• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Volatility Estimation of Multivariate ARMA-GARCH Model

    2020-03-16 06:35:06PengfeiXieJiminYeandJunyuanWang

    Pengfei Xie, Jimin Ye and Junyuan Wang

    (School of Mathematics and Statistics, Xidian University, Xi’an 710071, China)

    Abstract: GARCH models play an extremely important role in financial time series. However, the parameter estimation of the multivariate GARCH model is challenging because the parameter number is square of the dimension of the model. In this paper, the model of structural vector autoregressive moving-average (ARMA) with GARCH is discussed and an efficient multivariate impulse response estimation method is proposed. First, the causal structure of the model was identified and the independent component of error term vector was estimated by DirectLiNGAM algorithm. Then, the relationship between conditional heteroscedasticity of the independent component of error term vector and that of residual vector was constructed, and the estimation of the impulse response of conditional volatility of multivariate GARCH models was translated to the estimation of the impulse response of error term vector. The independency among the independent components was translated to the impulse response estimation of the univariate case and the causal structure was maintained. Finally, the proposed estimation method was used to estimate the volatility of stock market, which proved that the method is computational efficient.

    Keywords: structural autoregressive moving-average; multivariate GARCH; independent component; causal structure; volatility

    1 Introduction

    Forecasting volatility of financial assets is a crucial research direction in the field of financial measurement that the accurate measurement of volatility is vital in options pricing and risk management. The autoregressive conditional heteroscedasticity (ARCH) model is one of the most important volatility models for financial time series proposed by Engle[1]and extended by Bollerslev[2]to the generalized ARCH (GARCH) model.

    Although the univariate GARCH models can well characterize the volatility of financial time series, it is difficult to study multivariate time series. Bollerslev et al.[3]proposed an extension model of the univariate GARCH, the VEC model, while it is difficult to estimate multiple parameters of high dimensional matrix or guarantee the constraint conditions of positive definite of conditional covariance matrix. Baillie[4]developed conditional correlation coefficient GARCH (CCC-GARCH) models, in which the conditional correlations are constant. This restriction greatly simplifies the estimation but it is not applicable to real financial data. The BEKK model of Caporin and Mcaleer[5]can well describe the volatility of multivariable and guarantee the positive qualitative of covariance matrix, while it has a limitation on model recognition. Considering the interaction between conditional variances, Tsukuda[6]applied the DCC-GARCH model and the dynamic conditional variance decomposition method to analyze the degree of integration of East Asian and global bond markets. Chen[7]proposed the orthogonal GARCH (O-GARCH) models by using principal component analysis (PCA) technology to extract the principal component. Wu and Yu[8]formed the ICA-GARCH models that decompose multivariate time series using independent component analysis (ICA), whose results show that the ICA-GARCH models are more effective to estimate volatilities than the PCA-GARCH methods. Broda[9]used the ICA method to extract the independent components from the multidimensional financial asset returns. García-Ferrer et al.[10]proposed the GICA-GARCH model which combines the ICA and multivariate GARCH (MGARCH) models. Jin[11]imulated the dynamic heterogeneity covariance breakdown in the MGARCH model by a random component. Francq[12]proposed the multivariate log-GARCH-X model. Karanasos[13]applied the vector AR-DCC-FIAPAPARCH model to estimate the long-term volatility correlation and asymmetric volatility response of stock market daily returns. Almeida[14]analyzed the trade-off between the feasibility and flexibility of the MGARCH model. Dua[15]used the vector autoregressive-multivariate GARCH-BEKK model to study the correlation between Indian and American stock markets. Hyvarinen et al.[16]proposed a linear non-Gaussian acyclic model (LiNGAM) based on the structural equation model, which used the ICA method to obtain the cause effects and applied the ICA-LiNGAM algorithm as the estimation method. Tashiro et al.[17]utilized a direct method to estimate the cause effects based on the non-Gaussianity and proposed a new direct estimation algorithm named DirectLiNGAM.

    Based on the combination of structural autoregressive moving-average (ARMA) model and the GARCH model, we present the ARMA-GARCH model in this paper. The relationship between conditional heteroscedasticity of the independent component of error term vector and that of residual vector was constructed. The estimation of the impulse response of conditional volatility of MGARCH models was translated to the estimation of the impulse response of the independent component of error term vector, and the causal structure was maintained.

    The rest of this paper is organized as follows. In Section 2, we present the ARMA-GARCH model and demonstrate the procedure of applying impulse response of conditional volatility in multivariate volatilities modeling. In Section 3, we introduce the ICA-LiNGAM and the Direct-LiNGAM algorithms with the mean squared error (MSE) as the evaluation method of the algorithm performance. In Section 4, the specific steps of the ARMA-GARCH model parameter estimation are described. An empirical application of the model in finance is given in Section 5 and the conclusions are drawn in Section 6.

