張東光,左國(guó)標(biāo),佟 金,張智泓
仿生注液沃土裝置工作參數(shù)的優(yōu)化與試驗(yàn)
張東光1,2,左國(guó)標(biāo)3,佟 金4,張智泓3※
(1. 太原理工大學(xué)機(jī)械與運(yùn)載工程學(xué)院,太原 030024;2. 土壤環(huán)境與養(yǎng)分資源山西省重點(diǎn)實(shí)驗(yàn)室,太原 030031;3. 昆明理工大學(xué)農(nóng)業(yè)與食品學(xué)院,昆明 650500;4. 吉林大學(xué)生物與農(nóng)業(yè)工程學(xué)院,長(zhǎng)春 130025)
為探索仿生注液沃土裝置在土壤內(nèi)部作業(yè)時(shí)工作參數(shù)對(duì)工作阻力和土壤粘附量的影響規(guī)律,優(yōu)化作業(yè)參數(shù),以保障并提高注液沃土裝置作業(yè)質(zhì)量,同時(shí)降低工作阻力和土壤粘附。該研究采用Box-Behnken試驗(yàn)優(yōu)化設(shè)計(jì)方法,通過(guò)搭建農(nóng)機(jī)土槽臺(tái)車(chē)試驗(yàn)系統(tǒng)以模擬田間作業(yè)環(huán)境,開(kāi)展注液沃土裝置樣機(jī)工作參數(shù)優(yōu)化試驗(yàn),將入土深度、注液量、土槽臺(tái)車(chē)速度3個(gè)工作參數(shù)設(shè)為自變量,將工作阻力和土壤粘附量設(shè)為響應(yīng)值,建立多元二次多項(xiàng)式回歸方程,根據(jù)自變量與響應(yīng)值之間的關(guān)系,優(yōu)化仿生注液沃土裝置的工作參數(shù)。結(jié)果表明:以土壤粘附量和工作阻力為響應(yīng)值建立的回歸方程模型擬合度良好;入土深度、液肥流量和工作速度對(duì)降低工作阻力和減小土壤粘附量的影響均顯著,且入土深度和速度存在交互效應(yīng);試驗(yàn)因素對(duì)注液沃土裝置降低工作阻力和減小土壤粘附量的影響程度為:入土深度>速度>流量,得到最優(yōu)的工作參數(shù)為:入土深度11 cm、速度1.0 m/s、流量350 g/s。在最優(yōu)工作參數(shù)條件下,注液沃土裝置的工作阻力為260.01 N,土壤粘附量為8.73 g。該研究工作為注液沃土技術(shù)的應(yīng)用和推廣提供了參考依據(jù)。
仿生;設(shè)計(jì);蚯蚓;幾何結(jié)構(gòu)表面;注液沃土;優(yōu)化
液態(tài)肥含有一種或多種農(nóng)作物生長(zhǎng)所需要的營(yíng)養(yǎng)元素,使用中可根據(jù)不同作物的生長(zhǎng)狀況進(jìn)行合理配置,以滿足作物對(duì)不同營(yíng)養(yǎng)元素的需求[1-2]。與固態(tài)肥相比,液態(tài)肥吸收利用率高,液態(tài)肥施入土壤后,無(wú)需經(jīng)過(guò)長(zhǎng)時(shí)間的化學(xué)變化并溶解為液體的過(guò)程,而是直達(dá)根系并被作物吸收,其利用率得以明顯的提高,從而可增加作物產(chǎn)量[3-7]。從生產(chǎn)、使用方面來(lái)看,液態(tài)肥均無(wú)粉塵、無(wú)煙霧,對(duì)環(huán)境污染小,便于生產(chǎn)和運(yùn)輸,有效降低了環(huán)境污染[8-9]。液肥深施是將液體肥料深施到地表以下作物易吸收部位的技術(shù)[10-11],將肥料施于作物根部附近一定的土壤深度中,可吸引作物根系向土壤深處生長(zhǎng),提高作物吸收營(yíng)養(yǎng)成分速度、提高液肥利用率、提高作物的抗倒伏、抗旱能力、抗逆性和后期抗早衰能力,進(jìn)一步增加作物產(chǎn)量的同時(shí),可減少肥料的揮發(fā)與流失,更有利于農(nóng)田生態(tài)保護(hù)[12-14]。液肥深施融合了液態(tài)肥和深施技術(shù)的眾多優(yōu)點(diǎn),是液肥施用的一種重要手段。目前,隨著農(nóng)業(yè)領(lǐng)域液態(tài)肥應(yīng)用的不斷普及和需求迅速增加,與液肥深施技術(shù)配套的施肥機(jī)械設(shè)計(jì)及工作參數(shù)優(yōu)化的重要性日益凸顯[15-17]。
近年來(lái),液肥深施需求日益增長(zhǎng),注液沃土技術(shù)得到發(fā)展[18-20]。作為液肥深施技術(shù)的一種實(shí)現(xiàn)形式,注液沃土裝置通過(guò)擠壓土壤形成洞道或土壤裂隙,并采用施加液體肥的方式改善土壤含水率和養(yǎng)分含量。當(dāng)自然降水后,土壤洞道可積蓄雨水;當(dāng)降水過(guò)多時(shí),土壤洞道可匯集多余水分流入地頭溝渠,為農(nóng)作物生長(zhǎng)創(chuàng)造有利的生態(tài)環(huán)境[18]。然而,在注液沃土技術(shù)的應(yīng)用研究中發(fā)現(xiàn),注液沃土裝置所需牽引力較大,使其難以實(shí)現(xiàn)大幅寬作業(yè);注液沃土裝置與濕粘土壤作用過(guò)程中,粘附現(xiàn)象嚴(yán)重,使其作業(yè)質(zhì)量大幅下降,甚至導(dǎo)致無(wú)法正常工作,為注液沃土技術(shù)的應(yīng)用和推廣造成較大阻礙。從工程仿生的技術(shù)手段出發(fā)[21-24],從蚯蚓運(yùn)動(dòng)、分泌粘液的方式以及體表幾何結(jié)構(gòu)獲得了設(shè)計(jì)注液沃土裝置的仿生學(xué)啟示。發(fā)現(xiàn)蚯蚓在耕層土壤植物根系中運(yùn)動(dòng),構(gòu)建了蚓穴和土壤洞道,并且體表脫附性能良好[25-28]。蚯蚓在營(yíng)造土壤洞穴的同時(shí),吞噬大量土壤并排泄到體外[29-30],在這一過(guò)程中,在土壤中運(yùn)動(dòng)時(shí)不斷從背孔中分泌出粘性體液,并順著節(jié)間溝浸潤(rùn)體表,形成液體保護(hù)膜。蚯蚓粘液表現(xiàn)出脫附減阻效應(yīng)并發(fā)揮了肥沃土壤等重要作用[31-32]。
