• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    雙原子分子激發(fā)態(tài)勢能的自旋相關(guān)局域Hartree-Fock密度泛函理論方法

    2020-03-11 02:55:22周忠源
    關(guān)鍵詞:喬治亞州激發(fā)態(tài)局域

    周忠源

    (喬治亞州大學(xué)系統(tǒng)董事會研究與政策分析局,美國)

    1 Introduction

    Density functional theoretical(DFT)method[1,2]has been widely applied to many areas in theoretical physics and chemistry[3,4]due to its computational simplicity in dealing with systems with a large number of electrons.The basis of the DFT method is Kohn-Sham(KS)equation[2]together with the key part of exchange-correlation(XC)potential[5].Traditional XC potentials,such as local density approximation(LDA)[3,4]and generalized gradient approximation(GGA)[6-8],are obtained by using uniform electron gas.They cannot be directly applied to the calculation of excited -state energy,especially highly excited-state energy,because of two reasons:(1)Only a few bound unoccupied states and no Rydberg states are predicted when using these potentials because they fall off too fast and do not have correct asymptotic behavior;(2)The calculated energies of the excited states with different symmetries may have the same value because these potentials are independent of symmetries such as electron orbital angular momentum and spin.

    Actually,the eigenvalues of the KS equation are not rigorously the excited-state energies because the DFT method itself is a ground -state theory.However,the eigenvalues can serve as good zero-order excited -state energies provided a high-quality XCpotential is used in solving the KS equation.A number of theoretical methods have been developed along this direction.In particular,a DFT method[9,10]has been proposed based on a localized Hartree-Fock(LHF)exchange(X)potential.The LHF exchange potential is derived under the assumption that the X-only KS determinant is equal to the Hartree-Fock(HF)determinant.It only uses occupied orbitals and is dependent on the orbital symmetry.This method has been successfully applied to the ground -state calculations of atomic and molecular systems[9].

    Recently,we presented a spin -dependent localized Hartree-Fock(SLHF)DFT approach[11]for the calculation of highly and multiply excited states of atomic systems based on the LHF DFT method[9,10]and Slater's diagonal sum rule[12].In this approach,the exchange potential is an exactly nonvariational SLHF exchange potential obtained in a similar way as the LHF potential by assuming that for excited states the X-only KS determinant is also equal to the HF determinant.This approach has been successfully used to accurately calculate the energies of multiply excited states of valence electrons of atomic systems[11],inner-shell excited states of close-shell atomic systems[13],and inner-shell excited states of open-shell atomic systems[14].

    In this paper,we extend the SLHF DFT approach to molecular systems and apply the approach to the calculation of potential energies of excited states of diatomic molecular systemsand H2.Because diatomic molecules are cylindrically symmetric the KS equation is transformed to the form in prolate spheroidal coordinates,in which the singularities of electron -nuclei interaction potential at two nuclei are taken good care of.Due to the singularity at the origin and longrange nature of the Coulomb potential,we use the generalized pseudospectral(GPS)method[15]to discretize the spatial coordinates and optimize the solution of the KS equation.The total potential energies ofand H2obtained from the X-only SLHF DFT calculations are surprisingly close to those of the Exact and Hartree-Fock(HF)methods.The total potential energies from the XC SLHF DFT calculations are in overall agreement with the available theoretical results at equilibrium internuclear distance.The correlation potential and energy functionals of widely-used traditional approximations,such as Lee,Yang and Parr(LYP)[7]and Perdew and Wang(PW)[8],are explored.It is shown that the approximations underestimate the correlation energy at large internuclear distance.

    2 Theoretical methodology

    2.1 SLHF DFT approach for molecular systems

    The spin-orbitalφjσ(r)of an electron j with spin σ(σ=αfor spin-up and β for spin-down)is determined by Kohn-Sham(KS)equation(in a.u.)

    where,the local effective potential VSσ(r)=Vext(r)+VH(r)+Vxcσ(r)consists of three parts:external potential Vext(r),Coulomb electrostatic potential between electrons VH(r),and exchange-correlation potential Vxcσ(r).The total electron number of the molecule N=∑σNσ=Nα+Nβ.

    For a molecular system with M nuclei(Zi,Ri)(i=1,2,…,M),the external potential Vext(r)is given by

    The Coulomb electrostatic potential between electrons is given by

    where,the total electron densityρ(r)=ρα(r)+ρβ(r)and the spin -dependent electron density ρσ(r)is defined by

    hereνjσis occupied number of electron on the spin -orbitalφjσ(r).

    The exchange correlation potential Vxcσ(r)=Vxσ(r)+Vcσ(r)can be separated into exchange potential Vxσ(r)and correlation potential Vcσ(r).The exchange potential is the SLHF exchange potential given by[11]

    The exchange interaction only occurs among electrons with same spin.When(r)=0 in Eq.(5),the SLHF exchange potential downgrades to the Slater potential of the HF method[16].Because(r)in Eq.(7)depends on,the SLHF exchange potentialhas to be computed self-consistently.The SLHF exchange potential determined by Eqs.(5)-(9)has an arbitrary additive constant.This constant is computed by demanding the highest-occupied-spin-orbital Nσof spin σsatisfy[11]〈φNσσ||φNσσ〉=0.

    The correlation potential Vcσ(r)can be estimated from several approaches.In this work,a widelyused LYP correlation potential[7]is used.The feasibility and accuracy of correlation potentials from other approximations,such as PW correlation potential[8],are also explored.