    2 The ARMA-GARCH Model

    2.1 Model Definition

    Based on the combination of instantaneous model and the ARMA model with the external influence of non-Gaussian, Kawahara[18]proposed an ARMA-LiNGAM model and presented an estimation method. The error term vectore(t) of ARMA-LiNGAM can describe the volatility of financial data well, so taking thee(t) as GARCH process, the ARMA-GARCH model is proposed in this paper. Lety(t)=[y1(t),y2(t),.…,yn(t)]T,(t=1,2,…,T) represents the observed variable over a period of time. Without loss of generality, assuming that eachy(t) has zero mean vectors, the ARMA-GARCH model is defined as

    (1)

    whereΨj(j=0,1,…,p) aren×nmatrices, which represent the causal effects between the variablesy(t) andy(t-j)(j=0,1,…,p). Forτ>0, the effects are general autoregressive effects from the past to the present, while forτ=0, the effects are contemporaneous. In addition,Ωj(j=1,2,…,q) are then×nmoving average coefficient matrices and the error term vectore(t) is the vector of external influencesei(t)(i=1,2,…,n). Hence, the following assumptions on theei(t) are made.

    1) Theei(t) are GARCH process, i.e., eachei(t) is treated as a univariate GARCH (k,l) model

    (2)

    2) The instantaneous effects matrixΨ0in the model corresponds to a directed acyclic graph. The acyclicity is equivalent to the existence of a permutation matrixPwhich makesPΨ0PTa lower triangular. The acyclicity also ensures thatI-Ψ0is invertible.

    From Eq. (1), we have

    (3)

    By multiplyingA=(I-Ψ0)-1from the left on the both sides, we can obtain

    (4)

    whereΦτ=AΨτ,n(t)=Ae(t), andΘj=AΩjA-1. Eq. (4) is a standard ARMA model, which can be estimated by conditional maximum likelihood[19]ofΦj(j=1,2,…,p) andΘj(j=1,2,…,q).

    We calculate the residual vectorn(t) in Eq. (4) and separate the instantaneous effects matrixΨ0and the error term vectore(t) from then(t). According to the conclusion of Hyvarinen et al.[16], the non-Gaussian ofe(t) in the GARCH model and the acyclic of instantaneous effects matrixΨ0ensure thate(t) andΨ0can be uniquely identified. Therefore, the volatility structure ofn(t) can be estimated byΨ0and the volatility structure ofe(t).

    Eq. (4) shows that the conditional covariance matrix ofn(t) is

    (5)

    whereHt=diag(h1t,h2t,…,hnt),hitis the conditional variance of theith component ofe(t) given by Eq. (2),A=(a1,a2,…,an), andaiis theith column vector ofA.

    2.2 Impulse Response of Conditional Volatility

    Eq. (5) indicates the relationship between conditional heteroscedasticity of the independent component of error term vectore(t) and that of residual vectorn(t). The estimation of the impulse response of conditional volatility of MGARCH models is translated to the estimation of the impulse response of the independent component of error term vector. The volatility ofΓtcan be inferred by analyzing the response of one unit shock to the system ine(t). The impulse response of conditional volatility can well describe the volatile effects of one unit shock on the system.According to Eq. (5), the impulse response of the conditional volatility of the residual vectorn(t) can be expressed as

    (6)

    whereRs,iis thesorder lag impulse response of theith element ine(t) after one unit shock, andΓt+s/tis the conditional covariance information set ofΓt+sat timet. According to Hafner[20], the impulse response function of the univariate GARCH (k,l) model can be obtained as follows:

    (7.1)

    (7.2)

    (7.3)

    3 Algorithms and Performance Analysis

    In this section, we briefly introduce the ICA-LiNGAM and Direct-LiNGAM algorithms. Then we use MSE as the evaluation method of algorithm performance.

    LiNGAM, the linear non-Gaussian acyclic model proposed by Hyvarinen et al.[16], is a variant of structural equation model and Bayesian network, which satisfies the following two conditions: 1) the adjacency matrixBcorresponds to a directed acyclic graph; 2) the components ofeare independent and non-Gaussian. Under the above non-Gaussian acyclic conditions, LiNGAM can be formally expressed as

    x=Bx+e

    (8)

    wherexis apdimensional random vector,Bis an adjacency matrix ofp×p, andeis apdimensional non-Gaussian random noise vector.

