激光綜合業(yè)務(wù)通信機等實驗系統(tǒng);2011年,哈爾濱工業(yè)大學(xué)的韓立強開展了大氣湍流效應(yīng)下空間光通信的性能及補償方法研究[4],提出采用自適應(yīng)光學(xué)技術(shù)減小大氣湍流效應(yīng)對空間光通信的影響;2012年,西安電子科技大學(xué)的易湘研究了基于分集接收技術(shù)的相干大氣激光通信系統(tǒng)[5];2015年,廖天河等人建立了不同波束激光在大氣湍流傳輸?shù)臄?shù)學(xué)模型,發(fā)現(xiàn)矩形光束可大大減弱湍流效應(yīng)[6];2018年,?vihlík等開展了光強波動條件下光波畸變自適應(yīng)相位校正研究,首次從實驗上解釋了強度波動條件下,湍流大氣中光波傳播的自適應(yīng)相位校正效率降低的原因[7];2019年,Krbcová等研究了不同曝光時間和CCD相機噪聲水平下的最佳參數(shù)設(shè)置,所得結(jié)果可推廣應(yīng)用于湍流噪聲的抑制。目前圍繞空間光及大氣信道的研究雖已取得一定進展,但湍流效應(yīng)仍是空間光通信應(yīng)用的瓶頸[7]。基于此,文章將重點討論大氣激光通信湍流效應(yīng)對空間光通信信號的影響機理及抑制方法。
正交頻分復(fù)用(Orthogonal frequency division multiplexing,OFDM)是一種優(yōu)秀的多載波通信技術(shù),適用于基于FDM技術(shù)的高速數(shù)據(jù)傳輸。它可以有效地減少由多徑效應(yīng)引起的符號之間的串?dāng)_,并且具有高頻譜利用率和對大氣湍流的強抵抗力。這為突破光通信的瓶頸提供了技術(shù)方法,具有非常廣泛的應(yīng)用前景和使用價值。
為了解決無線光通信系統(tǒng)在復(fù)雜湍流環(huán)境下的頻率選擇性衰落問題和多徑效應(yīng)問題,改善激光信號大氣信道傳輸問題,文章在深入探討大氣湍流效應(yīng)形成原因及影響機理基礎(chǔ)上,建立了大氣湍流影響下對數(shù)正態(tài)湍流通道的高斯光束空間光通信系統(tǒng)模型,推導(dǎo)出了光波強度的概率密度函數(shù),并利用該信噪比概率密度函數(shù)分析各種大氣湍流效應(yīng)對系統(tǒng)性能的影響;研究了OFDM調(diào)制原理,基于大氣通道的特點,合理構(gòu)建出了FSO-OFDM系統(tǒng)模型;最后,對多徑干擾下的FSO通信系統(tǒng)進行仿真實驗,在相同帶寬條件下分別對單載波無線光通信系統(tǒng)和FSO-OFDM通信系統(tǒng)的平均誤碼率性能進行了仿真。經(jīng)實驗驗證,所設(shè)計的無線光正交頻分復(fù)用系統(tǒng),與傳統(tǒng)的單載波系統(tǒng)相比,改善了激光信號大氣信道傳輸問題,提高了信息傳輸速率。
湍流效應(yīng)會導(dǎo)致大氣折射率隨機起伏,使接收端光信號發(fā)生閃爍、漂移和光斑失真等現(xiàn)象,對無線光通信系統(tǒng)的信噪比、誤碼率等性能指標(biāo)產(chǎn)生很大的影響。為了最大化無線光通信系統(tǒng)的優(yōu)點,首先需要探索無線光通信系統(tǒng)的傳輸環(huán)境,并了解大氣信道對無線光通信系統(tǒng)的機制和影響。
大氣環(huán)境與大氣激光通信系統(tǒng)性能之間的關(guān)系如圖1所示。
通常用雷諾數(shù)(Re)來描述湍流效應(yīng)的運動特性。
式中:為流動速度,為流體密度,是流體系數(shù)。