從前期對(duì)注液沃土裝置研究過(guò)程中發(fā)現(xiàn),仿照蚯蚓體表特征設(shè)計(jì)的裝置表面,在土壤內(nèi)層注液的過(guò)程中,可以降低與土壤之間的接觸面積,減小土壤粘附量,降低工作阻力,達(dá)到節(jié)能增效的目的[18]?;谇捌趯?duì)注液沃土裝置的結(jié)構(gòu)設(shè)計(jì),本研究對(duì)仿生注液沃土裝置工作參數(shù)進(jìn)行優(yōu)化,采用試驗(yàn)優(yōu)化設(shè)計(jì)方法,通過(guò)農(nóng)業(yè)機(jī)械土槽試驗(yàn),研究了注液沃土裝置入土深度、注液量、速度3個(gè)工作參數(shù)對(duì)工作阻力和土壤粘附量的影響,探索仿生注液沃土系統(tǒng)的最優(yōu)作業(yè)參數(shù),為液肥深施技術(shù)和注液沃土裝置的研發(fā)、推廣提供理論依據(jù)和技術(shù)參考。
圖1 仿生原型-赤子愛(ài)勝蚓
以赤子愛(ài)勝蚓為原型,提取并擬合輪廓特征曲線,設(shè)計(jì)了仿生注液沃土裝置的結(jié)構(gòu)。仿照蚯蚓頭部特征設(shè)計(jì)了注液沃土裝置的錐形觸土部件,用于分離擠壓土壤;仿照蚯蚓體節(jié)特征,設(shè)計(jì)了峰谷交錯(cuò)的管狀注液部件結(jié)構(gòu),并在波谷內(nèi)設(shè)計(jì)了類(lèi)似蚯蚓背孔的6個(gè)斜向防堵塞注液孔,注液孔內(nèi)流出的液體肥可順著波谷的環(huán)槽浸潤(rùn)注液部件,達(dá)到減小運(yùn)動(dòng)阻力和沃土施肥的效果。注液沃土裝置如圖2所示。
圖2 6孔注液型式仿生注液沃土裝置尺寸參數(shù)
超高分子量聚乙烯(UHMWPE)具有抗粘附、耐磨損的優(yōu)異特性[33-34]。在農(nóng)業(yè)機(jī)械領(lǐng)域,UHMWPE常應(yīng)用于開(kāi)溝器、覆土鎮(zhèn)壓器、鏵式犁等觸土部件的工作表面。注液沃土裝置在觸土作業(yè)過(guò)程中,容易發(fā)生土壤粘附問(wèn)題,導(dǎo)致作業(yè)質(zhì)量下降。選用密度為0.95 g/cm3、摩擦系數(shù)為0.17、吸水性為0.01%的UHMWPE棒料作為注液沃土裝置的加工材料,并與前置的深松鏟配套,完成注液沃土裝置工作參數(shù)測(cè)試。
根據(jù)玉米種植農(nóng)藝條件(株距30 cm,行距65 cm),田間1 m長(zhǎng)的玉米壟內(nèi)種植4株玉米。以單株玉米生長(zhǎng)期施加50~100 g肥液,注液沃土裝置運(yùn)行速度1 m/s計(jì)算,田間1 m長(zhǎng)的玉米壟內(nèi)需要施加200~400 g肥液。在20 ℃環(huán)境條件下,對(duì)仿照蚯蚓體表粘液氨基酸構(gòu)成配制的仿生液體肥[32],采用DV-III+(Rheometer-Brookfield Engineering Laboratories, USA)布氏數(shù)字粘度計(jì)和同軸圓柱體轉(zhuǎn)子進(jìn)行動(dòng)力粘度測(cè)試,結(jié)果表明仿生液體肥屬于牛頓流體,其動(dòng)力粘度與對(duì)照組純水無(wú)顯著差異?;谏鲜龀跏紖?shù),采用吉林大學(xué)生物與農(nóng)業(yè)工程學(xué)院農(nóng)業(yè)機(jī)械實(shí)驗(yàn)室的土槽臺(tái)車(chē)試驗(yàn)系統(tǒng)進(jìn)行注液沃土裝置工作參數(shù)優(yōu)化試驗(yàn)。
土槽臺(tái)車(chē)試驗(yàn)系統(tǒng)由土壤、臺(tái)車(chē)、數(shù)據(jù)采集3個(gè)子系統(tǒng)組成,如圖3所示。前置深松鏟與注液沃土裝置安裝在土槽臺(tái)車(chē)的活動(dòng)臺(tái)架上,可在臺(tái)車(chē)橫梁上左右移動(dòng),注液沃土裝置中軸線與土壤表面距離為10~30 cm、與深松鏟鏟尖相對(duì)距離為10 cm。拉壓力傳感器兩端分別連接深松鏟與仿生注液沃土裝置,用于測(cè)定仿生注液沃土裝置的工作阻力。在土槽臺(tái)車(chē)牽引過(guò)程中,通過(guò)數(shù)字流量計(jì)讀取液肥的質(zhì)量、流量,采用數(shù)據(jù)采集系統(tǒng)記錄注液沃土裝置的工作阻力。臺(tái)車(chē)停止后關(guān)閉注液系統(tǒng),采用稱(chēng)質(zhì)量法測(cè)定注液沃土裝置的土壤粘附量。
圖3 土槽臺(tái)車(chē)試驗(yàn)系統(tǒng)示意圖