    The original solution to the LiNGAM model was proposed by Hyvarinen et al.[16]based on the ICA method, i.e., the ICA-LiNGAM algorithm, which separates the adjacency matrixBand the non-Gaussianevector from the observed datax[21]. Because of the directed acyclic graph hypothesis, the existence of a permutation matrixP∈Rp×pmakesB′=PBPTas close as possible to strictly lower triangular. Then, the causal order is obtained by combiningB′with strictly triangular characteristics. Finally, a certain pruning algorithm is used to get the final causal network. The ICA-LiNGAM algorithm relies on the selection of initial values, which may not converge to a correct solution. Shimizu et al.[22]proposed the DirectLiNGAM algorithm using the principle of residual independence, in which exogenous variables were selected on the basis of the Darmois-Skitovitch theorem[23], i.e., the judgment variable is a regression residual independent of all other variables.

    Assumingxis a set of variables, the exogenous variablexecan be calculated from Eqs. (9)-(11)

    (9)

    (10)

    (11)

    In this paper, the performance of the above algorithm is tested by simulation data and we use MSE as the evaluation indicator of causal structure model algorithm. The MSE ofBis defined as follows:

    (12)

    We randomly generated artificial data sets with each combination of number of variablespand sample sizeN(p=15,30,60;N=500,1000,2000,3000) by following steps.

    1) We constructed an adjacency matrix with all elements equal to zero and used the Bernoulli random variable to replace each element of the lower triangle.

    2) We replaced the non-zero elements in adjacency matrix by the randomly generated numbers from the interval [-1.5, -0.5]∪[0.5, 1.5] and used the generated matrix as the adjacency matrixB. We also randomly selected the noiseeifrom the interval [1, 3].

    3) The values of the observed variablesxiwere generated according to Eq. (8). Finally, we randomly permuted the order ofxito make the order of observation inconsistent with the causal order. Then the DirectLiNGAM algorithm and ICA-LiNGAM algorithm were tested on the generated data sets.

    dim.500100020003000150.0137050.0080450.0056250.004174300.0175150.0065820.0038970.002965600.0129570.0096420.0047860.003514

    dim.500100020003000150.0217460.0092430.0076450.005646300.0311860.0113360.0072860.005528600.0175680.0155730.0116670.006706

    4 Estimation of the ARMA-GARCH Model

    The estimation procedure and the specific steps of the ARMA-GARCH model parameter estimation are described as follows:

    1) Use the conditional maximum likelihood to estimate the autoregressive matrixΦjand the moving average matrixΘjof Eq. (4), and calculate the residual vectorn(t).

    2) Use the DirectLiNGAM algorithm to estimate the causal order and calculate the instantaneous effects matrixΨ0and the error term vectore(t) :

    n(t)=Ψ0n(t)+e(t)

    3) Use the estimation matrixΨ0to calculate the parameters in Eq. (1) as in

    Ψj=(I-Ψ0)Φj,Ωj=(I-Ψ0)Θj(I-Ψ0)-14) Use the maximum likelihood function to estimate the univariate GARCH parameters from the error term vectore(t).

    5) Use Eq. (7) to estimate the univariate impulse response function for each element ine(t).

    6) Use the univariate impulse response function, the matrixΨ0, and Eq. (6) to estimate the impulse response of the conditional volatility.

    5 Applications in Finance

    We applied the ARMA-GARCH model to estimate the volatility of stock market. The chosen indices are A share index of Shanghai stock Exchange (000002.ss), B share index of Shanghai stock Exchange (000003.ss), A share index of Shenzhen stock Exchange (399107.sz), and B share index of Shenzhen stock Exchange (399108.sz). The dataset was from September 2, 2014 to December 30, 2017, representing 1150 daily observations. The daily returnri(t) were calculated byri(t)=log(pi(t))-log(pi(t-1)), where the closing price of indexion the trading day istbypi(t). We fitted the ARMA-GARCH to the dataset, where the order (p,q) = (1, 2) was selected based on Bayesian information criteria (BIC). The ARMA (1, 2)-GARCH (1, 1) model is

    y(t)=Ψ0y(t)+Ψ1y(t-1)+e(t)-

    Ω1e(t-1)-Ω2e(t-2)=

    Φ1y(t-1)+n(t)-Θ1n(t)-Θ2n(t)

    (13)

    Φ1=(I-Ψ0)-1Ψ1,n(t)=(I-Ψ0)-1e(t)

    (14.1)

    Θ1=(I-Ψ0)-1Ω1(I-Ψ0),ei(t)=

    (14.2)

    hi(t)=ωi+αi1ei(t-1)2+βi1hi(t-1)

    (14.3)

    The estimated parameters in ARMA (1, 2) are as follows:

    Fig.1 shows the direction of the estimated instantaneous causal structure obtained by the DirectLiNGAM algorithm. 000002.ss had strong negative impacts on 000003.ss and 399108.sz, while it had a weaker positive impact on 399107.sz. 399108.sz had a strong positive impact on 399107.sz and a strong negative impact on 000003.ss, whereas 000003.ss only had a strong positive impact on 399107.sz and 399107.sz did not affect other variables.These results were justified in the Chinese stock market.