    The single Slater determinant for a specific state of an Nσ-electron molecule can be constructed under the single determinant approximation byΦσ(r).The total energy is a sum of kinetic-energy Ek,external-field energy Eext,Hartree energy(Classical Coulomb energy)EH,exchange energy Ex,and correlation energy Ec.They are evaluated by

    and the correlation energy Ecis computed by using the LYP approximation[7].

    2.2 KS equation in prolate spheroidal coordinates for diatomic molecules

    For a diatomic molecule with two nuclei(Z1,R1)and(Z2,R2),the external potential Vext(r)given by Eq.(2)is reduced to

    This potential has two singularities at R1and R2.The diatomic molecule has a cylindrical symmetry.It can be very well represented in prolate spherical coordinates(η,θ,φ)(0 ≤η<∞,0 ≤θ<π,0 ≤φ<2π).Most importantly,the two singularities can be taken good are of.The relation between the prolate spherical coordinates and Cartesian coordinates(x,y,z)is x=a sin hηsinθcosφ,y=a sin hηsinθsinφ,z=a cos hηcosθ,a is constant.Due to the cylindrically symmetric property,the spin -orbitalφjσ(η,θ,φ)depends on the angleφthrough the function fm(φ)(m=0,±1,±2…)and thus can be written as

    The corresponding spin -dependent density(independent ofφ)is given by

    Here the quantum number m measures the component of angular momentum m?along the molecule axis.The orbital energy only depends on λ=|m|and thus is double degenerate(corresponding to m=±λ)except forλ=0.

    The orbitals are denoted byσ,π,δ,φ,… forλ=|m|=0,1,2,3,….For a homonuclear diatomic molecule the corresponding spin -orbitals are completely denoted byσg,σu,πg(shù),πu…,where the subscripts g(even parity)and u(odd parity)represent that the spin -orbital is either unchanged or merely changed in sign when an inversion is applied to the molecule with respect to the midpoint between the nuclei(the center of the molecule):φjσ(r)=φjσ(-r)orφjσ(r)=-φjσ(-r).In the prolate spheroidal coordinates the g orbitals and u orbitals satisfy respectively

    This condition is used to identify a specified orbital from the calculated spin-orbitals.

    The molecular states are denoted by similar symbols but capital letters.For molecules with the total orbital angular momentum Λ?around the symmetry axis,its states are denoted byΣ,Π,Δ,Φ,… for Λ=0,1,2,3,….Furthermore,there are two kind ofΣstates,Σ+and Σ-,corresponding to the wave function does(-)or does not(+)change sign on reflection in a plane passing through the nuclei.So the molecular states are denoted by,,Πg,Πu,Δg,Δu,Φg,Φuand so on.The state symbols are also prefixed by a multiplicity superscript2S+1 for the resultant spin S(S=0,1/2,1,3/2,…).For example,the ground-state and an excited-state electron configurations and molecular states of H2is1Σand 1σg1Π.For a diatomic molecule with internuclear distance R=2a,applying Eq.(15)to KS equation Eq.(1),one has

    where,the expansion of1/|r-r'|in term of the first kind of associated Legendre polynomialand the second kind of associated Legendre polynomialis used,r=(η,θ,φ),r′=(η',θ',φ'),η<=min(η,η')and η>=max(η,η'),dτηθ=a3(cosh2η-cos2θ)sinhηsinθdηdθand dr=dτ=dτηθdφ.

    From Eqs.(5)-(9),the exchange potential is computed by

    where,the Slater potential is given by

    The correlation potential Vcσ(η,θ)is estimated from the one given by LYP approximation[7].

    The boundary conditions for solving Eq.(18)for m=even and odd are given by

    and

    respectively.For both m=even and odd

    2.3 Total energy of the diatomic molecule

    From Eqs.(10)-(13),after obtained the 2D spin-orbitals,the total energy is computed by E=Ek+EH+Ex+Ec.Here the kinetic energy is

    and the correlation energy is estimated from the one given by LYP approximation[7].

    It is interesting to check the contributions from both Hartree energy and exchange energy to the selfinteraction energy.By setting n'm'σ'=n″m″σ″=nmσin Eq.(34)the contribution from Hartree energy is

    Similarly,by setting n'm'=n″m″=nm in Eq.(35)the contribution from the exchange energy equals to-SE.As a result,the contributions from Hartree energy and exchange energy completely cancel out each other.Thus SLHF DFT approach is completely selfinteraction free.

    3 Numerical algorithm and programming

    3.1 Generalized pseudospectral method

    On(-1 ≤x≤1,-1 ≤y≤1),a function F(x,y)is approximated by an Nx×Ny-order polynomial FNxNy(x,y)constructed by cardinal functions gi(x)and gj(y)

    where,F(xiàn)ij=F(xi,yj)=FNxNy(xi,yj).In the generalized Legendre-Gauss-Lobatto pseudospectral method,the cardinal function is given by

    where,PNzandare Legendre polynomial and its first derivative,respectively.The collocation points zk(k=0,1,…,Nz)are determined by(zk)=0 and gk(zk')=δkk'.

    To use the pseudospectral method above to solve Eq.(18),the spin -orbital is mapped from{(η,θ),0 ≤η<ηmax,0 ≤θ≤π)} to{(x,y),-1≤x≤1,-1 ≤y≤1 )} by using mapping functions

    where,xm=2L/ηmax.The mapping parameter L can be used to adjust the distribution of the collocation points and thus optimize the solution of the KS equation.