湍流是一種高度復(fù)雜的三維非穩(wěn)態(tài)、帶旋轉(zhuǎn)的不規(guī)則流動[8]。從圖2可以看出湍流由各種尺度的渦流組成。其中,大的渦旋不穩(wěn)定會持續(xù)分裂為小的渦旋,直至雷諾數(shù)小到某一數(shù)值時,也就是說,當(dāng)大渦旋繼續(xù)分裂時,它不會停止,這是湍流的弦性。圖3是Richardson提出的湍流串特征圖。
圖1 大氣環(huán)境與無線光學(xué)系統(tǒng)性能之間的關(guān)系
圖2 大氣信道湍流渦旋
圖3 Richardson湍流級串圖
在給出Kolmogorov譜模型的基礎(chǔ)上,研究了平面波模型,建立了Log-normal湍流信道下的高斯光束空間光通信系統(tǒng)模型,推導(dǎo)得出系統(tǒng)光波強度的概率密度函數(shù),可利用該光波強度的概率密度函數(shù)分析各種大氣湍流效應(yīng)對系統(tǒng)性能的影響。
大氣湍流折射率波動功率譜主要基于Kolmogorov湍流理論。
大氣湍流導(dǎo)致大氣光學(xué)折射率隨機波動。大氣折射率是由空氣的溫度和壓強的變化引起的,因而它是壓強和溫度的函數(shù)[9],其表示式為
其中:為波長,為壓力,為熱力學(xué)溫度。Kolmogorov理論認(rèn)為:對于局部均勻和各向同性的湍流,折射率的變化可以通過折射率結(jié)構(gòu)函數(shù)來表征,該折射率結(jié)構(gòu)函數(shù)與標(biāo)量距離的功率成比例[10]。
在Kolmogorov提出的大氣折射率結(jié)構(gòu)函數(shù)的“2/3次方定律”的基礎(chǔ)上,可以得到描述大氣湍流造成的折射率起伏的功率譜[11]。Kolmogorov譜可寫為
式中:=2p/為空間波數(shù),為湍流渦旋的尺度。
基于先前得到的Kolmogorov折射率功率譜模型,在大氣湍流中傳播的平面波的對數(shù)幅度波動方差如下。
水平均勻路徑:
斜程傳輸路徑:
式中:為天頂角(<60°),sec為對斜程路徑的修正因子。
基于Kolmogorov折射率功率譜模型,在大氣湍流中傳播的球面波的對數(shù)幅度波動方差如下。
水平均勻路徑:
斜程傳輸路徑:
對于平面波水平均勻路徑傳輸,對數(shù)光強起伏方差可寫為
因此
為了得到光波強度的概率密度函數(shù),采用變量替換:
又基于對數(shù)振幅的概率密度函數(shù)可表示為
將式(14)代入式(13)中,得到Log-normal概率密度分布函數(shù)為
正交頻分復(fù)用(OFDM)的概念于20世紀(jì)50~60年代提出,屬多載波調(diào)制。正交頻分復(fù)用(OFDM)技術(shù)可用于通過串行到并行轉(zhuǎn)換來轉(zhuǎn)換高速數(shù)據(jù)流[12],從而相對增加每個子載波上的數(shù)據(jù)符號的持續(xù)時間,減少由信道的時間彌散帶來ISI(intersymbol interference)。其調(diào)制原理圖如圖4所示。
圖4 OFDM調(diào)制原理
與其它調(diào)制方式相比,正交頻分復(fù)用技術(shù)OFDM具有頻帶利用率高、抗噪音干擾能力強、抗窄帶干擾能力強、抗多徑衰落能力強等特點。它的本質(zhì)是將信道分成若干正交子信道,將高速數(shù)據(jù)信號轉(zhuǎn)換成并行的低速子數(shù)據(jù)流,進行并行傳輸。其并行傳輸原理圖如圖5所示。