為確定土槽內(nèi)土壤質(zhì)地,在土槽內(nèi)采用棋盤(pán)式布點(diǎn)法取土壤樣品10份,測(cè)定土槽內(nèi)土壤粒徑分布,結(jié)果如表1所示。
表1 土槽內(nèi)土壤樣品的粒徑分布
按照國(guó)際土壤分類(lèi)標(biāo)準(zhǔn)(USDA Soil Taxonomy),土槽試驗(yàn)區(qū)的土壤質(zhì)地為砂質(zhì)黏壤土(sandy clay loam)。在土槽中選擇40 m作為試驗(yàn)區(qū),并在試驗(yàn)區(qū)前后分別剖開(kāi)入土和出土調(diào)整區(qū)各2 m。深松鏟從入土調(diào)整區(qū)開(kāi)溝,注液沃土裝置隨之進(jìn)入溝內(nèi)擠壓分離土壤。試驗(yàn)時(shí)僅將裝置完全進(jìn)入40 m試驗(yàn)區(qū)后采集的數(shù)據(jù)作為測(cè)定值,全部試驗(yàn)完成后,重復(fù)翻整、晾曬、鎮(zhèn)壓試驗(yàn)區(qū)內(nèi)的土壤。采用Field Scout SC-900(spectrum technologies, plainfield, USA)數(shù)字式土壤堅(jiān)實(shí)度儀進(jìn)行試驗(yàn)區(qū)土壤堅(jiān)實(shí)度測(cè)試,在0~30 cm耕層土壤剖面內(nèi),以深度2.5 cm為梯度記錄數(shù)據(jù),重復(fù)3次取平均值,如表2所示。
表2 土槽不同耕層深度土壤物理參數(shù)
注液沃土裝置與仿生深松鏟通過(guò)全橋式應(yīng)變傳感器(H3-C3-6B 750 kg, ZEMIC, China)連接,拉力信號(hào)由數(shù)據(jù)采集卡傳送至計(jì)算機(jī),經(jīng)拉力-電壓標(biāo)定曲線計(jì)算得到工作阻力,測(cè)試平臺(tái)如圖4所示。
選擇新鮮、無(wú)機(jī)械傷、無(wú)病害、根莖結(jié)實(shí)粗壯且大小均勻的蓮藕,表皮顏色白嫩略帶黃褐色,沒(méi)有明顯黑色斑塊[14]。
1.仿生深松鏟 2.拉壓力傳感器(帶有保護(hù)殼) 3.試驗(yàn)樣件 4.LabView數(shù)據(jù)采集程序 5.數(shù)據(jù)采集卡 6.信號(hào)放大器
在裝置到達(dá)出土調(diào)整區(qū)之后,關(guān)閉注液系統(tǒng),收集并稱(chēng)量粘附在注液沃土裝置上的土壤質(zhì)量作為土壤粘附量,如圖5所示。
a. 入土區(qū)開(kāi)啟注液系統(tǒng)a. Opening of injection systemb. 出土區(qū)稱(chēng)量土壤粘附質(zhì)量b. Weighing the adherent soil weight
為考察仿生注液沃土裝置工作過(guò)程中入土深度、注液流量和前進(jìn)速度3個(gè)參數(shù)對(duì)工作阻力和土壤粘附量的影響,采用Box-Behnken中心組合試驗(yàn)設(shè)計(jì)方法,尋求仿生注液沃土裝置最優(yōu)工作條件。Box-Behnken試驗(yàn)設(shè)計(jì)方法是多因素3水平的試驗(yàn)設(shè)計(jì)方法,可以減少試驗(yàn)次數(shù),提高試驗(yàn)效率,降低試驗(yàn)的成本。根據(jù)Box-Behnken試驗(yàn)設(shè)計(jì),將裝置入土深度(1)、注液流量(2)和機(jī)具前進(jìn)速度(3)設(shè)為自變量,將土壤阻力(1)和土壤粘附量(2)設(shè)為響應(yīng)值,制定了3因素3水平的試驗(yàn)因素與編碼水平,如表3所示。
表3 試驗(yàn)因素與編碼水平
在Box-Behnken試驗(yàn)設(shè)計(jì)給定的條件下,采用Design Expert(V8.0.6, Stat-Ease, USA)軟件建立試驗(yàn)設(shè)計(jì)方案,并按序號(hào)開(kāi)展試驗(yàn)。取3次重復(fù)試驗(yàn)結(jié)果的平均值作為注液沃土裝置工作阻力和土壤粘附量的響應(yīng)值,如表4所示。
1)工作阻力結(jié)果分析
根據(jù)表5中的試驗(yàn)數(shù)據(jù)進(jìn)行二次多項(xiàng)式回歸擬合,建立入土深度(1)、流量(2)、速度(3)與阻力(1)之間的多元二次多項(xiàng)式回歸方程,構(gòu)建試驗(yàn)指標(biāo)與多個(gè)試驗(yàn)因素之間的回歸曲面,如式(1)所示。
對(duì)根據(jù)工作阻力建立的多元二次多項(xiàng)式回歸方程進(jìn)行方差分析,模型及回歸系數(shù)的顯著性檢驗(yàn)結(jié)果如表5所示。
表4 仿生注液沃土裝置工作參數(shù)試驗(yàn)設(shè)計(jì)方案及測(cè)試結(jié)果
表5 多元二次多項(xiàng)式回歸方程的方差分析(工作阻力)
注:SS 表示平方和,df 表示自由度,MS 表示均方,*表示顯著(<0.05),**表示極顯著(<0.01),下同。
Note: SS is sum of squares; df is degree of freedom; MS is mean squares; *shows significant (<0.05); ** shows very significant (<0.01). The same below.