    3.2 Symmetric matrix eigenvalue equation

    To acquire a symmetric matrix eigenvalue equation we apply variational method to the one-electron energy functional under the boundary conditions Eqs.(29)-(31)instead of directly discretizing Eq.(18).From Eq.(1),using Eq.(15)and ?φin the prolate spheroidal coordinates,the one-electron energy functional is calculated by(we drop the subscripts of the state in this subsection for convenience)

    Using the variational method ?G(ψ)/?ψ*=0,the symmetric matrix eigenvalue equation is given by

    where,μ=e and o for m=even and odd,respectively.The coefficients for m=even and odd are listed in List 1.where

    List 1 The coefficients used in Eq.(46).

    Since all the Akk'coefficients is symmetric with respect to k?k',the coefficient matrix X and Y are symmetric.Using the eigenvectorχijobtained from the matrix eigenvalue equation(46),the electron orbitalψis calculated by

    3.3 Potential and energy

    In the matrix eigenvalue equation,the potential matrix elements Vij=vSσ(i,j)are calculated slefconsistently with eigenvectors χij.The external potential Eq.(20)is calculated by

    The classical Coulomb potential Eq.(21)is computed by

    where

    The exchange potential given by Eq.(22)is

    The total effective potential Eq.(19)is now computed by

    where,Vcσis correlation potential given by the LYP approximation[7].

    Once the eigenvectorsχijare obtained,the total energy of the molecular system is calculated by

    where,the kinetic energy Ek,external energy Eext,Hartree energy EH,exchange energy Exare calculated by

    respectively,and the correlation energy Ecis calculated by the LYPapproximation[7].In Eq.(64),Tnλσis calculated by

    where,the matrix elements used in Eq.(68)are listed in List 2.

    List 2 The matrix elements used in Eq.(68).

    4 Resultsand discussion

    4.1 Potential energy of

    4.1.1 Potentialenergy from‘Exact’ calculation

    Table 1 Potential energy of ground state and excited states from the‘Exact' and SLHF DFT calculations at R=2(a.u.).

    Table 1 Potential energy of ground state and excited states from the‘Exact' and SLHF DFT calculations at R=2(a.u.).

    4.1.2 Potentialenergy fromSLHFDFTcalculation

    In Fig.1,the potential energy curves from SLHF DFT calculations are plotted together with the‘Exact' results for some lower-lyingσstates.It is shown again that in the internuclear distances displayed the potential energy curves from SLHF DFT calculations are in very good agreement with the‘Exact' results.This conclusion also holds for other excited states such asπ,δ,φ,…,demonstrating that the SLHF DFT approach using the SLHF potential as exchange potential is very accurate and feasible in the calculation of the potential energies ofexcited states.

    Fig.1 Potential energies of ground state 1σgand excited states 1σu,2σgand 2σufrom the‘Exact' and SLHF DFT calculations.

    The SLHF DFT approach is as accurate as the‘Exact' method in the potential energy calculation is because the SLHF DFT approach is self-interaction free.To check this,we calculate various parts of the total potential energy for 1σgat R=2(a.u.).The results are given in Table 2.It is clearly shown that the total self-energy is zero because the contributions from the exchange energy and Hartree energy cancel out each other although none of them are zero.Thus the total potential energy is a sum of kinetic energy and external energy,which is just the results of the‘Exact' calculation.

    Table 2 Various parts of the total potential energy of 1σgat R=2(a.u.).

    Table 2 Various parts of the total potential energy of 1σgat R=2(a.u.).

    4.2 X-only potential energy of H2

    4.2.1 Groundstate

    H2is a simplest molecular system(with the equilibrium internuclear distance R≈1.4 a.u.)in which the electron correlation exists.A complete computation of the total potential energy should include the correlation energy.However,to explore the accuracy of the SLHF potential as exchange potential in DFT calculation of more than one electron molecular systems,we first perform X-only SLHF DFT calculation by neglecting the correlation effect and compare the results with those of Hartree-Fock(HF)method[18].To that end,we include every parts in the effective potential but correlation in the calculation of H2energy.The calculated results are listed in Table 3 together with those from HF method[18]for the ground state1Σof H2at different internuclear distances.It is shown that the results are in very good agreement with those of HF method for the given internuclear distances,demonstrating that the SLHF potential as an exchange potential is also very accurate in the DFT calculation of H2ground state.

    Table 3 The negative values of the X-only potential energies(in a.u.)for H2ground state Σat different internuclear distances.

    Table 3 The negative values of the X-only potential energies(in a.u.)for H2ground state Σat different internuclear distances.

    a:this work,b:HF method[18].

    4.2.2 Excitedstates

    Success of the SLHF DFT calculation of the ground state of H2and excited states of atomic systems[11,13,14]make it confident to extend the SLHF DFT approach to the calculation of X-only potential energies of H2excited states.Systematic and accurate potential energy curves of H2excited states are useful and helpful to basic theoretical research and experimental investigations.The potential energy depends on electron spin λ,electron symmetries(g,u),and total spin S=∑si.The calculated X-only potential energies of H2ground state 11Σand singly excited states1σg1σu1Σand3Σare shown in Fig.2.The ground state potential energy curve is very close to the results of HF method[18]at available internuclear distances,as shown in Table 1.The potential energy curve of 1σg1σu1Σis a weak bound -state potential energy curve which can only hold a very limited number of bound states.While the potential energy curve of 1σg1σu3Σis a repulsive potential that does not hold any bound state.

