• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Morphology Similarity Distance for Bearing Fault Diagnosis Based on Multi-Scale Permutation Entropy

    2020-03-16 06:35:02JinbaoZhangYongqiangZhaoLingxianKongandMingLiu

    Jinbao Zhang, Yongqiang Zhao, Lingxian Kong and Ming Liu

    (School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)

    Abstract: Bearings are crucial components in rotating machines, which have direct effects on industrial productivity and safety. To fast and accurately identify the operating condition of bearings, a novel method based on multi-scale permutation entropy (MPE) and morphology similarity distance (MSD) is proposed in this paper. Firstly, the MPE values of the original signals were calculated to characterize the complexity in different scales and they constructed feature vectors after normalization. Then, the MSD was employed to measure the distance among test samples from different fault types and the reference samples, and achieved classification with the minimum MSD. Finally, the proposed method was verified with two experiments concerning artificially seeded damage bearings and run-to-failure bearings, respectively. Different categories were considered for the two experiments and high classification accuracies were obtained. The experimental results indicate that the proposed method is effective and feasible in bearing fault diagnosis.

    Keywords: bearing fault diagnosis; multi-scale permutation entropy; morphology similarity distance

    1 Introduction

    Rolling element bearings are critical components in rotating machines and their states in operation directly affect industrial productivity and workers’ safety. Fault diagnosis in the early stage could provide maintenance guidance and avoid huge economic losses so a fast and precise method is necessary. Traditionally, the framework of fault diagnosis for bearings consists of five parts: data acquisition, data preprocessing, feature extraction, dimensionality reduction, and fault classification[1-3].

    Prominent features are critical in fault diagnosis, so multiple domain features have been investigated, including root mean square (RMS), kurtosis, and skewness in time domain and frequency domain, and short-time Fourier transform (STFT)[4]in time-frequency domain[5]. To deal with nonlinear dynamic characteristics of bearing fault signals, several entropy-based approaches have been proposed, such as approximate entropy (ApEn)[6-7], sample entropy (SaEn)[8-9], fuzzy entropy[10-11], multiscale entropy (MSE)[12-13], and permutation entropy (PE)[14-15]. PE can measure the complexity of time series through comparing adjacent values, which is simple, immune to noise, and suitable for online monitoring. Based on the PE method, multi-scale permutation entropy (MPE) was developed by Aziz and Arif[16]and was employed to estimate the complexity of the signals in different scales. MPE excels at its stability and robustness and performs better than PE in the application of bearing fault diagnosis[17-21].

    Traditional approaches for dimensionality reduction are principal component analysis (PCA)[1]and modifications like locally linear embedding (LLE)[2],Laplacian score (LS)[3], and non-negative matrix factorization (NMF)[4]. With the selected features, the fault diagnosis should be performed with a classifier, which consists of two types based on the vibration data, i.e., statistical models[1,3]and data-driven models[2, 11, 13, 15, 20-22]. The two classifiers have their own advantages for bearing fault classification but are with deficiencies that they are complex and difficult to implement.

    Since the essence of fault diagnosis is the problem of pattern recognition, distance would be an essential factor for the discrimination of different feature vectors. Hence, the nearest neighbor principle should be considered and the fault type could be identified with the smallest distance. For example, dynamic time wrapping[23]has been applied in bearing fault diagnosis[24], which measures the similarity of vectors with different length, but is with high computation complexity at the same time. In addition, not all the distances (e.g., the Euclidean distance) could differentiate the pattern. Based on the above analysis, MSD[25]is applied in this paper for bearing fault classification, which considers the shape of feature vectors and is simple to implement because no tuning parameters need to be set up or optimized compared with the abovementioned classifiers.

    The rest of this paper is organized as follows: a brief review of the theoretical background concerning MPE and MSD is provided in Section 2; Section 3 illustrates the procedure of MPE-MSD, and two experiments considering different categories are designed and implemented to verify effectiveness of the proposed method in Section 4; finally, conclusions are drawn in Section 5.

    2 Theoretical Background

    2.1 Multi-scale Permutation Entropy

    PE[14]was firstly used for detecting the dynamic change of time series data and to overcome former entropy method limitations such as the requirement of long datasets and high computational cost. The definition and implement procedure of PE are described as follows.