由表5可知,建立的多元二次多項(xiàng)式回歸方程顯著性<0.000 1,模型顯著。擬合優(yōu)度2=0.977 2,模型的擬合度較好。校正系數(shù)Adj2=0.947 9,預(yù)測(cè)值與試驗(yàn)值之間的相關(guān)性較高,可用此模型對(duì)工作阻力進(jìn)行分析和預(yù)測(cè)。失擬項(xiàng)=0.122 1>0.05,未知因素對(duì)試驗(yàn)結(jié)果的影響較小。模型的線性項(xiàng)入土深度(1)、流量(2)、速度(3)和二次項(xiàng)12、32對(duì)工作阻力的影響較顯著,模型交叉項(xiàng)入土深度和速度(13)對(duì)響應(yīng)值影響顯著,說(shuō)明試驗(yàn)因素對(duì)工作阻力的影響不是簡(jiǎn)單的線性關(guān)系,具有交互作用。試驗(yàn)因素對(duì)注液沃土裝置工作阻力影響的顯著性程度依次為:入土深度(1)>速度(3)>流量(2)。
在入土深度、速度、流量3個(gè)試驗(yàn)因素中,固定其中1個(gè)試驗(yàn)因素為常量,選擇另外2個(gè)試驗(yàn)因素作為自變量,繪制自變量與響應(yīng)值(工作阻力)的三維響應(yīng)面圖及相應(yīng)的等高線圖,如圖6、圖7和圖8所示。由圖6可知,當(dāng)速度(3)為零水平時(shí),入土深度(1)和流量(2)兩者間等高線稀疏,說(shuō)明兩試驗(yàn)因素之間的交互作用不顯著。當(dāng)流量保持不變時(shí),工作阻力隨著入土深度的增加而增大。當(dāng)入土深度保持不變時(shí),工作阻力隨著流量的增大而減小。因此,仿生注液沃土裝置的入土深度較高和注液流量較低時(shí),工作阻力均比較大。可能的原因是,增加耕作深度,加強(qiáng)了土壤擾動(dòng),注液沃土裝置擠壓和分離土壤的質(zhì)量也隨之提高,從而導(dǎo)致工作阻力增加。當(dāng)速度較快或注液量較低時(shí),仿生注液沃土裝置噴施的肥液主要被土壤吸收,此時(shí)裝置的外表面難以完全浸潤(rùn)形成潤(rùn)滑水膜,從而導(dǎo)致工作阻力較大。
圖6 入土深度與流量對(duì)工作阻力的等高線和響應(yīng)曲面圖
由圖7可知,當(dāng)流量(2)為零水平時(shí),入土深度(1)和速度(3)兩因素之間的等高線緊密,說(shuō)明入土深度和速度之間的交互作用較為顯著。工作阻力隨著入土深度的增加而顯著增加,并隨著速度的增加而逐步增大。
圖7 入土深度與速度對(duì)工作阻力的等高線和響應(yīng)曲面圖
由圖8可知,當(dāng)入土深度(1)為零水平時(shí),流量(2)和速度(3)兩因素之間的等高線稀疏,說(shuō)明流量與速度之間的交互作用不顯著。當(dāng)速度一定時(shí),工作阻力隨著流量增加而減小。當(dāng)流量一定時(shí),工作阻力隨著速度增加而增大。仿生注液沃土裝置的優(yōu)化目標(biāo)之一為工作阻力最小。在Design Expert優(yōu)化功能中對(duì)工作阻力取最小值,可獲得仿生注液沃土裝置的最佳工作參數(shù)為:入土深度為10.53 cm、流量343.37 g/s、速度0.66 m/s。在此條件下,仿生注液沃土裝置的工作阻力理論值為258.36 N。
圖8 流量與速度對(duì)工作阻力的等高線和響應(yīng)曲面圖
2)土壤粘附量結(jié)果分析
對(duì)根據(jù)土壤粘附量建立的多元二次多項(xiàng)式回歸方程進(jìn)行方差分析,模型及回歸系數(shù)的顯著性檢驗(yàn)結(jié)果如表6所示。據(jù)此表中的試驗(yàn)數(shù)據(jù)進(jìn)行二次多項(xiàng)式回歸擬合,建立入土深度(1)、流量(2)、速度(3)與粘附量(2)之間的多元二次多項(xiàng)式回歸方程,構(gòu)建試驗(yàn)指標(biāo)與多個(gè)試驗(yàn)因素之間的回歸曲面,如式(2)所示。
表6 多元二次多項(xiàng)式回歸方程的方差分析(土壤粘附量)
由表6可知,以土壤粘附量為響應(yīng)值所建立的回歸方程模型顯著(=0.000 4),失擬項(xiàng)不顯著(=0.186 0),該模型與試驗(yàn)擬合性較好。回歸方程模型擬合優(yōu)度2=0.959 4,校正系數(shù)Adj2=0.907 2,該回歸模型的擬合度良好,可以較好的描述響應(yīng)值與試驗(yàn)因素之間的關(guān)系。模型線性項(xiàng)入土深度(1)、流量(2)、速度(3)和二次項(xiàng)22對(duì)土壤粘附量的影響較顯著;模型交叉項(xiàng)入土深度和速度(13)對(duì)土壤粘附量的影響較顯著,這2個(gè)試驗(yàn)因素之間存在交互作用。由值可知,試驗(yàn)因素對(duì)仿生注液沃土裝置土壤粘附量影響的顯著性程度依次為:入土深度(1)>速度(3)>流量(2)。根據(jù)二次多項(xiàng)式回歸方程繪制的土壤粘附量二維等高線和三維響應(yīng)面,如圖9所示。
圖9 土壤粘附量二維等高線和三維響應(yīng)面
