關(guān)麗君,薛云,丁文文,趙戰(zhàn)勤,2
多殺性巴氏桿菌莢膜的生物合成及其調(diào)控機制研究進展
關(guān)麗君1,薛云1,丁文文1,趙戰(zhàn)勤1,2
(1河南科技大學(xué)動物科技學(xué)院獸醫(yī)生物制品工程實驗室,河南洛陽 471003;2河南科技大學(xué)動物科技學(xué)院/河南省高等學(xué)校環(huán)境與 畜產(chǎn)品安全重點學(xué)科開放實驗室,河南洛陽 471003)
多殺性巴氏桿菌可廣泛感染多種動物,引起出血性敗血癥或傳染性肺炎。多殺性巴氏桿菌的細(xì)胞表面具有一層黏液樣的莢膜多糖,是其重要的結(jié)構(gòu)成分和毒力因子,在細(xì)菌與宿主的相互作用中起到重要作用,促進細(xì)菌粘附于宿主表面,增強細(xì)菌的毒力。多殺性巴氏桿菌莢膜的分子結(jié)構(gòu)與脊椎動物的糖胺聚糖(GAG)相似,都由重復(fù)的二糖單元聚合形成線性多糖鏈,這是該菌在感染宿主過程中進行分子偽裝、抵抗吞噬和發(fā)生免疫逃逸的重要免疫學(xué)物質(zhì)基礎(chǔ)。近年來,在多殺性巴氏桿菌莢膜的生物合成及其調(diào)控機制方面取得了一系列重要的研究進展,為多殺性巴氏桿菌莢膜的分子致病機理研究提供了一定的基礎(chǔ)知識,為多殺性巴氏桿菌莢膜多糖疫苗的研發(fā)提供了理論依據(jù)。文章系統(tǒng)闡述了多殺性巴氏桿菌莢膜的生物合成途徑及其表達調(diào)控機制,主要包括莢膜的血清分型、莢膜多糖的成分與結(jié)構(gòu)、莢膜的生物合成基因簇與功能、莢膜多糖的分子合成機制、莢膜生物合成基因簇的表達調(diào)控機制,共5個方面。依據(jù)莢膜抗原,多殺性巴氏桿菌可分為A、B、D、E、F共5種莢膜血清型。A型莢膜GAG成分是透明質(zhì)酸、D型是肝素、F型是軟骨素,分別由其相應(yīng)的二糖單元[β-葡糖醛酸/β-乙酰葡糖胺]、[β-葡糖醛酸/α-乙酰葡糖胺]、[β-葡糖醛酸/β-乙酰半乳糖胺]重復(fù)構(gòu)成;B型莢膜多糖是由阿拉伯糖、甘露糖和半乳糖以某種結(jié)構(gòu)形式聚合而成,E型莢膜多糖的成分與化學(xué)結(jié)構(gòu)尚不確定。多殺性巴氏桿菌A型、B型、D型、E型和F型莢膜多糖生物合成的相關(guān)基因以基因簇的形式存在,分為3個不同的功能區(qū),R1、R2和R3;R1區(qū)負(fù)責(zé)轉(zhuǎn)運莢膜多糖,R2區(qū)負(fù)責(zé)單糖的活化和莢膜多糖的組裝,R3區(qū)負(fù)責(zé)莢膜多糖的修飾(磷脂替換);根據(jù)R2區(qū)結(jié)構(gòu)和基因數(shù)量的不同又可將5種莢膜的生物合成基因簇分為兩類:A型、D型、F型為I類,R2區(qū)含有4個基因;B型和E型為II類,R2區(qū)含有9個基因,且利用R2區(qū)特異性基因設(shè)計引物,可以通過PCR方法快速鑒定多殺性巴氏桿菌的莢膜血清型。多殺性巴氏桿菌的莢膜GAG在細(xì)胞質(zhì)中生成,由R1區(qū)編碼蛋白所形成的ABC轉(zhuǎn)運體輸出至細(xì)胞表面,末端糖脂通過分子間氫鍵與細(xì)胞壁緊密結(jié)合,形成菌體表面的粘液狀莢膜;在多殺性巴氏桿菌莢膜GAG的生物合成過程中,位于R2區(qū)的糖基轉(zhuǎn)移酶基因決定了活化單糖的種類和組裝后莢膜多糖的類型。在多殺性巴氏桿菌莢膜的生物合成基因簇中,R1和R2區(qū)形成一個操縱子,轉(zhuǎn)錄方向一致,而R3轉(zhuǎn)錄方向與其相反,兩者的啟動子區(qū)域均位于R2和R3區(qū)域之間的DNA序列上;多殺性巴氏桿菌莢膜生物合成基因簇的轉(zhuǎn)錄過程受Fis蛋白正向調(diào)控,翻譯過程主要受Hfq蛋白正向調(diào)節(jié)。