    The DirectLiNGAM algorithm was used to separaten(t), obtain the estimation matrixA, and extracte(t), as shown in Fig.2. The estimated parameters in univariate GARCH (1, 1) model to eachei(t) are shown in Table 3. It can be seen from the estimated GARCH that 000002.ss, 000003.ss, 399107.sz, and 399108.sz had a characteristic of volatility clustering.

    Fig.1 Direction of the estimated instantaneous causal structure direction by DirectLiNGAM

    Parameters000002.ss000003.ss399107.sz399108.szωi6.215000.310203.979002.02000αi10.073230.094190.055910.06886βi10.925100.891100.939900.91520

    Fig.3 shows the impulse response functions of 000002.ss, 000003.ss, 399107.sz, and 399108.sz to one unit shock, where the dashed lines are 95% confidence interval and the solid line indicates the impulse response. The volatility of 000002.ss had the greatest impact on other variables, and the unit shock of 000002.ss had a longer lasting effect on other variables. The unit shock of 000003.ss had little effect on other variables. The unit shock of 399107.sz only had a positive influence on 399108.sz and the duration was relatively short. The impact amplitude of unit shock on 399107.sz was not very large, but it had a positive impact on 000003.ss with a short duration, which had a negative impact on 399107.sz with a longer duration. As discussed, these results proved that volatility does shift in the impulse response of conditional volatility. The unit shock of 000002.ss had the greatest impact on other variables, and the unit shock of 000003.ss had little effect on other variables, which is consistent with the stock market in China.

    Fig.2Residualseries

    Fig.3 Impulse response of conditional volatility

    6 Conclusions

    In this paper, we propose an ARMA-GARCH model to estimate the multivariate volatility. The model provides an effective estimation method for the traceability of the dynamic volatility. We can identify the causal structure of the ARMA-GARCH model under data driven. The univariate GARCH model was used to estimate the impulse response of conditional volatility of the MGARCH models with the causal structure maintained at the same time. In practical application, we analyzed the causal structure and volatility structure of 000002.ss, 000003.ss, 399107.sz, and 399108.sz. The results show that 000002.ss had a significant impact on other variables. The volatility shifted in the impulse response of conditional volatility. The impact of 000002.ss largely affected other variables, whereas that of 000003.ss had little effect. The result is in accordance with the stock market in China. The experimental results also show that the ARMA-GARCH model is effective for estimating multivariate volatility.