由表6和等高線圖可知,入土深度(1)與速度(3)的交互作用顯著,流量(2)與速度(3),入土深度(1)與流量(2)的交互作用不顯著。試驗(yàn)因素對(duì)仿生注液沃土裝置土壤粘附量的影響程度為:入土深度>速度>流量。當(dāng)流量一定時(shí),仿生注液沃土裝置的土壤粘附量隨著入土深度和速度的增加而逐漸增大。可能的原因是,土壤粘附量與土壤質(zhì)地有關(guān),土壤中含黏粒數(shù)量越多,土壤粘附力越大。試驗(yàn)區(qū)砂質(zhì)粘壤土的透氣、滲水性好,深層土壤含水量較高,粘粒數(shù)量較多,對(duì)土壤粘附量影響幅度較大。此外,土壤粘附量也與耕層結(jié)構(gòu)穩(wěn)定性有關(guān),隨著工作速度增加,土壤擾動(dòng)頻率加快,粘粒與裝置的相對(duì)接觸面積增加,土壤粘附效應(yīng)增強(qiáng)。當(dāng)入土深度或速度一定時(shí),仿生注液沃土裝置的土壤粘附量隨著流量的增加先降低后增大??赡艿脑蚴?,土壤在塑限以下時(shí)近似剛體,具有較高的堅(jiān)實(shí)度。隨著流量增加,裝置與土壤之間形成一層潤(rùn)滑水膜,降低了土壤粘附量。當(dāng)流量不斷增加時(shí),裝置與土壤之間的水膜逐漸變厚,土壤接觸層含水量趨于飽和,導(dǎo)致接觸層土壤的堅(jiān)實(shí)度下降,而與裝置表面之間的粘附力不斷增強(qiáng)。對(duì)回歸模型進(jìn)行優(yōu)化處理,獲得仿生注液沃土裝置減小土壤粘附量的最佳工作參數(shù)為:入土深度13.73 cm,流量254.95 g/s,速度0.53 m/s。在此條件下,仿生注液沃土裝置土壤粘附量的理論值為8.34 g。
在上述試驗(yàn)因素范圍內(nèi),仿生注液沃土裝置達(dá)到最低工作阻力的工作參數(shù)為入土深度10.53 cm,流量343.37 g/s,速度0.66 m/s;達(dá)到最低土壤粘附量的工作參數(shù)為入土深度13.73 cm,流量254.95 g/s,速度0.53 m/s??紤]土槽系統(tǒng)實(shí)際操作,對(duì)上述參數(shù)圓整后進(jìn)行驗(yàn)證試驗(yàn),3次重復(fù)取平均值,如表7所示。
表7 工作參數(shù)驗(yàn)證試驗(yàn)結(jié)果
在給定的工作參數(shù)下,實(shí)際測(cè)試值與模型預(yù)測(cè)值接近,建立的回歸模型可以較好的反映出工作阻力和土壤粘附量的工作參數(shù)。將達(dá)到最小工作阻力和土壤粘附量的工作參數(shù)選定為:入土深度11 cm、速度1.0 m/s、流量350 g/s。仿生注液沃土裝置構(gòu)建的土壤洞道如圖10所示。深松鏟牽引仿生注液沃土裝置擠壓分離土壤,形成洞道,翻向深松鏟兩側(cè)的土壤回填覆蓋至土壤洞道上方,形成了圖中所示的覆土區(qū)。土壤洞道內(nèi)部經(jīng)注液形成濕土層,覆蓋的表層土壤形成干土層。
圖10 仿生注液沃土裝置構(gòu)建的土壤洞道
采用仿生沃土技術(shù),研發(fā)提高耕層結(jié)構(gòu)、改善土壤肥力的沃土裝置具有以下優(yōu)勢(shì):第一,沃土裝置能夠向土壤深層施加有機(jī)肥料,并具有較好的減阻脫附特性;第二,沃土裝置能夠多部件聯(lián)合作業(yè),增加土壤孔隙度,達(dá)到蓄水保墑的效果。學(xué)習(xí)蚯蚓在土壤中的運(yùn)動(dòng)方式,仿照蚯蚓體表粘液及表面結(jié)構(gòu)設(shè)計(jì)的注液沃土裝置與課題組前期研發(fā)的仿生深松鏟相配合,在一次作業(yè)過(guò)程中實(shí)現(xiàn)了土壤深松、洞道構(gòu)建、液體肥深施三項(xiàng)功能,裝置本身還具有減阻脫附的優(yōu)良特性,實(shí)現(xiàn)了節(jié)能降耗的作業(yè)目標(biāo)。仿生注液沃土裝置體現(xiàn)了農(nóng)機(jī)與農(nóng)藝的協(xié)同作用,具有較大的應(yīng)用潛力。
采用農(nóng)機(jī)土槽臺(tái)車(chē)試驗(yàn)系統(tǒng)進(jìn)行仿生注液沃土裝置樣機(jī)工作參數(shù)的優(yōu)化試驗(yàn)。以獲得最小工作阻力、最低土壤粘附量為試驗(yàn)?zāi)繕?biāo),通過(guò)控制仿生注液沃土裝置入土深度、注液量、土槽臺(tái)車(chē)速度3個(gè)工作參數(shù),分析各因素與試驗(yàn)?zāi)繕?biāo)之間的關(guān)系,優(yōu)化仿生注液沃土裝置的工作參數(shù)。采用Box-Behnken試驗(yàn)設(shè)計(jì),將仿生注液沃土裝置入土深度、注液流量和機(jī)具前進(jìn)速度設(shè)為自變量,將工作阻力和土壤粘附量設(shè)為響應(yīng)值,建立了自變量與響應(yīng)值之間的多元二次多項(xiàng)式回歸方程。得到以下結(jié)論:
1)以土壤粘附量和工作阻力為響應(yīng)值建立的回歸方程模型擬合度良好,可以較好的描述響應(yīng)值與試驗(yàn)因素之間的關(guān)系;
2)試驗(yàn)因素對(duì)仿生注液沃土裝置工作阻力和土壤粘附量的影響程度均為:入土深度>速度>流量。入土深度、速度、流量對(duì)工作阻力和土壤粘附量的影響較顯著;模型交叉項(xiàng)入土深度和速度存在交互作用;
3)綜合考慮工作阻力和土壤粘附量,獲得最小工作阻力和土壤粘附量的工作參數(shù)為:入土深度11 cm、速度1.0 m/s、流量350 g/s。在最優(yōu)工作參數(shù)下,注液沃土裝置的工作阻力為260.01 N,土壤粘附量為8.73 g。
[1] Randall G W, Hoeft R G. Placement methods for improved efficiency of P and K fertilizers: A review[J]. Journal of Production Agriculture, 1988, 1(1): 70-79.