多殺性巴氏桿菌;莢膜;糖胺聚糖;生物合成;表達調(diào)控
某些細(xì)菌在生命活動過程中,可產(chǎn)生多糖并在細(xì)胞表面以共價鍵聚合,形成一層包圍整個菌體的黏液樣物質(zhì),稱為莢膜(capsule)[1]。莢膜緊附于細(xì)菌細(xì)胞壁外,有一定的形狀和輪廓,能與周圍環(huán)境明顯區(qū)分,有較一致的密度,是細(xì)菌構(gòu)造的一部分[2]。還有一些細(xì)菌能分泌一層很疏松且與周圍外界不明顯,易與菌體脫離的黏液樣物質(zhì),稱為黏液層。細(xì)菌產(chǎn)生莢膜或黏液層,可使液體培養(yǎng)基具有黏性。有莢膜的細(xì)菌在固體培養(yǎng)基上形成表面濕潤、有光澤的光滑型或黏液型菌落,失去莢膜的細(xì)菌則形成粗糙型菌落[3]。
莢膜的化學(xué)成分因菌種而異,多數(shù)細(xì)菌莢膜由糖胺聚糖(glycosaminoglycan,GAG;曾稱粘多糖、氨基多糖或酸性多糖)組成,如多殺性巴氏桿菌()、鏈球菌();少數(shù)細(xì)菌莢膜由多肽組成,如炭疽桿菌();也有極少數(shù)細(xì)菌兩者兼有,如巨大芽孢桿菌()[4]。莢膜具有抗原性,稱為莢膜抗原或K抗原。各種細(xì)菌莢膜的具體組成及分子結(jié)構(gòu)都是不同的,具有種和型的特異性,可用于細(xì)菌的鑒定。莢膜多糖在細(xì)菌與環(huán)境之間的相互作用中扮演者重要角色[1],例如:①維持細(xì)胞形態(tài)和結(jié)構(gòu)的完整性;②當(dāng)處于營養(yǎng)貧乏的環(huán)境時,可作為營養(yǎng)儲備加以利用;③維持電荷和離子平衡;④增強細(xì)菌抵抗不良環(huán)境的能力,如干燥、金屬離子、抗生素等。同時,莢膜多糖是細(xì)菌重要的毒力因子[5-7],在細(xì)菌與宿主之間的相互作用中具有多種生物學(xué)功能[8],使其充分發(fā)揮致病作用,例如:⑤增強細(xì)菌抵抗宿主某些抑菌(殺菌)物質(zhì)的能力,如膽鹽、溶菌酶、胃和胰酶、乙醇等;⑥可抵抗免疫細(xì)胞的吞噬和補體的殺傷作用,從而使其對宿主具有侵襲能力;⑦可使細(xì)菌彼此相連,在黏膜細(xì)胞表面形成生物被膜,增強細(xì)菌耐藥性[9],這是影響細(xì)菌侵襲力的重要因素。
多殺性巴氏桿菌為巴氏桿菌科巴氏桿菌屬的一種革蘭氏陰性小桿菌,可引起多種動物的巴氏桿菌?。≒asteurellosis),主要癥狀為出血性敗血癥或傳染性肺炎[10-14]。多殺性巴氏桿菌是一種典型的產(chǎn)莢膜細(xì)菌,莢膜是其重要的結(jié)構(gòu)成分和致病因子。本文以多殺性巴氏桿菌為代表重點綜述了莢膜的血清分型、成分與結(jié)構(gòu)、基因簇與功能,及莢膜的分子生物合成與表達調(diào)控機理方面的研究進展,為系統(tǒng)了解多殺性巴氏桿菌莢膜GAG的糖化學(xué)和分子生物學(xué)提供參考。
多殺性巴氏桿菌莢膜的主要成分為多糖,具有抗原性,并具有種和型特異性,是Carter等對多殺性巴氏桿菌進行莢膜分型的抗原基礎(chǔ)。1952年,CARTER等用被動血凝試驗對多殺性巴氏桿菌莢膜抗原(K抗原)進行分類,鑒定出A、B、D和E共4種血清型(Carter分型)[15]。1987年,RIMLER和RHOADES等又從火雞中分離并鑒定出了F型多殺性巴氏桿菌[16]。1953年,CARTER等鑒定出多殺性巴氏桿菌A型莢膜的主要成分是透明質(zhì)酸(hyaluronic acid, HA);1993年,PANDIT和SMITH等通過提純、化學(xué)和免疫學(xué)分析對其進行了系統(tǒng)的驗證[17];2002年,DEANGELIS等鑒定出D型莢膜的主要成分是肝素,F(xiàn)型莢膜成分是軟骨素[18]。