    黄色一级大片看看| 一本色道久久久久久精品综合| 舔av片在线| 色婷婷久久久亚洲欧美| 日韩视频在线欧美| 亚洲欧美一区二区三区黑人 | 国产精品无大码| 啦啦啦在线观看免费高清www| 好男人视频免费观看在线| 国产精品伦人一区二区| 国产毛片在线视频| 国产精品无大码| 成人漫画全彩无遮挡| 国产精品99久久99久久久不卡 | 18+在线观看网站| 老司机影院毛片| 国产一区二区三区av在线| 少妇的逼好多水| 能在线免费看毛片的网站| 又爽又黄无遮挡网站| 久热这里只有精品99| 国产男女超爽视频在线观看| 国内揄拍国产精品人妻在线| 亚洲精品久久午夜乱码| 干丝袜人妻中文字幕| 成人欧美大片| 男的添女的下面高潮视频| 亚洲综合色惰| 97热精品久久久久久| 99热6这里只有精品| 丝袜喷水一区| 国产午夜福利久久久久久| 99久久精品热视频| 欧美成人a在线观看| 成人鲁丝片一二三区免费| 成人欧美大片| 国产乱人视频| 成人特级av手机在线观看| 日本欧美国产在线视频| 成年女人在线观看亚洲视频 | 婷婷色av中文字幕| 黄色一级大片看看| 成人国产av品久久久| 亚洲av二区三区四区| 亚洲成人中文字幕在线播放| 男男h啪啪无遮挡| 精品99又大又爽又粗少妇毛片| 日韩国内少妇激情av| 国产精品成人在线| 国精品久久久久久国模美| 免费看日本二区| 亚洲精品一二三| 久久久久久九九精品二区国产| 一级片'在线观看视频| 午夜老司机福利剧场| 简卡轻食公司| 深爱激情五月婷婷| 99久久九九国产精品国产免费| 国产毛片a区久久久久| 久久热精品热| 搡女人真爽免费视频火全软件| 国产成人免费观看mmmm| 精品一区二区免费观看| 美女脱内裤让男人舔精品视频| 在线播放无遮挡| www.av在线官网国产| 内射极品少妇av片p| 看免费成人av毛片| 亚洲av二区三区四区| 亚洲av欧美aⅴ国产| 神马国产精品三级电影在线观看| 国产精品国产三级专区第一集| 成人国产麻豆网| 久久久成人免费电影| 一级片'在线观看视频| 免费观看性生交大片5| 婷婷色综合www| 蜜桃久久精品国产亚洲av| 国产成人精品福利久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 又黄又爽又刺激的免费视频.| 日本-黄色视频高清免费观看| 中文精品一卡2卡3卡4更新| 97热精品久久久久久| 观看免费一级毛片| 欧美精品一区二区大全| 日韩av免费高清视频| 亚洲成人久久爱视频| 看黄色毛片网站| 日本与韩国留学比较| 黄色怎么调成土黄色| 国产一级毛片在线| 熟女电影av网| 一级片'在线观看视频| 最近的中文字幕免费完整| kizo精华| 美女主播在线视频| 禁无遮挡网站| 日日摸夜夜添夜夜添av毛片| 亚洲精品色激情综合| 日本欧美国产在线视频| 欧美日本视频| 国产精品av视频在线免费观看| 我要看日韩黄色一级片| 最近的中文字幕免费完整| av在线亚洲专区| 哪个播放器可以免费观看大片| 国产精品三级大全| 亚洲精品久久午夜乱码| 国产大屁股一区二区在线视频| 国内精品美女久久久久久| 夫妻午夜视频| 亚洲成人一二三区av| 女人久久www免费人成看片| 亚洲国产av新网站| 国产美女午夜福利| 伊人久久精品亚洲午夜| 一级毛片 在线播放| 亚洲国产精品成人久久小说| 国产探花极品一区二区| 久久久午夜欧美精品| 免费大片18禁| 中文在线观看免费www的网站| 1000部很黄的大片| 激情 狠狠 欧美| 极品教师在线视频| 我的老师免费观看完整版| 国国产精品蜜臀av免费| 极品教师在线视频| 成人毛片60女人毛片免费| 激情五月婷婷亚洲| 欧美高清性xxxxhd video| av.在线天堂| 最新中文字幕久久久久| 日本一二三区视频观看| 欧美高清成人免费视频www| 日本免费在线观看一区| 一级毛片 在线播放| 久久久久精品性色| 国产成人一区二区在线| 各种免费的搞黄视频| 日韩 亚洲 欧美在线| 亚洲性久久影院| 99久久精品热视频| 日韩一区二区三区影片| 人体艺术视频欧美日本| 我要看日韩黄色一级片| 最近最新中文字幕大全电影3| av.