    In Fig.3,the X-only potential energy curves of H2singly excited states1σg2σg1Σand 1σg2σu1Σ and3Σare plotted.All the three are bound -state potential energy curves.The deeper potential energy curve is the one of 1σg2σg1Σand the shallower one is that of 1σg2σu1Σ.

    Fig.2 X-only potential energies of H2ground state 1Σand singly excited states 1σg1σu1Σ and3Σ.

    Fig.3 X-only potential energies of H2singly excitedstates1σg2σg1Σand 1σg2σu1Σ and 3Σ.

    The X-only potential energy curves of H2singly excited states 1σg1πu3Π and1Π,and 1σg1πg(shù)3Π and1Πare displayed in Fig.4.These potential energy curves are also bound -state potential energy curves.The potential energy curve of 1σg1πg(shù)3Π is very close to that of1σg1πg(shù)1Π.The deeper potential energy curve is the one of 1σg1πu3Πand the shallower one is that of 1σg1πg(shù)1Π.

    For higher singly excited states and doubly(or multiply)excited states,their potential energy curves are either very weak bound -state ones or repulsive ones.

    4.3 Total XC potential energy of H2

    Fig.4 X-only potential energies of H2singly excitedstates1σg1πu3Πand 1Π,and 1σg1πg(shù)3Πand 1Π.

    A complete calculation of the potential energy should include electron correlation energy.In this section,we take the correlation energy into account in the energy calculation and explore the accuracy of the traditional approximations of correlation energy.For this purpose,we incorporate the correlation potential and energy functionals given by LYPapproximation[7]into Eq.(62)and Eq.(63)to estimate the correlation potential and energy when solving the matrix eigenvalue equation Eq.(46).The calculated total XC potential energies of H2ground state11Σat different internuclear distances are given in Table 4 together with the results of variational method(VM)[19].It is shown that the total XC potential energies are overall in reasonable agreement with the VM results[19]at smaller and around equilibrium internuclear distances but deviate from the VM results at larger internuclear distances.This can be seen more clearly in Fig.5,where the potential energy curves from the XC SLHF DFT calculation and the VM calculation are plotted.

    Table 4 The negative values of the total XCpotential energies(in a.u.)for H2ground state 1 Σat different internuclear distances.

    Table 4 The negative values of the total XCpotential energies(in a.u.)for H2ground state 1 Σat different internuclear distances.

    a:this work,b:variational method[19].

    Fig.5 Potential energies of H2ground state 1 1Σ from the XC SLHF DFT approach and variational method[19].

    Obviously,the discrepancy of total potential energy between the XC SLHF DFT calculation and the VM calculation is due to the underestimation of the correlation energy from the LYP approximation at larger internuclear distances.This can be seen clearly from Table 5,where the contributions of exchange and correlation to the total potential energies from various approaches,in particular,the exact exchangecorrelation treatment(EET)with an orbital dependent exchange-correlation functional[20],are given at equilibrium and larger internuclear distances.It is shown that the exchange energies from the XC SLHF DFT calculation are overall close to those from the EET[20]at both equilibrium and larger internuclear distances.The correlation energies from both the traditional LYP[7]and PW[8]approximations are roughly close to those of EET at equilibrium internuclear distance but greatly underestimate the correlation at larger internuclear distance.Therefore an accurate approach for correlation energy at large internuclear distances is also indispensable to the calculation of excited-state potential energy curves of diatomic molecular systems.

    5 Conclusions

    We proposed an SLHF DFT approach for the excited-state potential energies of molecular systems by extending the SLHF DFT approach we developed for the excited -state energies of atomic systems.This approach is applied to the calculation of the groundstate and excited state potential energies of diatomic molecular systemsand H2.The diatomic molecular system is cylindrically symmetric and its potential has two singularities.To remove the numerical difficulty of singularities we first transform the KS equation to the form in the prolate spherical coordinates.Then we applied the generalized pseudospectral method to discretize the KS equation and optimize the solution of the KS equation.Finally we solve a symmetric matrix eigenvalue equation to obtain the electron spin-orbitals and energies as well as the total potential energies.For bothand H2,the calculated Xonly potential energies from the SLHF DFT approach are in very good agreement with those of the‘Exact'and HF methods.For H2,the total XC potential energies from the SLHF DFT approach are in reasonable agreement with those of the variational method at equilibrium and small internuclear distances,but big discrepancy occurs at large internuclear distances.The reason for the big discrepancy at large internuclear distances is the underestimation of the traditional approximations to the correlation energy.To reduce the discrepancy,an accurate approximation for correlation is essential.The exact exchange-correlation treatment recently developed based on the orbital dependent exchange-correlation functional seems promising.The feasibility and accuracy of this approximation in the calculation of excited-state potential energies of diatomic molecular systems will be explored in the future.The SLHF DFT approach proposed in this work can also be directly extended to the polyatomic molecular systems once an accurate correlation potential and energy functional is available.

    Table 5 Contributions(in eV)to the exchange and correlation energies in H2at equilibrium internuclear distance R=1.401 and 5.0(a.u.).