B型莢膜的化學(xué)結(jié)構(gòu)尚未被確定,但1993年,MUNIANDY等對B型莢膜進行水解后,鑒定出其單糖成分主要為阿拉伯糖,甘露糖和半乳糖,說明其應(yīng)為這3種單糖以某種結(jié)構(gòu)形式形成的聚合物[19],E型莢膜的成分尚未鑒定。多殺性巴氏桿菌病的病型、宿主特異性、地方流行性、致病性、免疫性等與莢膜血清型有一定的關(guān)聯(lián)[20-22]。如A型可引起禽霍亂、豬肺疫;B型可引起牛和豬等動物的敗血癥;D型和E型可引起豬、牛、兔、羊等動物的肺炎和敗血癥;F型主要發(fā)生于火雞,其致病作用目前不清楚。在我國豬群中曾以A型為主,其次是B型,D型少見。但是我們的研究最新發(fā)現(xiàn)A型和D型為主要流行血清型,而B型罕見。另外,發(fā)現(xiàn)A型菌株的毒力普遍強于D型,這表明多殺性巴氏桿菌的血清型在一定程度上可作為其毒力的標(biāo)志。相同血型的不同菌株,其毒力也存在較大差異[23-26]。
多殺性巴氏桿菌莢膜主要由GAG組成,呈黏液狀包圍在細(xì)菌細(xì)胞壁外。GAG屬于雜多糖,為不分支的長鏈聚合物,由含己糖醛酸和己糖胺成分的重復(fù)二糖單元構(gòu)成。二糖單元的通式為:[己糖醛酸-己糖胺]n。二糖單位中至少有一個單糖殘基為帶有負(fù)電荷的羧基,因此GAG是呈酸性的陰離子多糖鏈。不同多殺性巴氏桿菌莢膜的GAG各有差異,A型莢膜的透明質(zhì)酸是由二糖單元β-D-葡糖醛酸(β-D-GlcUA)和β-D-N-乙酰葡糖胺(β-D-N-GlcNAc)通過1,3-糖苷鍵連接而成,相鄰二糖單位之間通過1,4-糖苷鍵聚合[27-28];D型莢膜的肝素是由二糖單元β-D-GlcUA和α-D-N-GlcNAc通過1,4-糖苷鍵連接而成,相鄰二糖單位之間也通過1,4-糖苷鍵聚合[18];F型莢膜的軟骨素是由二糖單元β-D-GlcUA和β-D-N-乙酰半乳糖胺(β-D-N-GalNAc)通過1,3-糖苷鍵連接而成,相鄰二糖單位之間通過1,4-糖苷鍵聚合。
值得注意的是,哺乳動物細(xì)胞中存在與A型、D型和F型多殺性巴氏桿菌莢膜結(jié)構(gòu)相同或相似的GAG[29],且是細(xì)胞外基質(zhì)的重要成分[30]。其中,哺乳動物HA的結(jié)構(gòu)與多殺性巴氏桿菌完全相同,都不發(fā)生分子結(jié)構(gòu)的差向異構(gòu)化和硫酸化,而哺乳動物肝素或軟骨素中的D-GlcUA會發(fā)生差向異構(gòu)化,變?yōu)長-艾杜糖醛酸(L-IdoUA)結(jié)構(gòu),并進一步發(fā)生硫酸化。因此,后兩者在多殺性巴氏桿菌中以硫酸乙酰肝素前體和硫酸軟骨素前體的形式存在,而哺乳動物細(xì)胞中是以成熟的形式存在。多殺性巴氏桿菌GAG莢膜與宿主糖胺聚糖的相似性[31],是GAG莢膜抵抗吞噬、逃避宿主防御系統(tǒng)的重要免疫學(xué)基礎(chǔ)。
多殺性巴氏桿菌莢膜合成的相關(guān)基因以基因簇的形式存在[32-33],分為3個不同的功能區(qū),R1、R2和R3。在不同血清型多殺性巴氏桿菌中,R1和R3區(qū)域均高度保守,但R2區(qū)域具有明顯不同,并依此將多殺性巴氏桿菌莢膜分為兩類[34]。A、D、F型為I類[33, 35-36],其莢膜的生物合成基因簇約為16 kb[33],含有10個ORFs(GenBank accession nos. AF067175.2、CP003313[35]、AF302467),如表1所示。B和E型為II類[35-36],其莢膜的生物合成基因簇約為21 kb,含有15個ORFs(GenBank accession nos. AF169324、AF302466),如表2所示。多殺性巴氏桿菌莢膜I類(II類)基因簇的R1區(qū)包含4個基因(或),編碼形成的4個蛋白質(zhì)分子能形成一種復(fù)合體,其功能是將胞內(nèi)合成的GAG轉(zhuǎn)運到細(xì)胞表面[34](表1, 2),R3區(qū)包含2個基因(或),編碼形成的蛋白質(zhì)負(fù)責(zé)GAG的磷脂替換[33],使其錨定到細(xì)胞表面上[37]。