    Considering a time series {x(k),k=1,2,…,N}, themdimensional vector at timeican thus be constructed as

    i=1,2,…,N-(m-1)τ

    (1)

    x(i+r0τ)≤x(i+r1τ)≤…≤x(i+rm-1τ)

    (2)

    where 0≤rn≤m-1, andrn-1

    x(t+rn-1τ)=x(t+rnτ)

    For each permutationπj,1≤j≤m!, the relative frequency can be defined as

    (3)

    (4)

    The MPE algorithm based on PE comprises the following two steps:

    (5)

    Fig.1 Illustration of the coarse-grained process

    2) The PEs of each coarse-grained time series are calculated based on Eqs. (1)-(5) and then expressed as the function of the scale factors

    (6)

    Four parameters should be specified before using MPE, includingN,m,τ, ands. In this paper, the parameters are set asm=4,τ=1,s=20[21]. The normalized MPE is expressed as

    NorMPE(x,t,m,τ)=MPE(x,t,m,τ)/

    (7)

    2.2 Morphology Similarity Distance

    Considering vectors as objects, the morphology similarity distance is proposed to estimate similarity. The morphology similarity distance between twon-dimensionality vectorsLi=(li1,li2,…,lin) andLj=(lj1,lj2,…,ljn) is defined as[25]

    DMSD=DEuclid×(2-ASD/DManhattan)

    (8)

    whereDEuclidis the Euclid distance,DManhattanis the Manhattan distance, ASD is the absolute sum of the differences as follows:

    (9)

    The traditional index used for similarity is the Minkowski metric

    (10)

    The traditional distances Euclidean (r=2) and Manhattan distances (r=1) can be regarded as special cases of Minkowski distance. However, they both neglect the difference between vectors and fail to reflect shape similarities such as translation, compression, and stretch.

    For example, there are four vectors as follows:

    x0=(5, 5, 5),x1=(4, 4, 4)
    x2=(5, 4, 3),x3=(5, 4, 7)

    Let vectorx0be the reference vector. The vector differences, Manhattan distance, Euclidean distance, and MSD fromx1,x2, andx3tox0are computed and listed in Table 1.

    Table 1 Results of different distances

    3 Procedure of Fault Diagnosis

    A procedure based on MPE and MSD is established for the fault classification of rolling element bearings, and the steps are as follows:

    1) Collect vibration signals of healthy and different types of fault bearings;

    2) Calculate MPE values of the original signals with different fault types and construct normalized vectors as reference samples and testing samples;

    3) Assign the number of the reference samples to each fault type, compute the MSD between every testing sample and all reference samples, and then average the MSD values with the specified fault;

    4) Based on the nearest neighbor principle, choose the minimum value among the MSD means from all fault types, and the corresponding fault type can be identified.

    The flowchart of the proposed method is shown in Fig.2.

    Fig.2 Flowchart of the proposed method

    4 Application

    4.1 Case 1: Artificially Seeded Damage Bearings

    The bearing data were obtained from Bearing Data Centre of Case Western Reserve University[26]and the bearing experiment system is shown in Fig.3. During the experiment, the drive end bearing 6205-2RS JEM SKF was investigated and defective bearings were seeded with single point faults using electro-discharge machining. Vibration signals from the accelerometer were placed at the 12 o’clock position at the drive end of the motor housing with the sampling frequency 48 kHz, including normal, ball fault (BF), inner race fault (IRF), and outer race fault (ORF) (at the 6 o’clock position).

    Fig.3 Rolling bearing experiment system

    To verify the effectiveness of the proposed method, three groups of tests at defect size 0.007 inch and loading 1 HP were investigated, as depicted in Table 2, including different fault types (Group A) with waveforms shown in Fig.4(a), different defective sizes (Group B) for damage severity, and a combination of fault types and defective sizes (Group C) for complex conditions. In every condition, non-overlapping segments with lengthN=4 096 were extracted, and MPE values were computed for each segment.

    To illustrate specific fault types in the signal, the envelop spectra based on Teager energy operator corresponding to BF, IRF, and ORF are shown in Fig.4(b). The remarkable amplitudes occurring in the location of the fault frequencies clearly indicated the fault types. The structural parameters of the bearing are listed in Table 3, and the corresponding fault frequencies are computed as follows:

    Ball spin frequency (BSF)

    fB=0.5fr(1-d2cos2α/D2)D/d

    (11)

    Ball pass frequency on inner race (BPFI)

    fI=0.5fr(1+dcosα/D)z

    (12)

    Ball pass frequency on outer race (BPFO)

    fO=0.5fr(1-dcosα/D)z

    (13)

    wheredis the diameter of the rolling element,Dis the pitch diameter,αis the contact angle,zis the number of rolling elements, andfris the shaft speed.