文章采用頻譜效率高、抗大氣效應(yīng)能力強的OFDM新型傳輸技術(shù),并充分考慮FSO通信系統(tǒng)的特點及OFDM技術(shù)的調(diào)制原理,將二者進行技術(shù)融合,構(gòu)建出了FSO-OFDM系統(tǒng)的基帶模式結(jié)構(gòu)圖,主要包括OFDM調(diào)制模塊、電光轉(zhuǎn)換模塊、大氣信道模塊、光電轉(zhuǎn)換模塊以及OFDM解調(diào)模塊。如圖6所示。
基于所搭建的無線光通信正交頻分復(fù)用FSO- OFDM系統(tǒng)基帶模型,實現(xiàn)對大氣激光通信系統(tǒng)光信號的調(diào)制與解調(diào)。首先,當(dāng)二進制信號源的信號發(fā)出后,由數(shù)據(jù)編碼調(diào)制輸出給串并轉(zhuǎn)換模塊,進行串并轉(zhuǎn)換,再進行IFFT交換,然后經(jīng)過數(shù)模轉(zhuǎn)換及濾波后,進行電光轉(zhuǎn)換,即成為了OFDM調(diào)制后的信號();該信號經(jīng)過大氣信道后,發(fā)送至FSO-OFDM系統(tǒng)的接收模塊,對其進行光電轉(zhuǎn)換,低通濾波,后經(jīng)模/數(shù)轉(zhuǎn)換,恢復(fù)成子載波的正交性,再經(jīng)FFT和串/并轉(zhuǎn)換后,恢復(fù)成OFDM調(diào)制前的信號,最后經(jīng)解調(diào)解碼,還原出原始輸入信號。
FSO-OFDM系統(tǒng)的信號調(diào)制與解調(diào)過程如圖7所示。
可以看出,由于該系統(tǒng)采用了正交頻分復(fù)用多載波調(diào)制技術(shù),故可實現(xiàn)多個子頻帶信號的并行傳輸,大大提高了頻帶利用率;且由于各子頻帶之間為正交關(guān)系,可使用FFT/IFFT算法輕松實現(xiàn)信號調(diào)制與解調(diào),大大減少了運算量,從而降低系統(tǒng)對器件的要求。
圖5 OFDM多載波并行傳輸原理圖
圖6 FSO-OFDM系統(tǒng)基帶模型圖
圖7 FSO-OFDM系統(tǒng)信號的調(diào)制與解調(diào)
在本次仿真中,根據(jù)OFDM系統(tǒng)的基帶模型,采用MATLAB編程實現(xiàn)FSO-OFDM系統(tǒng),對多徑干擾下的FSO通信系統(tǒng)進行仿真實驗,其仿真結(jié)果如圖8所示。信號源是由MATLAB的隨機函數(shù)產(chǎn)生的一幀OFDM信號,采用16進制正交幅度調(diào)制(16QAM)作為調(diào)制解調(diào)方案,子載波數(shù)為64路,保護間隔分別為16。圖8紅色線為多徑干擾環(huán)境下單載波FSO系統(tǒng)的誤碼率特性曲線,藍(lán)色線為多徑干擾環(huán)境下有OFDM調(diào)制的FSO系統(tǒng)誤碼率特性曲線。
對比單載波無線光通信系統(tǒng)與FSO-OFDM通信系統(tǒng)的平均誤碼率性能曲線圖,可以看出,紅色線所表示的單載波光通信系統(tǒng),誤碼率整體高于藍(lán)色線所表示的FSO-OFDM系統(tǒng)的誤碼率。當(dāng)系統(tǒng)信噪比SNR=6 dB時,單載波FSO系統(tǒng)的誤碼率為0.0501,采用了OFDM的多載波FSO系統(tǒng)的誤碼率為0.0417。說明與傳統(tǒng)的單載波系統(tǒng)相比,文章所設(shè)計的多載波無線光正交頻分復(fù)用系統(tǒng),能有效改善FSO通信系統(tǒng)的誤碼率特性。
基于FSO通信系統(tǒng)的特點及原理,在16-QAM的調(diào)制方式下,用MATLAB仿真驗證不同保護間隔下的結(jié)果。在IFFT運算后加入信道噪聲,此次試驗加入了高斯白噪聲(AWGN)作為實際信道的仿真模型。在有無循環(huán)前綴的情況,對OFDM系統(tǒng)的誤碼率性能進行仿真。設(shè)置保護間隔的時間為1=170e-9,循環(huán)前綴的時間為2=1=170e-9。