多殺性巴氏桿菌I類(A、D、F型)和II類(B、E型)莢膜生物合成基因簇的主要區(qū)別位于R2區(qū)域,該區(qū)域的主要功能是單糖的活化和GAG的組裝。I類基因簇的R2區(qū)域含有4個基因,A型為,D型為,F(xiàn)型為(表1)。其中,,和中對應(yīng)基因編碼的均是同源產(chǎn)物,在GAG的合成中均具有特定的生物學(xué)功能(表1);而和基因編碼產(chǎn)物不同,三者分別編碼多殺性巴氏桿菌的透明質(zhì)酸合成酶(hyaluronicacidsynthase, PmHAS)[38]、肝素合成酶(heparosansynthase, PmHS)[39]和軟骨素合成酶(chondroitinsynthase, PmCS)[40],這三種酶的主要功能就是進行A、D、F型莢膜GAG的分子合成。II類基因簇的R2區(qū)域含有9個基因,B型為,E型為。B型和E型對應(yīng)基因編碼的均是同源產(chǎn)物[32, 36],但是除了和,其他5個基因(或)的功能均不清楚(表1)。另外,和均是假定的糖基轉(zhuǎn)移酶,編碼產(chǎn)物的C末端具有55%相似性;和不具有相似性,是B型或E型獨有的基因,且功能尚不清楚(表1)。TOWNSEND等利用多殺性巴氏桿菌莢膜生物合成基因簇R2區(qū)域中的特異性基因(A型,B型,D型,F(xiàn)型和E型)設(shè)計引物,建立了鑒定5種莢膜血清型多殺性巴氏桿菌的PCR方法[36],該方法具有快速、簡便、準(zhǔn)確等優(yōu)點,得到廣泛應(yīng)用,已基本取代傳統(tǒng)的莢膜血清因子鑒定方法。筆者實驗室利用此方法對2009—2015年分離的296株豬源多殺性巴氏桿菌進行了PCR分型,發(fā)現(xiàn)其主導(dǎo)血清型是A型(占49.3%)和D型(占47.6%)菌株[23]。
表1 I類莢膜生物合成基因簇及編碼蛋白的功能
表2 II類莢膜生物合成基因簇及編碼蛋白的功能
多殺性巴氏桿菌的莢膜GAG在細(xì)胞質(zhì)中生成,經(jīng)ABC轉(zhuǎn)運體[1, 41](ATP-binding cassette transporter)輸出,末端糖脂通過分子間氫鍵與細(xì)胞壁緊密結(jié)合,形成致病菌表面的黏液狀莢膜。其合成過程主要包括:(1)GAG合成的起始;(2)GAG二糖單元的延伸;(3)GAG的輸出。
多殺性巴氏桿菌莢膜GAG生物合成的起始反應(yīng)是GAG糖脂末端的形成。具體過程可概括為3步:首先,在細(xì)胞質(zhì)中,糖基轉(zhuǎn)移酶PhyB(表1)將第一個β-2-酮-3-脫氧辛糖酸殘基(β-3-deoxy-D-- oct-2-ulosonic acid, β-KDO)添加至溶血甘油磷脂(lysophosphatidylglycerol, lyso-PG)受體上[42];然后,糖基轉(zhuǎn)移酶PhyA繼續(xù)添加多個β-KDO殘基,形成多聚β-KDO鏈;最后,起始糖基轉(zhuǎn)移酶HyaE(表1)將活化的單糖即尿苷二磷酸-單糖(UDP-單糖)添加至多聚β-KDO鏈上,形成GAG糖脂末端的第一個單糖殘基;后續(xù)即進入GAG二糖單元的延伸環(huán)節(jié)。其中,β-KDO是一種結(jié)構(gòu)獨特的八碳糖,起橋梁作用,使細(xì)菌的表面多糖結(jié)合到相應(yīng)的脂質(zhì)上[43]。