    猜你喜歡
    喬治亞州激發(fā)態(tài)局域
    激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
    局域積分散列最近鄰查找算法
    電子測試(2018年18期)2018-11-14 02:30:34
    Environmental Impacts Engendered by Agribusiness and Related—Solutions
    PET成像的高分辨率快速局域重建算法的建立
    莧菜紅分子基態(tài)和激發(fā)態(tài)結(jié)構(gòu)與光譜性質(zhì)的量子化學(xué)研究
    基于局域波法和LSSVM的短期負(fù)荷預(yù)測
    電測與儀表(2015年7期)2015-04-09 11:39:50
    基于非正交變換的局域波束空時自適應(yīng)處理
    單鏡面附近激發(fā)態(tài)極化原子的自發(fā)輻射
    UF6振動激發(fā)態(tài)分子的振動-振動馳豫
    99热网站在线观看| 一区二区av电影网| 国产精品久久久久久精品古装| 大片电影免费在线观看免费| 日韩,欧美,国产一区二区三区| 亚洲欧美一区二区三区国产| www.熟女人妻精品国产| 51午夜福利影视在线观看| 热99国产精品久久久久久7| 女警被强在线播放| 国产熟女欧美一区二区| av在线老鸭窝| 每晚都被弄得嗷嗷叫到高潮| 一边摸一边抽搐一进一出视频| 99热国产这里只有精品6| 久久天堂一区二区三区四区| 免费黄频网站在线观看国产| 9热在线视频观看99| 欧美黄色淫秽网站| 只有这里有精品99| 中文字幕另类日韩欧美亚洲嫩草| h视频一区二区三区| 国产精品一二三区在线看| 精品高清国产在线一区| 久久久久精品国产欧美久久久 | 国精品久久久久久国模美| 99久久精品国产亚洲精品| 如日韩欧美国产精品一区二区三区| 天天操日日干夜夜撸| 欧美人与善性xxx| 日韩欧美一区视频在线观看| 欧美精品高潮呻吟av久久| 欧美日韩精品网址| av电影中文网址| 青青草视频在线视频观看| 男女边吃奶边做爰视频| 十分钟在线观看高清视频www| 香蕉国产在线看| 欧美日韩亚洲综合一区二区三区_| 日本黄色日本黄色录像| 尾随美女入室| 国产精品麻豆人妻色哟哟久久| 韩国高清视频一区二区三区| 夜夜骑夜夜射夜夜干| 国产av国产精品国产| 国产精品三级大全| 可以免费在线观看a视频的电影网站| 成人黄色视频免费在线看| 日本a在线网址| 久久精品亚洲av国产电影网| 天天躁狠狠躁夜夜躁狠狠躁| 国产高清视频在线播放一区 | 精品久久蜜臀av无| 日本vs欧美在线观看视频| 国产精品 国内视频| 大话2 男鬼变身卡| 天天添夜夜摸| 欧美日本中文国产一区发布| 久久久久久久国产电影| 久久久久网色| 国产精品久久久久成人av| 青春草亚洲视频在线观看| 精品熟女少妇八av免费久了| 中国美女看黄片| 香蕉丝袜av| 男女免费视频国产| 免费女性裸体啪啪无遮挡网站| 性高湖久久久久久久久免费观看| 男人添女人高潮全过程视频| 欧美成人精品欧美一级黄| 亚洲五月色婷婷综合| 一边摸一边抽搐一进一出视频| 王馨瑶露胸无遮挡在线观看| 久久久精品94久久精品| 可以免费在线观看a视频的电影网站| 中文字幕人妻熟女乱码| 最新的欧美精品一区二区| 成在线人永久免费视频| 欧美激情极品国产一区二区三区| 免费看不卡的av| 国产精品香港三级国产av潘金莲 | 国产女主播在线喷水免费视频网站| 99精国产麻豆久久婷婷| 成人午夜精彩视频在线观看| 国产精品香港三级国产av潘金莲 | 一级片免费观看大全| 岛国毛片在线播放| 国产伦理片在线播放av一区| 日本欧美视频一区| 午夜免费成人在线视频| 国产成人系列免费观看| 蜜桃国产av成人99| 亚洲欧美一区二区三区久久| av国产精品久久久久影院| 欧美精品av麻豆av| 亚洲欧洲日产国产| 免费观看a级毛片全部| 亚洲黑人精品在线| 国产亚洲精品久久久久5区| 久久中文字幕一级| 亚洲人成77777在线视频| 大香蕉久久网| 尾随美女入室| 亚洲成av片中文字幕在线观看| 男人添女人高潮全过程视频| 日韩电影二区| 1024香蕉在线观看| 国产精品久久久av美女十八| 波多野结衣av一区二区av| 狠狠精品人妻久久久久久综合| 晚上一个人看的免费电影| 亚洲精品国产av蜜桃| 91字幕亚洲| 新久久久久国产一级毛片| 免费日韩欧美在线观看| 久久精品亚洲熟妇少妇任你| 色视频在线一区二区三区| 伦理电影免费视频| 大片电影免费在线观看免费| 一本—道久久a久久精品蜜桃钙片| 婷婷丁香在线五月| 91麻豆av在线| 一级毛片电影观看| 