在线天堂| 成人特级av手机在线观看| 国产精品久久久久久久久免| 国产午夜福利久久久久久| 91久久精品国产一区二区三区| 蜜桃亚洲精品一区二区三区| 国内精品美女久久久久久| 青春草亚洲视频在线观看| 成人鲁丝片一二三区免费| 老司机影院毛片| 色哟哟·www| 国产亚洲一区二区精品| 亚洲第一区二区三区不卡| av一本久久久久| 如何舔出高潮| 国内少妇人妻偷人精品xxx网站| 观看美女的网站| 高清毛片免费看| av在线蜜桃| 国产精品精品国产色婷婷| 中文字幕免费在线视频6| 日本-黄色视频高清免费观看| 久久ye,这里只有精品| 亚洲av不卡在线观看| 免费观看av网站的网址| 久久99热这里只频精品6学生| av黄色大香蕉| 日本与韩国留学比较| 成人无遮挡网站| 亚洲av中文字字幕乱码综合| 精品久久久久久电影网| 三级国产精品片| 国产白丝娇喘喷水9色精品| 国产精品人妻久久久影院| 人妻系列 视频| 久久女婷五月综合色啪小说 | 嫩草影院入口| 一区二区三区免费毛片| 日韩制服骚丝袜av| 嫩草影院入口| 亚洲不卡免费看| 最近中文字幕2019免费版| 久久久成人免费电影| 毛片一级片免费看久久久久| 韩国高清视频一区二区三区| 国产探花在线观看一区二区| 美女脱内裤让男人舔精品视频| 国产午夜精品久久久久久一区二区三区| 校园人妻丝袜中文字幕| 美女高潮的动态| 十八禁网站网址无遮挡 | 美女视频免费永久观看网站| 久久鲁丝午夜福利片| 成人国产麻豆网| videossex国产| 国产亚洲av片在线观看秒播厂| 伦理电影大哥的女人| 国产精品一及| 国产在视频线精品| 亚洲av在线观看美女高潮| 久久女婷五月综合色啪小说 | 男人和女人高潮做爰伦理| 国产成人精品一,二区| 在线天堂最新版资源| 高清日韩中文字幕在线| 午夜福利视频精品| 蜜桃久久精品国产亚洲av| 特级一级黄色大片| 神马国产精品三级电影在线观看| 日韩av免费高清视频| 一本一本综合久久| 久久久a久久爽久久v久久| 99久久九九国产精品国产免费| 91aial.com中文字幕在线观看| 听说在线观看完整版免费高清| 国产成人aa在线观看| 黄色欧美视频在线观看| av在线蜜桃| 丰满人妻一区二区三区视频av| 六月丁香七月| 直男gayav资源| 美女脱内裤让男人舔精品视频| 大码成人一级视频| 日本欧美国产在线视频| 黄色配什么色好看| 亚洲内射少妇av| 丝瓜视频免费看黄片| 日本猛色少妇xxxxx猛交久久| 久热久热在线精品观看| 亚洲精品自拍成人| 最近手机中文字幕大全| 亚洲,欧美,日韩| 成人国产av品久久久| 国产午夜精品久久久久久一区二区三区| 国语对白做爰xxxⅹ性视频网站| 在线播放无遮挡| 18禁裸乳无遮挡动漫免费视频 | 亚洲av.av天堂| 久久人人爽人人片av| 99精国产麻豆久久婷婷| 欧美性猛交╳xxx乱大交人| 中文在线观看免费www的网站| 国产真实伦视频高清在线观看| 国产老妇伦熟女老妇高清| 少妇高潮的动态图| 天美传媒精品一区二区| 久久久精品免费免费高清| www.色视频.com| 久久精品久久久久久久性| 日本黄大片高清| 在线观看免费高清a一片| 另类亚洲欧美激情| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品国产精品| 又大又黄又爽视频免费| 美女视频免费永久观看网站| 精品人妻偷拍中文字幕| 中文乱码字字幕精品一区二区三区| 国产白丝娇喘喷水9色精品| 舔av片在线| 国产成人a区在线观看| 国产一区二区在线观看日韩| 久久精品久久久久久久性| 欧美精品人与动牲交sv欧美| 最近手机中文字幕大全| 最近中文字幕2019免费版| 最近中文字幕高清免费大全6| 日韩欧美一区视频在线观看 | 亚洲成人中文字幕在线播放| 干丝袜人妻中文字幕| 男的添女的下面高潮视频| 最后的刺客免费高清国语| 国产一区二区三区综合在线观看 | 亚洲精品中文字幕在线视频 | 欧美+日韩+精品| 国产一区二区亚洲精品在线观看| 国产免费又黄又爽又色| 精品久久久久久电影网| 亚洲图色成人| 男女下面进入的视频免费午夜| 国产亚洲一区二区精品| 欧美亚洲 丝袜 人妻 在线| 在现免费观看毛片| 精品熟女少妇av免费看| 高清欧美精品videossex| 看十八女毛片水多多多| 免费大片18禁| 人人妻人人爽人人添夜夜欢视频 | 久久99精品国语久久久| 国产淫片久久久久久久久| 在线天堂最新版资源| 午夜福利视频精品| 成人亚洲精品一区在线观看 | 日本一二三区视频观看| 一级毛片黄色毛片免费观看视频| 亚洲婷婷狠狠爱综合网| 夫妻性生交免费视频一级片| 大片免费播放器 马上看| 搞女人的毛片| 色视频在线一区二区三区| 少妇的逼水好多| 久久久国产一区二区| 97在线人人人人妻| 国产成人91sexporn| 香蕉精品网在线| 