多殺性巴氏桿菌A型、D型和F型莢膜GAG二糖單元的延伸及聚合方式基本一致[28, 38-40, 44]。以A型為例,由PmHAS將活化的單糖依次添加到與KDO相連的糖基受體末端[45],延伸GAG糖鏈,并釋放UDP,聚合形成透明質(zhì)酸,即A型莢膜GAG。在此過程中,PmHAS作為一種雙功能酶,具有兩個糖基轉(zhuǎn)移酶活性位點,分別具有轉(zhuǎn)移UDP-β-D-GlcUA和UDP-β-D-N-GlcNAc的功能(即形成A型莢膜GAG的二糖單元)[46]。D型和F型莢膜GAG二糖單元的延伸方式與A型相似[43,47-49],其糖基轉(zhuǎn)移酶分別是PmHS和PmCS。GAG聚合的反應(yīng)式可概括如下[29]:n UDP-GlcUA+n UDP-HexNAc→2n UDP+ [GlcUA- HexNAc]n,其中HexNAc為GlcNAc或GalNAc,n為二糖單元聚合程度,A型莢膜中n=103- 104,D型和F型莢膜中n=20-100[40]。
多殺性巴氏桿菌莢膜GAG從胞質(zhì)轉(zhuǎn)運至細(xì)胞表面主要依賴于其ABC轉(zhuǎn)運系統(tǒng)[50]。在多殺性巴氏桿菌中,其莢膜生物合成基因簇R1區(qū)域包含4個基因(或;表1),編碼的4個蛋白質(zhì)分子能形成一種復(fù)合體,即ABC轉(zhuǎn)運系統(tǒng)。該系統(tǒng)中,HexA是一種ATP結(jié)合蛋白,提供轉(zhuǎn)運GAG的能量。HexB是一種內(nèi)膜蛋白,HexC是一種具有周質(zhì)結(jié)構(gòu)域的內(nèi)膜蛋白,HexD是一種外膜蛋白(脂蛋白),這三種蛋白形成轉(zhuǎn)運GAG的跨膜通道,在ATP結(jié)合蛋白HexA的作用下,GAG糖鏈通過HexBCD形成的跨膜通道,依次穿過細(xì)胞內(nèi)膜、周質(zhì)空間和細(xì)胞外膜,并通過磷脂共價結(jié)合于細(xì)胞表面[37]??偨Y(jié)相關(guān)文獻,我們繪制了多殺性巴氏桿菌莢膜生物合成的分子機制路徑,如圖1所示。
圖1 多殺性巴氏桿菌莢膜生物合成的分子機制
在多殺性巴氏桿菌莢膜的生物合成基因簇中,R1和R2區(qū)形成一個操縱子,轉(zhuǎn)錄方向一致,而R3轉(zhuǎn)錄方向與其相反,兩者的啟動子區(qū)域均位于R2和R3區(qū)域之間的DNA序列上[32-33]。以A型莢膜的生物合成基因簇為例,其R2和R3區(qū)的啟動子位于和基因的間隔區(qū),多殺性巴氏桿菌RNA聚合酶中負(fù)責(zé)識別該啟動子并啟動轉(zhuǎn)錄的σ亞基為σ70因子[33],啟動子-35區(qū)與-10區(qū)間隔17 bp。R1和R2區(qū)(兩者位于同一個操縱子上)的轉(zhuǎn)錄起始點(+1)位于起始密碼子上游37 bp處[51],核糖體結(jié)合位點(ribosome binding site, RBS)位于其上游8 bp處,終止子位于終止密碼子下游4 bp處[33]。根據(jù)相關(guān)文獻與A型莢膜基因簇核苷酸序列(GenBank accession nos. AF067175.2),得到其R2和R3基因間隔區(qū)的轉(zhuǎn)錄調(diào)控序列(圖2)。關(guān)于莢膜生物合成基因簇的R3區(qū),目前只鑒定出其轉(zhuǎn)錄方向與R1和R2區(qū)相反,且該啟動子不是由RNA聚合酶的σ70因子所識別,轉(zhuǎn)錄及其相關(guān)調(diào)控序列均不是十分清楚[33]。
圖2 多殺性巴氏桿菌A型莢膜生物合成基因簇R2和R3基因間隔區(qū)的轉(zhuǎn)錄調(diào)控序列