    Table 2 Description of bearing fault groups

    Fig.4 Waveforms of four different conditions and corresponding envelop spectra in Group A

    Table3Structuralparametersofthebearingwithcorrespondingfaultfrequencies

    d(inch)D(inch)zα(°)0.31261.53790fr(Hz)fB(Hz)fI(Hz)fO(Hz)29.5369.59159.91105.85

    Then, samples with numbers 10, 20, and 30 were utilized as reference and the rest were used for verification. The classification results are listed in Table 4.

    The classification accuracies reached 100%, 100%, and 97.54% in Group A, Group B, and Group C with 10 reference samples respectively, as illustrated in Fig.5. Moreover, the accuracy was not highly dependent on the number of the reference samples according to the comparison among different sample numbers in Table 4. In Fig.5(a), for example, when the bearing was normal, the mean MSD between the testing sample and the normal reference sample was the minimum, which was the same in the other three fault conditions. The four types of fault could be clearly identified based on the prominent distance between the minimum mean MSD and the other three MSDs. As illustrated in Fig.5(b), distances from the normal condition were BF014

    Table 4 Classification accuracy

    Fig.5 Illustration of fault classification with Case 1

    Table 5 A comparative study of previous work on bearing fault diagnosis published in reference

    Note: Improved multi-scale fuzzy entropy (IMFE); hidden Markov model (HMM); support vector machine-binary tree (SVM-BT).

    4.2 Case 2: Run-to-Failure Bearings

    The data were obtained from Intelligent Maintenance System (IMS), University of Cincinnati. Four bearings were tested at one time on the same shaft in the bearing test rig as shown in Fig.6. The shaft is 2 000 r/min and a radial load of 6 000 LB is forced on the shaft with a spring mechanism. The data sampling rate is 20 kHz with the data length 20 480 points. Three groups of tests were conducted in the experiment in total and Ref. [28] can provide more details. Table 6 presents four types of fault bearings and the typical waveforms are shown in Fig.7. One hundred samples were extracted from each bearing fault condition, and 400 samples in whole were generated with lengthN=20 480. Then MPE values were computed for each sample.

    Fig.6 Illustration of the test rig

    Following the same abovementioned procedure, samples with numbers 10, 20, 30 were utilized as reference, and the rest were used for verification. The classification accuracies were all 100% with 10, 20, 30 samples, and the results are illustrated in Fig.8. A comparison of previous work considering the same four conditions as normal, BF, IRF, and ORF is listed in Table 7, which shows the advantage of the proposed method.

    Table 6 Description of the bearing fault group

    Fig.7 Waveforms of four different conditions

    Fig.8 Illustration of fault classification with Case 2

    Table7Acomparativestudyofpreviousworkonbearingfaultdiagnosispublishedinreference

    FeatureextractionFeatureselectionClassifierAccuracy(%)Ref.Multi-domainPCAKNN93.70[29]Multi-domainLNPPKNN96.88[29]Multi-domainLDAKNN98.44[29]Multi-domainSLNPPKNN98.44[29]Multi-domainILEWNN100.00[30]MPEN/AMSD100.00Thispaper

    Note: Local and nonlocal preserving projection (LNPP); supervised-learning-based local and nonlocal preserving projection (SLNPP); linear discriminant analysis (LDA); wavelet neural network (WNN); improved Laplacian Eigenmaps (ILE); K-nearest neighbor algorithm (KNN).

    The whole life of Bearing 1 in Set No. 2 with ORF was employed for the investigation of damage severity. MPE values were computed at every sample time point. The first tenth points were abandoned because they were not stable at the beginning, and the confidence value (CV) was introduced as an index to evaluate the severity. A normalization function combined the Sigmoid function with MSD is introduced as[31]

    (14)

    in which the scale parameter

    (15)

    where Mean (MSDnormal) is the average of all MSDs under normal condition, and CVprecorresponds to the Mean (MSDnormal), which was determined artificially. In this paper, the scale parameterc0=10.8 and CVpre=0.99. For comparison, additional features like RMS, kurtosis, and skewness were considered, and the corresponding CV with MPE is illustrated in Fig.9. The comparison shows that the CV with MPE only was stable and could monotonously represent the damage severity along the time.