国产精品人妻久久久影院| 午夜老司机福利片| 99精品久久久久人妻精品| 日韩伦理黄色片| 99精品久久久久人妻精品| 成人国产av品久久久| 亚洲人成电影免费在线| 男女边摸边吃奶| 久久九九热精品免费| 少妇人妻 视频| 精品国产一区二区久久| 中文欧美无线码| 久久性视频一级片| 国产欧美日韩综合在线一区二区| 色婷婷av一区二区三区视频| 午夜激情久久久久久久| 欧美亚洲日本最大视频资源| 99热全是精品| 午夜福利,免费看| 国产又爽黄色视频| 精品视频人人做人人爽| 久久久精品免费免费高清| 国产91精品成人一区二区三区 | 香蕉国产在线看| 最黄视频免费看| 欧美日韩福利视频一区二区| 亚洲免费av在线视频| 国产男女内射视频| 国产片内射在线| 美女扒开内裤让男人捅视频| 国产精品一区二区免费欧美 | 少妇人妻久久综合中文| 亚洲av男天堂| 大码成人一级视频| 久久ye,这里只有精品| 国产精品人妻久久久影院| 美女扒开内裤让男人捅视频| 婷婷丁香在线五月| 一区二区三区四区激情视频| 丝袜美足系列| 国产精品久久久久成人av| 欧美国产精品va在线观看不卡| 97人妻天天添夜夜摸| 日韩一区二区三区影片| 精品亚洲成a人片在线观看| 亚洲国产毛片av蜜桃av| 丁香六月天网| 日韩视频在线欧美| 精品亚洲乱码少妇综合久久| av在线app专区| 天天躁狠狠躁夜夜躁狠狠躁| 久久天堂一区二区三区四区| 在线天堂中文资源库| 欧美激情极品国产一区二区三区| 国产亚洲欧美在线一区二区| 狠狠婷婷综合久久久久久88av| 欧美黑人欧美精品刺激| 十八禁高潮呻吟视频| 涩涩av久久男人的天堂| 欧美97在线视频| 宅男免费午夜| 夫妻性生交免费视频一级片| 中文字幕人妻丝袜制服| 天天操日日干夜夜撸| 免费高清在线观看视频在线观看| 1024视频免费在线观看| 亚洲人成电影免费在线| 桃花免费在线播放| 国产成人91sexporn| 久久久精品94久久精品| 精品一区二区三区av网在线观看 | 一区二区三区乱码不卡18| 国产精品久久久久久精品电影小说| 久久人人爽人人片av| 国产精品99久久99久久久不卡| 欧美 亚洲 国产 日韩一| 亚洲五月色婷婷综合| 蜜桃国产av成人99| av在线app专区| 两个人免费观看高清视频| 亚洲精品美女久久久久99蜜臀 | 亚洲国产中文字幕在线视频| 两个人看的免费小视频| 国产1区2区3区精品| 精品少妇内射三级| 亚洲精品在线美女| 老熟女久久久| 午夜影院在线不卡| 久久精品国产亚洲av涩爱| 国产亚洲欧美在线一区二区| 久久天躁狠狠躁夜夜2o2o | 亚洲精品av麻豆狂野| 亚洲精品av麻豆狂野| 国产老妇伦熟女老妇高清| 日韩中文字幕欧美一区二区 | 久久精品亚洲av国产电影网| 日本vs欧美在线观看视频| 日韩av免费高清视频| 高潮久久久久久久久久久不卡| 欧美国产精品va在线观看不卡| 热re99久久精品国产66热6| av天堂在线播放| 久久国产精品男人的天堂亚洲| 男女床上黄色一级片免费看| av网站免费在线观看视频| 交换朋友夫妻互换小说| 波多野结衣一区麻豆| www.av在线官网国产| 国产三级黄色录像| 夫妻性生交免费视频一级片| 最新的欧美精品一区二区| 亚洲伊人久久精品综合| 亚洲综合色网址| 久久国产精品人妻蜜桃| 亚洲av片天天在线观看| 丝袜在线中文字幕| 国产精品久久久av美女十八| 午夜福利免费观看在线| 日韩av在线免费看完整版不卡| 青草久久国产| 久久久久视频综合| 久久ye,这里只有精品| 国产精品一区二区免费欧美 | 国产精品人妻久久久影院| 久久久久久久精品精品| 啦啦啦啦在线视频资源| 一区福利在线观看| 久久国产精品大桥未久av| 天天躁夜夜躁狠狠久久av| 国产成人av教育| 黄片播放在线免费| 亚洲精品国产av成人精品| 中文字幕亚洲精品专区| 久久天堂一区二区三区四区| 亚洲欧美精品自产自拍| 国产熟女午夜一区二区三区| 国产精品欧美亚洲77777| 我要看黄色一级片免费的| 在线观看www视频免费| 精品人妻一区二区三区麻豆| 尾随美女入室| 久久久久久久久久久久大奶| 亚洲av成人精品一二三区| 国产精品三级大全| 搡老乐熟女国产| 国产1区2区3区精品| 亚洲精品成人av观看孕妇| 超碰97精品在线观看| 免费看不卡的av| 老司机影院毛片| 69精品国产乱码久久久| av网站在线播放免费| 丁香六月欧美| 97精品久久久久久久久久精品| 国产主播在线观看一区二区 | svipshipincom国产片| 天天躁日日躁夜夜躁夜夜| 一个人免费看片子| 在线天堂中文资源库| 日本午夜av视频| 国产人伦9x9x在线观看| 我要看黄色一级片免费的| 久久久久久久大尺度免费视频| 免费看不卡的av| 亚洲国产精品一区二区三区在线| 在线av久久热| 久久影院123| 亚洲中文日韩欧美视频| 狂野欧美激情性bbbbbb| 国产在线一区二区三区精| 国产三级黄色录像| 超色免费av| 一本—道久久a久久精品蜜桃钙片| 超碰成人久久| av电影中文网址| 性色av乱码一区二区三区2| 色精品久久人妻99蜜桃| 久久这里只有精品19| 久久久久精品国产欧美久久久 | 在线精品无人区一区二区三| 国产有黄有色有爽视频| 激情五月婷婷亚洲| 国产成人精品久久二区二区免费| 新久久久久国产一级毛片| 国产精品.