圖9紅色線為沒有加循環(huán)前綴的FSO系統(tǒng)的誤碼率特性曲線,藍(lán)色線為有循前綴的FSO系統(tǒng)誤碼率特性曲線,在高斯白噪聲(AWGN)信道下,對結(jié)果進行對比分析。從圖9可以看出,加入循環(huán)前綴的系統(tǒng)的誤碼率性能優(yōu)于沒有加循環(huán)前綴的通信系統(tǒng)。當(dāng)信噪比SNR為12 dB時,OFDM符號中不加保護間隔(無前綴)時,無線通信系統(tǒng)的誤碼率BER為0.0014;OFDM符號中加入保護間隔時,系統(tǒng)的誤碼率BER為0.0013。
圖8 不同載波數(shù)下的誤碼率特性曲線
圖9 不同保護間隔下的誤碼率特性曲線
激光大氣信道問題尤其是不同湍流強度下的光強度起伏效應(yīng)等,會導(dǎo)致無線激光通信出現(xiàn)碼間干擾大、鏈路不可靠等。針對目前制約大氣激光通信應(yīng)用的主要瓶頸問題?湍流效應(yīng),文章在深入分析無線激光通信中存在兩種主要的大氣信道問題的基礎(chǔ)上,對復(fù)雜湍流環(huán)境下的頻率選擇性衰落問題和多徑效應(yīng)問題形成機理開展了深入研究,在給出Kolmogorov譜模型的基礎(chǔ)上,研究了平面波模型;利用修正的Rytov方法,建立了Log-normal湍流信道下的高斯光束空間光通信系統(tǒng)模型,推導(dǎo)得出了的系統(tǒng)光波強度的概率密度函數(shù);設(shè)計了無線光通信系統(tǒng)的OFDM多載波調(diào)制方案,構(gòu)建了FSO-OFDM系統(tǒng)基帶模式模型,并基于該模型研究了其信號的調(diào)制與解調(diào)原理;進行了無線激光通信系統(tǒng)誤碼率特性仿真驗證,結(jié)果表明,F(xiàn)SO-OFDM系統(tǒng)可支持更高的信息傳輸速率,改善了激光信號大氣信道傳輸問題,具有良好的BER性能,這為突破光通信的瓶頸提供了技術(shù)方法。
[1] Ke X Z, Wang S. Evolution of the intensity of partially coherent airy beam in atmospheric turbulence[J]., 2017, 46(7): 0701001.
柯熙政, 王松. 部分相干Airy光束在大氣湍流中的光強演化[J]. 光子學(xué)報, 2017, 46(7): 0701001.
[2] Lukin V P, Pokasov V V. Optical wave phase fluctuations[J]., 1981, 20(1):421–135.
[3] Kumar R S P, Khan M A J, Nitesh G. Performance analysis of a free space optics link with multiple transmitters/receivers[J]., 2012, 13(3): 254–258.
[4] Zhao L, Zhong T, Liu Z G,. An annular light source layout model for both lighting and communication reliability[J]., 2018, 45(7): 170503.
趙黎, 朱彤, 劉智港, 等. 一種兼顧照明與通信的環(huán)形光源布局模型[J]. 光電工程, 2018, 45(7): 170503.