    Fig.9 CV with MPE only and additional features

    5 Conclusions

    To fast and accurately diagnose the fault type in bearings, this paper presents a novel bearing fault diagnosis method based on MPE-MSD. From the above research, some conclusions are drawn as follows:

    1) MPE could be employed as the representative feature for fault diagnosis and MSD is an efficient and simple approach for classification without the set-up or optimization of the tuning parameters.

    2) Two experiments were performed to verify the feasibility of the proposed method. In comparison with previous studies, high accuracies were obtained in fault diagnosis for different conditions without feature selection.

    3) A normalization function combining the Sigmoid function with MSD is proposed for continuous damage severity without considering full fault dataset. The degradation path shows stability and monotonicity with MPE, compared with the conditions considering MPE, RMS, kurtosis, and skewness.

    国产黄频视频在线观看| 欧美+日韩+精品| 在线 av 中文字幕| 国产国拍精品亚洲av在线观看| 日本黄大片高清| 男女无遮挡免费网站观看| 少妇人妻精品综合一区二区| 少妇裸体淫交视频免费看高清| 男女边摸边吃奶| 欧美老熟妇乱子伦牲交| 嘟嘟电影网在线观看| 久久 成人 亚洲| 久久久久久久久大av| 日本-黄色视频高清免费观看| 亚洲国产精品国产精品| 国产精品嫩草影院av在线观看| 欧美少妇被猛烈插入视频| 日韩中字成人| 99视频精品全部免费 在线| 亚洲三级黄色毛片| 日本黄色片子视频| 六月丁香七月| 一级片'在线观看视频| 亚洲精品日韩在线中文字幕| 亚洲最大成人中文| 又爽又黄a免费视频| 黄色视频在线播放观看不卡| 亚洲精品久久午夜乱码| 黑人高潮一二区| 中文字幕av成人在线电影| 另类亚洲欧美激情| 亚洲人成网站在线播| 亚洲国产精品成人久久小说| 亚洲色图综合在线观看| 久久久成人免费电影| 天堂中文最新版在线下载| 亚洲不卡免费看| 丰满迷人的少妇在线观看| 自拍偷自拍亚洲精品老妇| av福利片在线观看| 中国美白少妇内射xxxbb| 尾随美女入室| 国产av精品麻豆| 熟女av电影| 精品一区二区三卡| 久久久久久久大尺度免费视频| 国产在视频线精品| 美女xxoo啪啪120秒动态图| av免费在线看不卡| 日本午夜av视频| 亚洲第一区二区三区不卡| 在线精品无人区一区二区三 | 国产一区二区三区综合在线观看 | 内地一区二区视频在线| 99热6这里只有精品| 午夜福利视频精品| 亚洲国产精品一区三区| 免费不卡的大黄色大毛片视频在线观看| 国产黄频视频在线观看| 成人毛片60女人毛片免费| 亚洲国产日韩一区二区| 秋霞伦理黄片| 