只有这里有精品99| 免费在线观看成人毛片| 久久久亚洲精品成人影院| 久久国内精品自在自线图片| 夜夜看夜夜爽夜夜摸| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久人人人人人人| 国产精品久久久久久av不卡| 亚洲经典国产精华液单| 国产av国产精品国产| 日日摸夜夜添夜夜添av毛片| 噜噜噜噜噜久久久久久91| 免费人成在线观看视频色| 亚洲精品乱久久久久久| 亚洲在线观看片| 中国三级夫妇交换| 99久久人妻综合| 日韩中字成人| 麻豆乱淫一区二区| 亚洲精品,欧美精品| 国产成人aa在线观看| 精品国产一区二区三区久久久樱花 | 18+在线观看网站| 99热国产这里只有精品6| 国产亚洲一区二区精品| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| av国产免费在线观看| 成人鲁丝片一二三区免费| av在线观看视频网站免费| 国产成人aa在线观看| 纵有疾风起免费观看全集完整版| 熟女人妻精品中文字幕| 亚洲精品乱码久久久久久按摩| 国产人妻一区二区三区在| 制服丝袜香蕉在线| 麻豆成人午夜福利视频| 久久精品人妻少妇| 建设人人有责人人尽责人人享有的 | 免费观看av网站的网址| 国内精品宾馆在线| 男的添女的下面高潮视频| 国产片特级美女逼逼视频| 免费观看av网站的网址| 男插女下体视频免费在线播放| 三级男女做爰猛烈吃奶摸视频| av卡一久久| 成人免费观看视频高清| 午夜福利视频精品| 人体艺术视频欧美日本| 热99国产精品久久久久久7| 三级男女做爰猛烈吃奶摸视频| 18禁在线无遮挡免费观看视频| 免费av不卡在线播放| 一个人观看的视频www高清免费观看| 亚洲国产日韩一区二区| 卡戴珊不雅视频在线播放| 五月开心婷婷网| 亚洲aⅴ乱码一区二区在线播放| 大香蕉久久网| 午夜老司机福利剧场| 人体艺术视频欧美日本| 在现免费观看毛片| 男女啪啪激烈高潮av片| 免费在线观看成人毛片| 亚洲熟女精品中文字幕| 欧美极品一区二区三区四区| 国产成人91sexporn| 精品人妻一区二区三区麻豆| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本色播在线视频| 高清毛片免费看| www.色视频.com| 老师上课跳d突然被开到最大视频| 日韩大片免费观看网站| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲日产国产| 91狼人影院| 久久久久久久精品精品| 精品酒店卫生间| 国产精品久久久久久av不卡| av.在线天堂| 好男人在线观看高清免费视频| 国产精品一区二区性色av| 国产淫片久久久久久久久| 精品人妻偷拍中文字幕| 国模一区二区三区四区视频| 国产男女超爽视频在线观看| 大香蕉97超碰在线| 欧美精品人与动牲交sv欧美| 国产乱来视频区| 国产黄频视频在线观看| 欧美极品一区二区三区四区| 亚洲av.av天堂| 国产成人a区在线观看| 九色成人免费人妻av| 欧美变态另类bdsm刘玥| 黄色怎么调成土黄色| 99久久九九国产精品国产免费| 国产免费一区二区三区四区乱码| 在线看a的网站| 亚洲欧美中文字幕日韩二区| 国产精品偷伦视频观看了| 久热久热在线精品观看| 国产精品久久久久久精品电影| 国产一区有黄有色的免费视频| 97超视频在线观看视频| 秋霞伦理黄片| 久久人人爽av亚洲精品天堂 | 看非洲黑人一级黄片| 亚洲图色成人| 久久人人爽人人爽人人片va| 欧美日本视频| 在线观看免费高清a一片| 国产老妇女一区| 国产亚洲av嫩草精品影院| 成人毛片60女人毛片免费| 少妇人妻精品综合一区二区| 亚洲精品日韩av片在线观看| 别揉我奶头 嗯啊视频| 一级毛片 在线播放| 国产探花在线观看一区二区| 美女xxoo啪啪120秒动态图| 亚洲国产日韩一区二区| 久久久久九九精品影院| 久久久亚洲精品成人影院| 久久精品久久久久久久性| 日韩伦理黄色片| av黄色大香蕉| 国产一区二区亚洲精品在线观看| 精品少妇黑人巨大在线播放| av国产久精品久网站免费入址| 永久网站在线| a级毛色黄片| av国产免费在线观看| av黄色大香蕉| 欧美国产精品一级二级三级 | 国产又色又爽无遮挡免| 国产黄片视频在线免费观看| 人体艺术视频欧美日本| 狂野欧美激情性bbbbbb| 成人黄色视频免费在线看| 99热这里只有精品一区| 欧美精品国产亚洲| 亚洲欧美成人精品一区二区| 