[2] Nath S, Singh K. Analysis of different nutrient status of liquid bio-fertilizer of different combinations of buffalo dung with gram bran and water hyacinth through vermicomposting by Eisenia fetida[J]. Environment, Development and Sustainability, 2016, 18(3): 645-656.
[3] Ahmad A A, Radovich T J, Nguyen H V, et al. Use of Organic Fertilizers to Enhance Soil Fertility, Plant Growth, and Yield in A Tropical Environment[M]//Organic Fertilizers-From Basic Concepts to Applied Outcomes. Rijeka, Croatia: IntechOpen. 2016.
[4] Zewde A, Mulatu A, Astatkie T. Inorganic and organic liquid fertilizer effects on growth and yield of onion[J]. International Journal of Vegetable Science, 2018, 24(6): 567-573.
[5] Olaghere I, Omotesho O, Muhammad L A. Comparative analysis of the profitability of liquid fertilizer usage in dry season vegetable production in the southern guinea savannah zone of nigeria[J]. Albanian Journal of Agricultural Sciences, 2017, 16(3): 121-126.
[6] Harris R, Hernandez G, Locas C, et al. The effect of fertilizer on the growth rate of the diatom Licmophora abbreviata[J]. The Expedition, 2018, 7(1): 1-14.
[7] Moh S M, Moe K, Obo Y, et al. Effects of fermented nori () liquid fertilizer on plant growth characteristics and nutrient content of komatsuna () cultivated in vermiculite[J]. American Journal of Plant Sciences, 2018, 9(8): 1601-1617.
[8] Roach T, Bame G. Environmentally-friendly High Potassium-content Liquid Fertilizer and Uses for the Fertilizer: US9771306B2[O]. 2017.
[9] Xie Ming, Zhang Mingxin, Cooper P, et al. Osmotic dilution for sustainable greenwall irrigation by liquid fertilizer: Performance and implications[J]. Journal of Membrane Science, 2015, 494(1): 32-38.
[10] 王金武,周文琪,白海超,等. 液肥深施機(jī)差動(dòng)式雙向供肥分配裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(6):105-110.
Wang Jinwu, Zhou Wenqi, Bai Haichao, et al. Design and test of differential two-way fertilizer distribution device for liquid fertilizer deep applicator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 105-110. (in Chinese with English abstract)
[11] 王金武,潘振偉,楊欣倫,等. 深施型液態(tài)施肥機(jī)液肥轉(zhuǎn)子式轉(zhuǎn)換器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):110-115.
Wang Jinwu, Pan Zhenwei, Yang Xinlun, et al. Design and experiment of rotary converter of liquid fertilizer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 110-115. (in Chinese with English abstract)
[12] Liu T Q, Fan D J, Zhang X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research, 2015, 184(1): 80-90.