久久久久久久久久久丰满| 在线免费观看不下载黄p国产| 欧美成人a在线观看| 亚洲精品国产色婷婷电影| 色婷婷av一区二区三区视频| 91aial.com中文字幕在线观看| 夜夜看夜夜爽夜夜摸| 高清视频免费观看一区二区| 久久久久久久亚洲中文字幕| 一级av片app| 99热全是精品| 99久久精品国产国产毛片| 一区二区三区四区激情视频| 欧美另类一区| 日韩大片免费观看网站| 最黄视频免费看| 午夜福利高清视频| 黑丝袜美女国产一区| 亚洲在久久综合| 日韩欧美一区视频在线观看 | 一级av片app| 日韩人妻高清精品专区| 久久久久久久久久人人人人人人| 亚洲精品一二三| 午夜视频国产福利| 新久久久久国产一级毛片| 欧美丝袜亚洲另类| av不卡在线播放| 欧美成人a在线观看| 国产精品女同一区二区软件| 亚洲一级一片aⅴ在线观看| 国产真实伦视频高清在线观看| 国产精品一区二区性色av| 国产在线免费精品| 亚洲欧美成人精品一区二区| 免费黄频网站在线观看国产| 熟女人妻精品中文字幕| 亚洲综合精品二区| 日本av手机在线免费观看| 亚洲欧洲日产国产| 久久久久精品久久久久真实原创| 国产免费一级a男人的天堂| 大陆偷拍与自拍| 成人高潮视频无遮挡免费网站| 在线观看一区二区三区激情| 色视频www国产| 中文字幕免费在线视频6| 日韩一区二区视频免费看| 波野结衣二区三区在线| 午夜日本视频在线| 看非洲黑人一级黄片| 精品午夜福利在线看| 青青草视频在线视频观看| 欧美zozozo另类| 日日摸夜夜添夜夜爱| av在线播放精品| 最近中文字幕高清免费大全6| 2021少妇久久久久久久久久久| 午夜福利影视在线免费观看| 欧美成人精品欧美一级黄| 联通29元200g的流量卡| 久久久久久久久久成人| 国产av精品麻豆| 国产精品国产三级专区第一集| 一区二区av电影网| 少妇的逼好多水| 91久久精品国产一区二区成人| 男人爽女人下面视频在线观看| 女性被躁到高潮视频| 中文字幕亚洲精品专区| 国产午夜精品一二区理论片| 成人免费观看视频高清| 国产免费一级a男人的天堂| 成人黄色视频免费在线看| 各种免费的搞黄视频| 人人妻人人添人人爽欧美一区卜 | 久久久久性生活片| 亚洲第一av免费看| 五月开心婷婷网| 亚洲精品自拍成人| 精品国产三级普通话版| a级毛片免费高清观看在线播放| 国产精品久久久久久av不卡| 国产精品99久久99久久久不卡 | 国产精品不卡视频一区二区| 亚洲av欧美aⅴ国产| 免费播放大片免费观看视频在线观看| 九色成人免费人妻av| 久久99热这里只频精品6学生| 大香蕉97超碰在线| 18禁动态无遮挡网站| 国产欧美日韩精品一区二区| 日本黄色日本黄色录像| 91久久精品电影网| 高清日韩中文字幕在线| 丰满迷人的少妇在线观看| 亚洲国产色片| 久久国产精品男人的天堂亚洲 | 久久久久久久久久人人人人人人| 2022亚洲国产成人精品| 国产男女内射视频| 下体分泌物呈黄色| av在线老鸭窝| 九草在线视频观看| 欧美日韩综合久久久久久| 久久国产精品大桥未久av | 免费av不卡在线播放| 你懂的网址亚洲精品在线观看| 久久精品久久久久久噜噜老黄| 大片电影免费在线观看免费| 在线观看免费高清a一片| 在线 av 中文字幕| av在线老鸭窝| 99精国产麻豆久久婷婷| freevideosex欧美| 国产成人免费观看mmmm| 在线观看美女被高潮喷水网站| 天天躁日日操中文字幕| 啦啦啦啦在线视频资源| 丝袜喷水一区| 性高湖久久久久久久久免费观看| 男的添女的下面高潮视频| 亚洲欧美日韩无卡精品| 久久99热这里只有精品18| 国产综合精华液| 熟女人妻精品中文字幕| 直男gayav资源| 国产毛片在线视频| 国产高潮美女av| 亚洲av欧美aⅴ国产| 少妇被粗大猛烈的视频| 最近最新中文字幕免费大全7| 青春草亚洲视频在线观看| 亚洲国产最新在线播放| 51国产日韩欧美| 天堂俺去俺来也www色官网| 亚洲精品乱码久久久v下载方式| 国产高清三级在线| 亚洲精品一二三| 在线天堂最新版资源| 