久久久| 又大又爽又粗| 爱豆传媒免费全集在线观看| av在线播放精品| 一区二区三区激情视频| 一区福利在线观看| 免费高清在线观看视频在线观看| 国产精品 欧美亚洲| 午夜福利影视在线免费观看| 午夜视频精品福利| a级片在线免费高清观看视频| 国产在线免费精品| 大话2 男鬼变身卡| 日韩大片免费观看网站| 欧美乱码精品一区二区三区| 丝袜喷水一区| 色94色欧美一区二区| 亚洲人成电影免费在线| 我的亚洲天堂| 悠悠久久av| 91麻豆精品激情在线观看国产 | 日本欧美国产在线视频| 在线观看一区二区三区激情| 精品久久久久久久毛片微露脸 | 高清视频免费观看一区二区| 国产精品国产三级专区第一集| 激情五月婷婷亚洲| 亚洲五月色婷婷综合| 人妻 亚洲 视频| 亚洲国产欧美一区二区综合| 男女边吃奶边做爰视频| 亚洲精品日本国产第一区| 国产日韩欧美亚洲二区| 国产精品九九99| 欧美成狂野欧美在线观看| 女人精品久久久久毛片| 亚洲av片天天在线观看| 波多野结衣av一区二区av| 欧美激情高清一区二区三区| 国产一区二区在线观看av| 国产1区2区3区精品| 自线自在国产av| 久久精品人人爽人人爽视色| 国产国语露脸激情在线看| 国产99久久九九免费精品| 久久久久久免费高清国产稀缺| 男人添女人高潮全过程视频| 日本a在线网址| 国产成人91sexporn| 91九色精品人成在线观看| 久久精品国产a三级三级三级| 性高湖久久久久久久久免费观看| 只有这里有精品99| 国产高清国产精品国产三级| 亚洲专区国产一区二区| 美女午夜性视频免费| 天天操日日干夜夜撸| 国产男女内射视频| 欧美 亚洲 国产 日韩一| 丁香六月天网| 丝袜美腿诱惑在线| 国产一区亚洲一区在线观看| 欧美精品啪啪一区二区三区 | 欧美日韩国产mv在线观看视频| 国产亚洲av片在线观看秒播厂| 黄色视频不卡| 大香蕉久久成人网| 国产视频首页在线观看| 在线观看www视频免费| 日本黄色日本黄色录像| 日本av免费视频播放| 啦啦啦在线免费观看视频4| 天天躁夜夜躁狠狠躁躁| 人体艺术视频欧美日本| 性少妇av在线| 老司机影院成人| 欧美黑人欧美精品刺激| 男人操女人黄网站| 精品少妇久久久久久888优播| 狠狠精品人妻久久久久久综合| 亚洲av日韩精品久久久久久密 | 久久久精品94久久精品| a 毛片基地| 亚洲精品一二三| av福利片在线| 丝袜美足系列| 午夜影院在线不卡| 电影成人av| 熟女少妇亚洲综合色aaa.| 黄色视频在线播放观看不卡| 91麻豆精品激情在线观看国产 | 蜜桃国产av成人99| 国产av一区二区精品久久| 日韩av在线免费看完整版不卡| 国产成人av激情在线播放| 天天躁夜夜躁狠狠躁躁| 中文字幕人妻丝袜制服| 一本—道久久a久久精品蜜桃钙片| 亚洲专区国产一区二区| 99re6热这里在线精品视频| 一区二区av电影网| 老司机亚洲免费影院| 亚洲国产精品999| 如日韩欧美国产精品一区二区三区| 啦啦啦中文免费视频观看日本| 亚洲国产精品国产精品| 男女下面插进去视频免费观看| 中文字幕最新亚洲高清| videos熟女内射| 亚洲av国产av综合av卡| 中国国产av一级| 国产亚洲精品第一综合不卡| 国产高清不卡午夜福利| 国产一区亚洲一区在线观看| 9热在线视频观看99| 黄片小视频在线播放| 后天国语完整版免费观看| av国产久精品久网站免费入址| 国产xxxxx性猛交| 黄色a级毛片大全视频| 亚洲专区国产一区二区| 91麻豆精品激情在线观看国产 | 久久久精品区二区三区| 国产精品九九99| 国产男人的电影天堂91| 韩国高清视频一区二区三区| 视频区欧美日本亚洲| 成人三级做爰电影| 欧美成人午夜精品| 国产三级黄色录像| √禁漫天堂资源中文www| 国产男女超爽视频在线观看| 国产av精品麻豆| 大片电影免费在线观看免费| 欧美 日韩 精品 国产| 亚洲av欧美aⅴ国产| 国产1区2区3区精品| 美女午夜性视频免费| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久成人av| 熟女av电影| 在线av久久热| 久久久久久人人人人人| 