[13] Bautista E U, Koike M, Suministrado D C. PM—power and machinery: Mechanical deep placement of nitrogen in wetland rice[J]. Journal of Agricultural Engineering Research, 2001, 78(4): 333-346.
[14] Nkebiwe P M, Weinmann M, Bar-Tal A, et al. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis[J]. Field Crops Research, 2016, 196(1): 389-401.
[15] 周文琪. 深施型斜置式液肥穴施肥裝置機(jī)理分析與試驗(yàn)研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2018.
Zhou Wenqi. Mechanism Analysis and Experimental Study of Deep Application Oblique Liquid Fertilizer Hole Fertilizer Applicator[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese with English abstract)
[16] 潘振偉. 液態(tài)肥肥路轉(zhuǎn)換器及輸肥系統(tǒng)設(shè)計(jì)與試驗(yàn)研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2014.
Pan Zhenwei. Design and Experimental Study of Liquid Fertilizer Road Converter and Fertilizer Delivery System[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese with English abstract)
[17] 馮金龍. 變形齒輪式液肥深施注射機(jī)構(gòu)工作機(jī)理與試驗(yàn)研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2017.
Feng Jinlong. Working Mechanism and Experimental Study of Deep Injection Mechanism for Deformed Gear Liquid Fertilizer[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese with English abstract)
[18] 張東光. 蚯蚓粘液脫附減阻機(jī)理和仿生沃土應(yīng)用[D]. 長(zhǎng)春:吉林大學(xué),2016.
Zhang Dongguang. Resistance Reduction Mmechanism of Earthworm Mucus Desorption and Application of Biomimetic Fertile Soil[D]. Changchun: Jilin University, 2016. (in Chinese with English abstract)
[19] 張東光,吳亞麗,黃高鑒,等. 一種具有蚯蚓條播功能的沃土裝置:10141252.X[P]. 2017-06-30.
[20] 張銀平,杜瑞成,刁培松,等. 機(jī)械化生態(tài)沃土耕作模式提高土壤質(zhì)量及作物產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):33-38.
Zhang Yinping, Du Ruicheng, Diao Peisong, et al. Mechanized eco-fertile tillage mode to improve soil quality and crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 33-38. (in Chinese with English abstract)
[21] 賈洪雷,羅曉峰,王文君,等. 耕作部件耦合仿生表面結(jié)構(gòu)制備方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(S1):130-135.
Jia Honglei, Luo Xiaofeng, Wang Wenjun, et al. Fabrication method of bionic surface structure coupled with tillage components[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 130-135. (in Chinese with English abstract)
[22] 張伏,王亞飛,馬田樂(lè),等. 山羊蹄底部非規(guī)則曲面仿生形貌數(shù)學(xué)模型構(gòu)建及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):30-36.
Zhang Fu, Wang Yafei, Ma Tianle, et al. Mathematical model construction and verification of bionic topography of irregular surface at the bottom of goat’s hoof[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 30-36. (in Chinese with English abstract)
[23] 馬云海,裴高院,王虎彪,等. 挖掘機(jī)獾爪趾仿生斗齒提高其入土性能仿真與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(18):67-72.
Ma Yunhai, Pei Gaoyuan, Wang Hubiao, et al. Simulation and test of bionic bucket teeth of digger badger's claw toe to improve its soil penetration performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 67-72. (in Chinese with English abstract)
[24] 郭俊,張慶怡,Memon M S,等. 仿鼴鼠足趾排列的旋耕-秸稈粉碎鋸齒刀片設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):43-50.
Guo Jun, Zhang Qingyi, Memon M S, et al. Rotary tillage-straw crushing saw-tooth blade design and experiment imitating mole toe arrangement[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 43-50. (in Chinese with English abstract)
[25] 賈洪雷,鄭健,趙佳樂(lè),等. 仿蚯蚓運(yùn)動(dòng)多功能開(kāi)溝器設(shè)計(jì)及參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(12):62-71.
Jia Honglei, Zheng Jian, Zhao Jiale, et al. Design and parameter optimization of multi-function trencher imitating earthworm motion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 62-71. (in Chinese with English abstract)
[26] Jia Honglei, Wang Weijun, Wang Wanpeng, et al. Application of anti-adhesion structure based on earthworm motion characteristics[J]. Soil and Tillage Research, 2018, 178(1): 159-166.
[27] Gu Yunqing, Fan Tianxing, Mou Jiegang, et al. A review of bionic technology for drag reduction based on analysis of abilities the earthworm[J]. International Journal of Engineering Research in Africa, 2016, 19(1): 103-111.
[28] Li Jianqiao, Kou Bingxue, Liu Guomin, et al. Resistance reduction by bionic coupling of the earthworm lubrication function[J]. Science China Technological Sciences, 2010, 53(11): 2989-2995.
[29] 林嘉聰,劉志剛,邢行,等. 不同光照條件下蚯蚓避光性運(yùn)動(dòng)與蚓糞機(jī)械化分離參數(shù)量化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):235-241.
Lin Jiacong, Liu Zhigang, Xing Xing, et al. Quantification of light-avoiding motion and mechanical separation parameters of earthworm excrement under different light conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 235-241. (in Chinese with English abstract)
[30] 井大煒,王明友,張紅,等. 蚯蚓糞配施尿素對(duì)豇豆根系特征與根際土腐殖質(zhì)的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(1):212-219.
Jing Dawei, Wang Mingyou, Zhang Hong, et al. Effects of Vermicompost co-applied with urea on root characteristics and humus in rhizosphere soil of Cowpea[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 212-219. (in Chinese with English abstract)
[31] Ansari A, Ismail S. Earthworms and Vermiculture Biotechnology[M]//Management of Organic Waste. Rijeka, Croatia: IntechOpen,2012.