少妇被粗大猛烈的视频| 麻豆国产97在线/欧美| 天美传媒精品一区二区| 亚洲人与动物交配视频| 国产日韩欧美在线精品| 国产成人freesex在线| 午夜福利高清视频| 一级毛片 在线播放| 久久久久久久精品精品| 下体分泌物呈黄色| tube8黄色片| 亚洲中文av在线| 午夜日本视频在线| 日韩av免费高清视频| av卡一久久| 欧美日韩亚洲高清精品| 亚洲欧美成人精品一区二区| 亚洲欧美精品自产自拍| 一区二区av电影网| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲网站| 中文字幕久久专区| 国产精品一区二区在线观看99| 免费人妻精品一区二区三区视频| 啦啦啦在线观看免费高清www| 日本一二三区视频观看| 午夜激情福利司机影院| 精品亚洲成a人片在线观看 | 十八禁网站网址无遮挡 | 熟女人妻精品中文字幕| 精品99又大又爽又粗少妇毛片| 亚洲无线观看免费| 亚洲精品亚洲一区二区| 少妇的逼好多水| 中文字幕精品免费在线观看视频 | 日韩一区二区视频免费看| 国产av精品麻豆| 亚洲伊人久久精品综合| 午夜免费鲁丝| 丝袜脚勾引网站| 欧美一级a爱片免费观看看| 一个人看的www免费观看视频| 国产亚洲5aaaaa淫片| 色婷婷av一区二区三区视频| 97热精品久久久久久| 国产深夜福利视频在线观看| .国产精品久久| xxx大片免费视频| 美女内射精品一级片tv| 18禁动态无遮挡网站| 亚洲在久久综合| 亚洲激情五月婷婷啪啪| 有码 亚洲区| 2021少妇久久久久久久久久久| 一级爰片在线观看| 你懂的网址亚洲精品在线观看| 一级毛片 在线播放| av不卡在线播放| 高清毛片免费看| 色综合色国产| 亚洲精品色激情综合| 国产 精品1| 涩涩av久久男人的天堂| 三级经典国产精品| 91aial.com中文字幕在线观看| 各种免费的搞黄视频| 午夜免费鲁丝| 免费看av在线观看网站| 精品少妇黑人巨大在线播放| 91aial.com中文字幕在线观看| 人人妻人人添人人爽欧美一区卜 | 亚洲国产毛片av蜜桃av| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| 热99国产精品久久久久久7| 国产乱人偷精品视频| 亚洲经典国产精华液单| 国内揄拍国产精品人妻在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲av不卡在线观看| 国产欧美亚洲国产| 亚洲美女视频黄频| av国产久精品久网站免费入址| 欧美日韩亚洲高清精品| 久久久欧美国产精品| 欧美精品人与动牲交sv欧美| 一级毛片电影观看| 51国产日韩欧美| 男女无遮挡免费网站观看| 久久人妻熟女aⅴ| 18禁裸乳无遮挡动漫免费视频| 国模一区二区三区四区视频| 蜜桃亚洲精品一区二区三区| 赤兔流量卡办理| 欧美精品一区二区大全| 视频区图区小说| 18禁在线播放成人免费| 久久久久精品性色| 欧美bdsm另类| 我的女老师完整版在线观看| 男男h啪啪无遮挡| 免费黄网站久久成人精品| 99re6热这里在线精品视频| 自拍偷自拍亚洲精品老妇| 日韩强制内射视频| 最近2019中文字幕mv第一页| 国产淫语在线视频| 亚洲av日韩在线播放| 色吧在线观看| 插阴视频在线观看视频| av线在线观看网站| 亚洲性久久影院| av在线观看视频网站免费| 日韩av免费高清视频| av女优亚洲男人天堂| tube8黄色片| 免费观看av网站的网址| 99久久中文字幕三级久久日本| 久久久久久久精品精品| 久久久久性生活片| 国产精品国产av在线观看| 成人毛片60女人毛片免费| 亚洲一级一片aⅴ在线观看| 日本av手机在线免费观看| 国产精品久久久久久久久免| 欧美+日韩+精品| 中文欧美无线码| 97热精品久久久久久| 在线观看人妻少妇| 插逼视频在线观看| 久久久久久久久大av| 久久午夜福利片| 狠狠精品人妻久久久久久综合| 日韩国内少妇激情av| 91aial.com中文字幕在线观看| 中国国产av一级| 