国产熟女欧美一区二区| 青青草视频在线视频观看| 日本91视频免费播放| 18在线观看网站| 国产免费一区二区三区四区乱码| 久久亚洲国产成人精品v| 老司机午夜十八禁免费视频| 国产亚洲av高清不卡| 你懂的网址亚洲精品在线观看| 国产日韩一区二区三区精品不卡| 午夜精品国产一区二区电影| 国产精品 国内视频| 丝袜美足系列| 18禁国产床啪视频网站| 18禁裸乳无遮挡动漫免费视频| 日韩中文字幕欧美一区二区 | 黑人欧美特级aaaaaa片| 国产日韩欧美亚洲二区| 亚洲一卡2卡3卡4卡5卡精品中文| 中文乱码字字幕精品一区二区三区| 中文字幕人妻丝袜一区二区| 十分钟在线观看高清视频www| 亚洲精品国产区一区二| 亚洲欧美精品自产自拍| 日日摸夜夜添夜夜爱| 久久精品aⅴ一区二区三区四区| 中文字幕人妻熟女乱码| 777久久人妻少妇嫩草av网站| 90打野战视频偷拍视频| 亚洲精品国产色婷婷电影| 一个人免费看片子| 精品国产乱码久久久久久小说| 丝袜脚勾引网站| 99国产综合亚洲精品| 久久久久久久精品精品| 91麻豆精品激情在线观看国产 | 亚洲成人免费av在线播放| 久久九九热精品免费| 欧美日韩国产mv在线观看视频| 亚洲成人国产一区在线观看 | 男女午夜视频在线观看| 波多野结衣一区麻豆| 国产亚洲av高清不卡| 中文字幕另类日韩欧美亚洲嫩草| 两个人看的免费小视频| 亚洲第一av免费看| 亚洲人成电影免费在线| 亚洲欧美激情在线| 欧美日韩综合久久久久久| 成人18禁高潮啪啪吃奶动态图| 国产在线观看jvid| 中文字幕人妻熟女乱码| 97精品久久久久久久久久精品| 久久人妻福利社区极品人妻图片 | 久久亚洲精品不卡| 国产成人一区二区三区免费视频网站 | 免费观看人在逋| 天堂8中文在线网| 精品一品国产午夜福利视频| 精品国产乱码久久久久久小说| 一级黄片播放器| 欧美xxⅹ黑人| 一本综合久久免费| 深夜精品福利| 欧美国产精品一级二级三级| 极品少妇高潮喷水抽搐| 麻豆国产av国片精品| 日韩中文字幕欧美一区二区 | 午夜91福利影院| 十八禁网站网址无遮挡| 成人影院久久| 亚洲第一av免费看| av片东京热男人的天堂| 久久久久久久大尺度免费视频| 电影成人av| 欧美性长视频在线观看| 大陆偷拍与自拍| 丝袜美足系列| 90打野战视频偷拍视频| 亚洲色图综合在线观看| 黄片小视频在线播放| 欧美少妇被猛烈插入视频| 久久亚洲精品不卡| 在线av久久热| 丝袜美腿诱惑在线| 一区在线观看完整版| 好男人视频免费观看在线| 国产亚洲欧美在线一区二区| 高清不卡的av网站| 欧美黄色片欧美黄色片| www.熟女人妻精品国产| 考比视频在线观看| 日本猛色少妇xxxxx猛交久久| 美女午夜性视频免费| e午夜精品久久久久久久| 亚洲精品一区蜜桃| 精品一区二区三区四区五区乱码 | 色婷婷久久久亚洲欧美| 亚洲欧美精品自产自拍| 又黄又粗又硬又大视频| 丝袜美腿诱惑在线| 美国免费a级毛片| 天天添夜夜摸| 色播在线永久视频| 久久久国产精品麻豆| 久久久久久久久免费视频了| 亚洲视频免费观看视频| 制服人妻中文乱码| 成人午夜精彩视频在线观看| 国产精品三级大全| avwww免费| 少妇的丰满在线观看| videos熟女内射| 极品人妻少妇av视频| 久久精品国产a三级三级三级| 最黄视频免费看| 999精品在线视频| 成人手机av| 国产亚洲av高清不卡| 久久精品成人免费网站| 成年人午夜在线观看视频| 国产伦人伦偷精品视频| 午夜福利影视在线免费观看| 成在线人永久免费视频| 色播在线永久视频| 国产高清不卡午夜福利| 亚洲精品国产av成人精品| 午夜福利免费观看在线| 99国产精品99久久久久| 国产三级黄色录像| 亚洲,一卡二卡三卡| 国产一区二区激情短视频 | 一本色道久久久久久精品综合| 亚洲图色成人| 国产成人一区二区三区免费视频网站 | 久久精品亚洲熟妇少妇任你| 大话2 男鬼变身卡| 欧美日韩av久久| 母亲3免费完整高清在线观看| 成年人午夜在线观看视频| 一级片免费观看大全| 欧美精品亚洲一区二区| 亚洲一区二区三区欧美精品| a 毛片基地| 国产精品 国内视频| 侵犯人妻中文字幕一二三四区| 天天躁夜夜躁狠狠久久av| 亚洲专区国产一区二区| 婷婷色麻豆天堂久久| 一区二区三区激情视频| 日本av免费视频播放| 韩国高清视频一区二区三区| 最黄视频免费看| 久久久久久久国产电影| 国产一区二区在线观看av| 人人妻,人人澡人人爽秒播 | 人人妻人人添人人爽欧美一区卜| 欧美激情 高清一区二区三区| 激情五月婷婷亚洲| 国产精品二区激情视频| 成人18禁高潮啪啪吃奶动态图| 男人添女人高潮全过程视频| 久久久久久亚洲精品国产蜜桃av| 无遮挡黄片免费观看| 日韩伦理黄色片|