多殺性巴氏桿菌莢膜生物合成基因簇的轉(zhuǎn)錄過程主要由調(diào)節(jié)因子(factorforinversionstimulation, Fis)蛋白調(diào)控[51-53]。Fis蛋白是一種核相關(guān)蛋白(nucleoid -associated proteins, NAPs),含有99個氨基酸,在第73—94氨基酸殘基之間存在一個HTH DNA結(jié)合區(qū)(helix–turn–helix (HTH) DNA binding motif),是與莢膜合成基因簇啟動子區(qū)域結(jié)合的部位,正向調(diào)控莢膜GAG基因的轉(zhuǎn)錄。在多殺性巴氏桿菌莢膜生物合成基因簇的啟動子區(qū)域,存在2個Fis蛋白結(jié)合位點(圖5)。多殺性巴氏桿菌莢膜的表達量決定于Fis蛋白調(diào)控下的基因轉(zhuǎn)錄水平,的突變可導(dǎo)致其喪失調(diào)控功能;此時,即使莢膜核苷酸序列完整存在,莢膜也不被表達,從而產(chǎn)生無莢膜的菌株[51-54]。
多殺性巴氏桿菌全基因序列約為2.4 Mb[55],與莢膜生物合成基因簇相距較遠(yuǎn)。例如,A型HB01株(GenBank accession nos. CP006976),其位于110 760—111 059 bp,莢膜生物合成基因簇位于868 702—883 642 bp處。事實上,F(xiàn)is蛋白是一種整體轉(zhuǎn)錄調(diào)控子(global transcriptional regulator),還參與其他多種巴氏桿菌毒力基因的轉(zhuǎn)錄調(diào)節(jié),如脂多糖(Lipopolysaccharide, LPS)生物合成的基因簇、絲狀血凝素B2(filamentous hemagglutinin B2, pfhB2)基因、巴氏桿菌脂蛋白E(lipoprotein E, plpE)基因等,是多殺性巴氏桿菌重要的毒力基因調(diào)節(jié)因子[51]。
多殺性巴氏桿菌莢膜生物合成基因簇的翻譯主要受Hfq蛋白(hostfactorforQβ, Hfq)控制[56]。Hfq蛋白最初發(fā)現(xiàn)于大腸桿菌,被認(rèn)為是大腸桿菌噬菌體Qβ進行有效復(fù)制所必需的一種宿主因子,其名字Hfq也由此得來[57]。在多殺性巴氏桿菌中,Hfq是一種RNA伴侶蛋白[58],通過輔助小RNA(small RNA, sRNA)分子GcvB與莢膜合成相關(guān)基因的mRNA相互作用來正向調(diào)節(jié)該基因的表達,其作用方式是:首先Hfq分子與sRNA分子GcvB結(jié)合形成Hfq-GcvB復(fù)合體,該復(fù)合體可與mRNA上特定的seed序列(seed region)結(jié)合并打開靶標(biāo)mRNA的5′端非翻譯區(qū)(untranslated region,UTR)上的二級結(jié)構(gòu),從而暴露核糖體結(jié)合位點(ribosome binding site, RBS)和翻譯起始密碼子(AUG),然后核糖體與RBS和AUG區(qū)域結(jié)合,激活被抑制的mRNA,最終使翻譯開始啟動[59-60]。其中,小RNA分子GcvB與靶標(biāo)mRNA上結(jié)合的seed序列為5′-AACACAACAU-3′,而GcvB上對應(yīng)的互補序列為5′-AUGUUGUGUU-3′,兩者均是AU富集的單鏈區(qū)域。
GAG的重要生理功能及其與重大疾病的密切關(guān)系近年來受到國內(nèi)外科學(xué)家的廣泛關(guān)注[61-65],莢膜多糖是多殺性巴氏桿菌重要的毒力因子和保護性抗原,其血清分型、成分與結(jié)構(gòu)、生物合成的研究,有利于系統(tǒng)了解多殺性巴氏桿菌莢膜GAG的分子生物學(xué),并為其致病機理的研究和多糖疫苗的開發(fā)提供新思路。