亚洲欧美日韩另类电影网站 | 国产在线免费精品| 国产一区二区三区av在线| 欧美性感艳星| 麻豆精品久久久久久蜜桃| 97超碰精品成人国产| 2022亚洲国产成人精品| 免费av中文字幕在线| 国产淫片久久久久久久久| 国产高清三级在线| 日本黄大片高清| 中文精品一卡2卡3卡4更新| 午夜老司机福利剧场| 极品少妇高潮喷水抽搐| 成人免费观看视频高清| 一区二区av电影网| 精品久久久久久久末码| 亚洲精品乱码久久久v下载方式| 久久久欧美国产精品| 深夜a级毛片| 嫩草影院新地址| 国产精品久久久久久久久免| 99国产精品免费福利视频| 亚洲成人中文字幕在线播放| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线 | 成人影院久久| 免费黄色在线免费观看| 亚洲精华国产精华液的使用体验| 永久免费av网站大全| 一边亲一边摸免费视频| a 毛片基地| 欧美老熟妇乱子伦牲交| 五月伊人婷婷丁香| 久久97久久精品| 久久久久久人妻| 国产成人精品福利久久| 欧美bdsm另类| 久久午夜福利片| 精品久久久噜噜| 日韩av在线免费看完整版不卡| 黑人猛操日本美女一级片| 韩国av在线不卡| 亚洲久久久国产精品| 国产伦精品一区二区三区视频9| 最后的刺客免费高清国语| 国产色婷婷99| 国产永久视频网站| 观看美女的网站| 如何舔出高潮| 国产精品一区二区在线观看99| 国产成人91sexporn| 国产 精品1| 尾随美女入室| 久久精品久久久久久噜噜老黄| 成人无遮挡网站| av在线app专区| 国产av码专区亚洲av| 自拍欧美九色日韩亚洲蝌蚪91 | 在线免费十八禁| 成人美女网站在线观看视频| 免费高清在线观看视频在线观看| 少妇裸体淫交视频免费看高清| 亚洲av免费高清在线观看| 免费人成在线观看视频色| 免费人妻精品一区二区三区视频| 国产男人的电影天堂91| 日本黄色片子视频| av天堂中文字幕网| 亚洲国产欧美人成| 国产无遮挡羞羞视频在线观看| 国产精品.久久久| xxx大片免费视频| 在线免费观看不下载黄p国产| 日韩国内少妇激情av| 一级毛片 在线播放| 亚洲人与动物交配视频| h日本视频在线播放| 久久久国产一区二区| 热re99久久精品国产66热6| 国产在线免费精品| 亚洲一级一片aⅴ在线观看| 高清欧美精品videossex| 成年女人在线观看亚洲视频| 国产精品国产三级专区第一集| 综合色丁香网| av线在线观看网站| 纵有疾风起免费观看全集完整版| 在线观看国产h片| 久久精品国产亚洲av天美| 国产免费福利视频在线观看| 国产高清有码在线观看视频| tube8黄色片| 中文欧美无线码| 国产成人一区二区在线| 国产精品一区二区在线观看99| 综合色丁香网| 久久这里有精品视频免费| 最近最新中文字幕免费大全7| 国产欧美日韩一区二区三区在线 | videossex国产| 人妻 亚洲 视频| 观看av在线不卡| 五月天丁香电影| 九草在线视频观看| 最近最新中文字幕免费大全7| 日韩一区二区三区影片| 免费看不卡的av| 欧美精品人与动牲交sv欧美| 国产免费视频播放在线视频| 亚洲人成网站在线观看播放| 26uuu在线亚洲综合色| 18禁裸乳无遮挡免费网站照片| 亚洲性久久影院| 亚洲av福利一区| 欧美 日韩 精品 国产| 一级毛片黄色毛片免费观看视频| 国产高清国产精品国产三级 | 蜜臀久久99精品久久宅男| 亚洲婷婷狠狠爱综合网| 精品一品国产午夜福利视频| 婷婷色综合大香蕉| 丝袜脚勾引网站| 国产精品.