[5] Su C X, Song P, Meng C,. The pulse broadening ranging method of wireless ultraviolet optical communication[J]., 2019, 33(2): 161–167.
蘇彩霞, 宋鵬, 孟超, 等. 無線紫外光通信脈沖展寬測距方法[J]. 西安工程大學(xué)學(xué)報, 2019, 33(2): 161–167.
[6] Liao T H, Liu W, Gao Q. Turbulent effects of laser beams of different shapes in the atmosphere[J]., 2015(S1): 41–45.
廖天河, 劉偉, 高穹. 不同形狀激光波束在大氣中傳輸?shù)耐牧餍?yīng)[J]. 紅外與激光工程, 2015(S1):41–45.
[7] ?vihlík J,Krbcova Z, Tran Q V,. Stochastic and analytic modeling of atmospheric turbulence in image processing[J].., 2018: 10752.
[8] Torrieri D J.[M]. 3rd ed. Cham: Springer, 2015.
[9] Wang Y, Wang D L, Ma J. On the performance of coherent OFDM systems in free-space optical communications[J]., 2015, 7(4): 7902410.
[10] Shi M, Zhang M J, Chi N. Two input one output visible light communication system based on pulse amplitude modulation[J]., 2019, 46(5): 180306.
石蒙, 張夢潔, 遲楠. 基于脈沖幅度調(diào)制的兩發(fā)一收可見光通信系統(tǒng)[J]. 光電工程, 2019, 46(5): 180306.
[11] Wu P F, Jia L Y. Experimental analysis of atmospheric coherence length measurement in Xi'an area[J]., 2019, 57(9): 090101.
吳鵬飛, 賈璐瑤. 西安地區(qū)大氣相干長度的實驗測量及分析[J]. 激光與光電子學(xué)進展, 2019, 57(9): 090101.
[12] Singhal P, Gupta P, Rana P. Basic concept of free space optics communication (FSO): an overview[C]//(), Melmaruvathur, 2015: 0439–0442.
[13] Khare S, Sahayam N. Analysis of free space optical communication system for different atmospheric conditions & modulation techniques[J].h (), 2012, 2(6): 4149–4152.
Research on the key technology of turbulence suppression for atmospheric optical laser communication based on OFDM
Guo Qian*, Song Peng, Zhang Zhouqiang, Zhou Awei, Qu Pingge
School of Mechanical and Electrical Engineering, Xi¢an Polytechnic University, Xi'an, Shaanxi 710048, China
Baseband model of the FSO-OFDM system
Overview:In order to support higher information transmission rate, improve the system error characteristics, solve the problems of frequency selective fading and multipath effect of the wireless optical communication system in complex turbulent environment, improve laser atmospheric channel signal transmission problems, based on orthogonal frequency division multiplexing technology, the FSO-OFDM system was built, the multicarrier modulation, modulation and demodulation, etc used this system were studied. Firstly, the turbulence effect, which is a bottleneck problem restricting the application of atmospheric laser communication, was discussed in detail. Then, on the basis of Kolmogorov spectrum model, the plane wave model was studied. By using the modified Rytov method, the spatial optical communication system model of Gaussian beam under log-normal turbulence channel was established, and the probability density function of the system light wave intensity was derived. Then, the OFDM multi-carrier modulation scheme of the wireless optical communication system was designed, the baseband mode model of the FSO-OFDM system was constructed, and the modulation and demodulation of the signal were studied using this model. When the signal of the binary signal source was sent out, it was encoded and modulated to the series-and-conversion module for series-and-conversion, followed by IFFT exchange. After digital-to-analog conversion and filtering, electro-optical conversion was carried out, which becomes the signal() modulated by OFDM. After passing through the atmospheric channel, the signal was sent to the receiving module of the FSO-OFDM system, which is photoelectric converted, low-pass filtering, and then converted by mode/number to restore the orthogonality of the subcarrier. After FFT and string/combination conversion, the signal was restored to the signal before OFDM modulation. After demodulation and decoding, the original input signal was restored. Finally, MATLAB programming was adopted to realize the FSO-OFDM system. Simulation experiments were carried out on the FSO communication system under multi-path interference. Under the same bandwidth condition, the average bit error rate performance of the single-carrier wireless optical communication system and the FSO-OFDM communication system were simulated, respectively. Compared with the traditional single-carrier system, the OFDM system improves the atmospheric channel transmission of laser signal and the information transmission rate.FSO-OFDM system has a strong ability to resist multi-path interference and spectrum selective fading, as well as a good BER performance. It provides a technical method to break through the bottleneck of optical communication and has a very wide application prospect and value.