20世紀(jì)30年代,人們已經(jīng)開始研發(fā)細(xì)菌莢膜多糖,希望通過誘導(dǎo)多糖特異性抗體以保護致病菌[66-67]。目前已有多種重要的人用莢膜多糖多價疫苗研發(fā)成功,主要包括23價肺炎鏈球菌莢膜多糖疫苗[68]、4價腦膜炎球菌莢膜多糖疫苗[69]和B型流感嗜血桿菌莢膜多糖疫苗[70],這些疫苗對預(yù)防和控制疾病發(fā)揮了巨大的作用,降低了相關(guān)疾病的發(fā)病率,在全世界各地得到了廣泛使用。為進一步提高莢膜多糖對2歲以下兒童和老年人的免疫反應(yīng),莢膜多糖與載體蛋白耦聯(lián)的莢膜多糖結(jié)合疫苗研究逐漸興起,如肺炎鏈球菌莢膜多糖與白喉無毒突變體(CRM197)聯(lián)合的13價肺炎球菌結(jié)合疫苗(PCV-13)[71]、腦膜炎球菌A群、C群、Y群、W-135群與CRM197聯(lián)合的4價腦膜炎球菌結(jié)合疫苗(Menveo)[72]、B型流感嗜血桿菌莢膜多糖與CRM197聯(lián)合的結(jié)合疫苗(PRP-CRM)或與破傷風(fēng)類毒素聯(lián)合的(PRP-T)結(jié)合疫苗[70]。獸用莢膜多糖疫苗的研發(fā)起步較晚,目前的研究主要集中于奶牛乳房炎疫苗的開發(fā)[73-74],現(xiàn)已經(jīng)研發(fā)出金黃色葡萄球菌莢膜多糖與綠膿桿菌外毒素A耦聯(lián)的結(jié)合疫苗(StaphVAX)[75]或與破傷風(fēng)類毒素耦聯(lián)的結(jié)合疫苗[76-77]。
多殺性巴氏桿菌分為A型、B型、D型、E型和F型5種莢膜血清型,因此,以莢膜多糖為抗原,研發(fā)其多價疫苗值得嘗試。由于GAG莢膜與人細(xì)胞的結(jié)構(gòu)成分相似,需對其抗原性作深入研究[78]。多殺性巴氏桿菌A型莢膜多糖的成分是透明質(zhì)酸,其可被宿主細(xì)胞上表達的CD44蛋白識別[79],以此可進一步研究多殺性巴氏桿菌莢膜透明質(zhì)酸的結(jié)合疫苗。了解莢膜多糖的分子合成和基因表達的機制至關(guān)重要,有助于進一步分析分子致病機制和免疫機理。同時,對于未來開發(fā)特異性的靶標(biāo)識別藥物具有重要意義。即在不破壞宿主細(xì)胞GAG的前提下,能特異性鑒別細(xì)菌莢膜或抑制細(xì)菌莢膜形成的藥物。
關(guān)于多殺性巴氏桿菌莢膜GAG的生物合成與調(diào)控研究方面,多殺性巴氏桿菌A型、D型和F型的莢膜GAG的分子合成機制已經(jīng)基本明確,但是尚需對B型和E型莢膜GAG的化學(xué)結(jié)構(gòu)進行解析。R1和R2區(qū)轉(zhuǎn)錄與翻譯的調(diào)控序列已經(jīng)基本清楚,但是R3區(qū)轉(zhuǎn)錄與翻譯的調(diào)控序列仍需進一步研究。在多殺性巴氏桿菌莢膜GAG的生物合成過程中,GAG糖基轉(zhuǎn)移酶揭示了莢膜多糖生物合成的本質(zhì):GAG莢膜不同于自然界中廣泛存在的同多糖(如淀粉、糖原、纖維素等),莢膜多糖是由雙功能糖基轉(zhuǎn)移酶控制的二糖聚合物,不含支鏈,尚需對GAG糖基轉(zhuǎn)移酶的三維分子結(jié)構(gòu)及其詳細(xì)的分子作用機制進行闡釋。
[1] ZEIDANAA, POULSENVK, JANZENT, BULDOP, DERKXPM F, OREGAARDG, NEVESAR. Polysaccharideproductionbylacticacidbacteria: fromgenestoindustrialapplications., 2017, 41(supp_1): S168-S200.