久久久| 97在线视频观看| 国产大屁股一区二区在线视频| 黄片wwwwww| 51国产日韩欧美| 全区人妻精品视频| 国产精品女同一区二区软件| 97在线人人人人妻| 91aial.com中文字幕在线观看| 18禁裸乳无遮挡免费网站照片| 九草在线视频观看| 欧美国产精品一级二级三级 | 青春草国产在线视频| 永久网站在线| 欧美zozozo另类| h视频一区二区三区| 免费播放大片免费观看视频在线观看| 水蜜桃什么品种好| 国产熟女欧美一区二区| 偷拍熟女少妇极品色| 欧美一级a爱片免费观看看| 国产精品女同一区二区软件| 午夜福利影视在线免费观看| 亚洲性久久影院| 97在线视频观看| 日韩视频在线欧美| 最近最新中文字幕免费大全7| 99久久人妻综合| 日韩欧美 国产精品| 久久国产亚洲av麻豆专区| 国产成人午夜福利电影在线观看| 我的女老师完整版在线观看| 热re99久久精品国产66热6| 高清黄色对白视频在线免费看 | 在线观看三级黄色| 欧美极品一区二区三区四区| 日本av免费视频播放| 五月天丁香电影| 国产精品一区二区在线观看99| 久久久久人妻精品一区果冻| 99久久精品一区二区三区| 日韩大片免费观看网站| 晚上一个人看的免费电影| 看非洲黑人一级黄片| 国产精品伦人一区二区| 看非洲黑人一级黄片| 国产91av在线免费观看| 日韩人妻高清精品专区| 18禁在线无遮挡免费观看视频| 女性生殖器流出的白浆| 最近中文字幕高清免费大全6| 亚洲性久久影院| 国产亚洲欧美精品永久| 少妇熟女欧美另类| 夜夜看夜夜爽夜夜摸| 国产免费一区二区三区四区乱码| 人妻 亚洲 视频| 亚洲一级一片aⅴ在线观看| 蜜桃久久精品国产亚洲av| 五月伊人婷婷丁香| 如何舔出高潮| 精品久久久久久久久亚洲| 妹子高潮喷水视频| 男人舔奶头视频| 熟女人妻精品中文字幕| 22中文网久久字幕| 久久久久国产精品人妻一区二区| 国产永久视频网站| 亚洲欧美日韩另类电影网站 | 在线观看三级黄色| 少妇精品久久久久久久| 亚洲一级一片aⅴ在线观看| 老女人水多毛片| 亚洲自偷自拍三级| 国产成人a区在线观看| 亚州av有码| 亚洲av成人精品一区久久| 国产精品国产三级国产av玫瑰| 女的被弄到高潮叫床怎么办| 2022亚洲国产成人精品| 少妇人妻精品综合一区二区| 身体一侧抽搐| 能在线免费看毛片的网站| 色网站视频免费| 高清欧美精品videossex| 高清午夜精品一区二区三区| 天天躁日日操中文字幕| 少妇的逼水好多| 97在线视频观看| 80岁老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频 | 黄色一级大片看看| 成人漫画全彩无遮挡| 国产精品国产av在线观看| 国产精品欧美亚洲77777| 欧美人与善性xxx| 91精品伊人久久大香线蕉| 亚洲成色77777| 嫩草影院入口| 成人亚洲精品一区在线观看 | 久久久久久久国产电影| 久久精品国产自在天天线| 91精品国产九色| 国产一区二区三区av在线| 亚洲精品456在线播放app| 久久99蜜桃精品久久| 天堂俺去俺来也www色官网| 2022亚洲国产成人精品| 午夜福利高清视频| 午夜老司机福利剧场| 插逼视频在线观看| 精品久久久精品久久久| 日韩欧美一区视频在线观看 | 最近最新中文字幕免费大全7| 伊人久久国产一区二区| 亚洲国产精品专区欧美| 国产日韩欧美亚洲二区| av又黄又爽大尺度在线免费看| 少妇精品久久久久久久| 精品午夜福利在线看| 久久国产精品男人的天堂亚洲 | 国产成人精品婷婷| 亚洲丝袜综合中文字幕| 国产精品欧美亚洲77777| 80岁老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 赤兔流量卡办理| 舔av片在线| 日韩成人伦理影院| 免费大片18禁| 精品少妇黑人巨大在线播放| 天堂8中文在线网| 看免费成人av毛片| 欧美成人一区二区免费高清观看| 99精国产麻豆久久婷婷| 亚洲综合精品二区| 亚洲欧美精品自产自拍| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 免费在线观看成人毛片| 亚洲真实伦在线观看| 99热全是精品| 欧美日韩在线观看h| 亚洲国产成人一精品久久久| 美女国产视频在线观看| 在线观看人妻少妇| av又黄又爽大尺度在线免费看| 国产日韩欧美在线精品| 中国三级夫妇交换| 国产成人a区在线观看| 精品久久国产蜜桃| 国产在线男女| 日本猛色少妇xxxxx猛交久久| 97超碰精品成人国产|