国产成人免费无遮挡视频| 欧美日韩一区二区视频在线观看视频在线 | 国产高清三级在线| 国产精品爽爽va在线观看网站| 亚洲最大成人中文| 亚洲欧美清纯卡通| 亚洲国产欧美在线一区| 秋霞伦理黄片| 国产av国产精品国产| 全区人妻精品视频| 51国产日韩欧美| 黄片无遮挡物在线观看| 极品少妇高潮喷水抽搐| 精品久久国产蜜桃| 久久鲁丝午夜福利片| 国产在视频线精品| 国产极品天堂在线| 熟妇人妻不卡中文字幕| xxx大片免费视频| 日韩成人伦理影院| 国产精品久久久久久av不卡| 亚洲精品aⅴ在线观看| 国产亚洲一区二区精品| 亚洲av男天堂| 免费av观看视频| 一个人观看的视频www高清免费观看| 国产免费福利视频在线观看| 欧美丝袜亚洲另类| 亚洲国产精品专区欧美| 80岁老熟妇乱子伦牲交| 国产av国产精品国产| 天堂中文最新版在线下载 | 国产女主播在线喷水免费视频网站| 国产精品一二三区在线看| 国产精品秋霞免费鲁丝片| 国产免费又黄又爽又色| 天美传媒精品一区二区| 天堂中文最新版在线下载 | 男的添女的下面高潮视频| 免费看日本二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 美女国产视频在线观看| 少妇的逼水好多| 少妇猛男粗大的猛烈进出视频 | 亚洲精品456在线播放app| 免费电影在线观看免费观看| 18+在线观看网站| 亚洲高清免费不卡视频| 久久久久久九九精品二区国产| 香蕉精品网在线| 国产一区亚洲一区在线观看| 亚洲无线观看免费| 最后的刺客免费高清国语| 亚洲一区二区三区欧美精品 | 国产成人福利小说| 免费看光身美女| 一本一本综合久久| 亚洲成人中文字幕在线播放| 欧美97在线视频| 亚洲av一区综合| 九九在线视频观看精品| 一级黄片播放器| 亚洲欧美成人综合另类久久久| 国产淫语在线视频| 亚洲精品久久午夜乱码| av在线蜜桃| 香蕉精品网在线| 国产亚洲91精品色在线| 日本熟妇午夜| 一本一本综合久久| av免费观看日本| 精品一区二区三卡| 欧美激情在线99| 国产精品一区二区性色av| 久热久热在线精品观看| 日韩av免费高清视频| 久久鲁丝午夜福利片| 国产成人a∨麻豆精品| 亚洲成色77777| 成年人午夜在线观看视频| 精品人妻视频免费看| 成年av动漫网址| 国产精品一及| 成年女人在线观看亚洲视频 | 亚洲精品aⅴ在线观看| 少妇 在线观看| 久久99蜜桃精品久久| 欧美极品一区二区三区四区| 亚洲欧美成人综合另类久久久| 极品少妇高潮喷水抽搐| 亚洲精品色激情综合| 又黄又爽又刺激的免费视频.| 2018国产大陆天天弄谢| 久久久欧美国产精品| 一级毛片久久久久久久久女| 国产欧美亚洲国产| 最后的刺客免费高清国语| 成人毛片a级毛片在线播放| 国产 精品1| 男的添女的下面高潮视频| 狂野欧美激情性bbbbbb| 久久99蜜桃精品久久| 99热这里只有是精品50| 91在线精品国自产拍蜜月| 纵有疾风起免费观看全集完整版| 蜜桃久久精品国产亚洲av| 精品一区在线观看国产| 精品国产一区二区三区久久久樱花 | 亚洲va在线va天堂va国产| 久久99精品国语久久久| 成人美女网站在线观看视频| 久久99热这里只频精品6学生| 91久久精品电影网| 丝瓜视频免费看黄片| 噜噜噜噜噜久久久久久91| 一级毛片黄色毛片免费观看视频| 美女视频免费永久观看网站| 精品久久国产蜜桃| 成人亚洲欧美一区二区av| 国产视频内射| 国产精品一及| 天天一区二区日本电影三级| 亚洲成人久久爱视频| 免费av毛片视频| 99re6热这里在线精品视频| 久久久久精品性色| 少妇人妻久久综合中文| 亚洲,欧美,日韩| 国产人妻一区二区三区在| 久久久久精品久久久久真实原创| 亚洲精华国产精华液的使用体验| 插阴视频在线观看视频| 亚洲精品成人久久久久久| 秋霞伦理黄片| 精品久久久精品久久久| 成人黄色视频免费在线看| 国产伦精品一区二区三区四那| 午夜老司机福利剧场| 亚洲成人中文字幕在线播放| 80岁老熟妇乱子伦牲交| 亚洲欧美清纯卡通| 日韩伦理黄色片| 欧美老熟妇乱子伦牲交| 久久久久网色| 美女主播在线视频| 18+在线观看网站| 久久久色成人| 日韩制服骚丝袜av| 亚洲在久久综合| 97精品久久久久久久久久精品| 最近最新中文字幕免费大全7| 十八禁网站网址无遮挡 | 日本-黄色视频高清免费观看| 久久久久久久国产电影| 国产成人福利小说| 在线天堂最新版资源| 国产91av在线免费观看|