[32] Zhang Dongguang, Chen Yuxiang, Ma Yunhai, et al. Earthworm epidermal mucus: Rheological behavior reveals drag-reducing characteristics in soil[J]. Soil and Tillage Research, 2016, 158(1): 57-66.
[33] Ma Yunhai, Tong Jin, Yang Yinsheng. Statistical analysis of experimental condition effects on free abrasive wear of UHMWPE[J]. Journal of Materials Science, 2004, 39(10): 3453-3456.
[34] 劉朝宗,任露泉,佟金,等. 超高分子量聚乙稀(UHMWPE)及其復(fù)合材料的土壤粘附[J]. 農(nóng)業(yè)工程學(xué)報(bào),1998,14(4):43-47.
Liu Chaozong, Ren Luquan, Tong Jin, et al. Soil adhesion of UHMWPE and its composite materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1998, 14(4): 43-47. (in Chinese with English abstract)
Experiment and optimization of sub-soil liquid fertilizer injection device
Zhang Dongguang1,2, Zuo Guobiao3, Tong Jin4, Zhang Zhihong3※
(1.030024; 2.030031; 3.650500; 4.130025)
In recent years, subsoiling has been proposed as an alternative means of applying fertilizer into infertile subsoils. It was believed that root growth in the subsoiled channels would be stimulated in this way, and yields would be further increased as a result of the deep-placed fertilizer and better growing conditions. Filed test results from different cultivation areas increasingly have showed that subsoil fertilization resulted in increased crop yields when compared with subsoiling alone. However, two of the disadvantages associated with sub-soil liquid fertilizer application system is the severe soil adhesion phenomenon and high draft requirement, which seriously deteriorate operating quality and restrict its field application. To optimize sub-soil liquid fertilizer injection device, mitigate the problems mentioned above and then extend sub-soil liquid fertilizer application, the technical approach of bionic engineering was adopted. From the perspective of natural environment, the interactions of living organisms with natural surroundings have led to the evolution of biological systems and environmental adaptabilities. Earthworms have long been acknowledged to largely contribute to the aggregate stability of soils varying in texture, carbonate, and concentration of organic matter by burrowing, foraging, and casting on the soil surface and within the soil. Earthworms can readily move in moist or adhesive soil with soil particles seldom adhering to bodies. From the perspective of bionic engineering, the excellent properties of earthworm could be used to inspire the design and optimization of sub-soil liquid fertilizer injection device. One of the mechanisms of reducing soil adhesion for earthworms was that earthworms possess special geometrical structure on their heads and epidermis. The profile curves of earthworm head and body surface were extracted and fitted. Geometric structure surface of sub-soil liquid fertilizer injection device was designed based on the contour curve equations, and the structural parameters were determined. In order to explore the influence of working parameters on working resistance and soil adhesion during the operation of sub-soil liquid fertilizer injection device, and to optimize its operating parameters. Eventually, in the hope of ensuring and improving the working quality of the sub-soil liquid fertilizer injection device. In this study, the Box-Behnken experimental optimum design methods were used. The working parameters of tillage depth, flow rate and speed were chosen as independent variable, to evaluate the effects on response values of drag-reducing and anti-soil adhesion. By building an agricultural soil tank test platform system, the field operating environment were simulated. Then, optimization tests of working parameters of the sub-soil liquid fertilizer injection device were conducted. After that, the multivariate quadratic polynomial regression equations were built. According to the relationship between the independent variable and the response value, the working parameters of the sub-soil liquid fertilizer injection device were optimized. The results showed that the regression equation model based on soil adhesion and working resistance was adequate. It was found that the working parameters of tillage depth, flow rate and speed influenced drag resistance and soil adhesion significantly. Tillage depth and speed presented interaction effects, which influenced drag resistance and soil adhesion with high significance. The significant influences of the experimental factors for drag resistance and soil adhesion were as follows: the tillage depth, speed and flow rate. The working parameters were optimized as follows: the tillage depth was 11 cm, speed was 1.0 m/s, flow rate was 350 g/s. Under the above conditions, the mean value of the drag resistance of the selected bionic prototype was 260.01 N, the mean weight of soil adhesion was 8.73 g. This study can provide technical references for the mechanization of sub-soil fertilizing engineering.
bionics; design; earthworm; geometrical structured surface; sub-soil liquid fertilizer injection device; optimization
張東光,左國(guó)標(biāo),佟 金,張智泓. 仿生注液沃土裝置工作參數(shù)的優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):31-39.doi:10.11975/j.issn.1002-6819.2020.01.004 http://www.tcsae.org
Zhang Dongguang, Zuo Guobiao, Tong Jin, Zhang Zhihong. Experiment and optimization of sub-soil liquid fertilizer injection device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 31-39. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.004 http://www.tcsae.org
2019-06-16
2019-09-16
國(guó)家自然科學(xué)基金青年基金項(xiàng)目(51805356,51605210);山西省自然科學(xué)基金(201701D12111209);土壤環(huán)境與養(yǎng)分資源山西省重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(2016003)
張東光,博士,副教授,從事機(jī)械仿生學(xué)理論與技術(shù)的研究。Email:zhangdongguang@tyut.edu.cn
張智泓,博士,副教授,從事農(nóng)機(jī)具觸土部件仿生技術(shù)的研究。Email:zzh_0822@hotmail.com。
10.11975/j.issn.1002-6819.2020.01.004
TB17
A
1002-6819(2020)-01-0031-09