Citation: Guo Q, Song P, Zhang Z Q,Research on the key technology of turbulence suppression for atmospheric optical laser communication based on OFDM[J]., 2020, 47(3): 190619
Research on the key technology of turbulence suppression for atmospheric optical laser communication based on OFDM
Guo Qian*, Song Peng, Zhang Zhouqiang, Zhou Awei, Qu Pingge
School of Mechanical and Electrical Engineering, Xi¢an Polytechnic University, Xi'an, Shaanxi 710048, China
Based on the analysis of the two main problems of atmospheric channel in free space optics (FSO), aiming at the problem of laser atmospheric channel especially the problems of frequency selective fading and multipath effect in complex turbulent environment, the suppression method is proposed based on OFDM turbulence effect, the FSO-OFDM system is built, the baseband model of this system and the signal of multi-carrier modulation and demodulation method are studied. First of all, this article systematically analyzes the mechanism of turbulence effect of atmospheric channel, and discusses the model of plane wave laser communication system under the influence of atmospheric turbulence, the space optical communication system model of Gaussian beam of a logarithmic normal turbulent channel is established under the influence of atmospheric turbulence, the probability density function of light intensity is deduced, the methods for analyzing the effects of various atmospheric turbulence effects on system performance using the signal-to-noise ratio probability density function; the OFDM multi-carrier modulation scheme of FSO-OFDM system is designed, the baseband mode model of FSO-OFDM system is constructed, and the modulation and demodulation principle of its signal is studied using this model. Finally, FSO-OFDM system is realized by using MATLAB, and the FSO communication system under the multipath interference is simulated, experiments on bit error rate characteristics under different guard intervals are performed. It is confirmed that the FSO-OFDM system has a strong ability to resist multipath interference and frequency selective fading, as well as good bit error rate (BER) performance. It can effectively solve the problem of intersymbol interference and the reliable link, and has a very broad application prospect and using value.
free space optics; turbulence effect; orthogonal frequency division multiplexing; multipath fading; bit error rate
TN929.1
A
10.12086/oee.2020.190619
: Guo Q, Song P, Zhang Z Q,. Research on the key technology of turbulence suppression for atmospheric optical laser communication based on OFDM[J]., 2020,47(3): 190619
2019-10-15;
2019-12-24
國家自然科學(xué)基金資助項目(61701384);陜西省教育廳科研計劃基金資助項目(18JK0341);西安市科技局科技創(chuàng)新基金資助項目(201805030YD8CG14(12))
郭倩(1984-),女,碩士,講師,主要從事信息與信號處理的研究。E-mail:guoqianyun@126.com
郭倩,宋鵬,張周強,等. 基于OFDM的大氣激光通信湍流抑制關(guān)鍵技術(shù)研究[J]. 光電工程,2020,47(3): 190619
Supported by National Natural Science Foundation of China (61701384), Scientific Research Program Fund of Education Department of Shaanxi Province (18JK0341), and Xi¢an Science and Technology Bureau Science and Technology Innovation Fund (201805030YD8CG14 (12))
* E-mail: guoqianyun@126.com