[2] LISTON S D, MCMAHON S A, LE BAS A, SUITS M D L, NAISMITH J H, WHITFIELD C. Periplasmic depolymerase provides insight into ABC transporter-dependent secretion of bacterial capsular polysaccharides., 2018, 115(21): E4870-E4879.
[3] CARTER G R, BIGLAND C H. Dissociation and virulence in strains ofisolated from a variety of lesions., 1953, 17(17): 473-479.
[4] 王楷宬, 陸承平, 范偉興. 細(xì)菌莢膜多糖. 微生物學(xué)報, 2011, 51(12):1578-1584.
Wang K C, LU C P, FAN W X. Bacterial capsular polysaccharide., 2011, 51(12):1578-1584. (in Chinese)
[5] KHAMESIPOUR F, MOMTAZ H, MAMOREH MA. Occurrence of virulence factors and antimicrobial resistance instrains isolated from slaughter cattle in Iran., 2014, 5: 536.
[6] FERNANDEZ-ROJAS M A, VACA S, REYES-LOPEZ M, DE LA GARZA M, AGUILAR-ROMERO F, ZENTENO E, SORIANO- VARGAS E, NEGRETE-ABASCAL E. Outer membrane vesicles ofcontain virulence factors., 2014, 3(5): 711-717.
[7] AHMAD T A, RAMMAH S S, SHEWEITA S A, HAROUN M, EI-SAYED L H. Development of immunization trials against., 2014, 32(8): 909-917.
[8] LITSCHKO C, OLDRINI D, BUDDE I, BERGER M, MEENS J, GERARDY-SCHAHN R, BERTI F, SCHUBERT M, FIEBIG T. A new family of capsule polymerases generates teichoic acid-like capsule polymers in Gram-negative pathogens., 2018, 9(3): e00641-18.
[9] 姜鵬. Vibrio sp. QY101胞外多糖的分離純化及抗細(xì)菌生物被膜活性研究[D]. 中國海洋大學(xué), 2011.
JIANG P. The studies on isolation, purification and antlbiofilm activities of the exopolysaccharide fromsp. QY 101[D]., 2011. (in Chinese)
[10] 顧宏偉, 陸承平. 兔多殺性巴氏桿菌鐵調(diào)節(jié)外膜蛋白的小鼠免疫效果分析. 中國農(nóng)業(yè)科學(xué), 2007, 40(5): 1073-1078.
GU H W, LU C P. Evaluation of the immunization of iron-regulated outer membrane proteins (iromps) of leporidin mice model., 2007, 40(5): 1073-1078. (in Chinese)
[11] KATECHAKIS N, MARAKI S, DRAMITINOU I, MAROLACHAKI E, KOUTLA C, IOANNIDOU E. An unusual case ofbacteremic meningitis., 2019, 12(1): 95-96.
[12] SUDARYATMA P E, NAKAMURA K, MEKATA H, SEKIGUCHI S, KUBO M, KOBAYASHI I, SUBANGKIT M, GOTO Y, OKABAYASHI T. Bovine respiratory syncytial virus infection enhancesadherence on respiratory epithelial cells.2018, 220: 33-38.
[13] TUN A E, BENEDICENTI L, GALBAN E M.meningoencephalomyelitis in a dog secondary to severe periodontal disease.2018, 6(6): 1137-1141.
[14] PAK S, VALENCIA D, DECKER J, VALENCIA V, ASKAROGLU Y.pneumonia in an immunocompetent patient: case report and systematic review of literature.2018, 35(3):237.
[15] CARTER G R. The type specific capsular antigen of., 1952, 30(1): 48-53.
[16] RIMLER R B, RHOADES K R. Serogroup F. a new capsule serogroup of., 1987, 25(4): 615-618.
[17] PANDITt K K, SMITH J E. Capsular hyaluronic acid intype A and its counterpart in type D., 1993, 54(1): 20-24.
[18] DEANGELIS P L, GUNAY N S, TOIDA T, MAO W J, LINHARDT R J. Identification of the capsular polysaccharides of type D and Fas unmodified heparin and chondroitin, respectively., 2002, 337(17): 1547-1552.
[19] MUNIANDY J B, MUKKUR T. Virulence, purification, structure and protective properties of the putative capsular polysaccharide oftype 6:B., 1993: 47-54.
[20] WILSON B A, HO M.: from zoonosis to cellular microbiology., 2013, 26(3): 631-655.
[21] WILKIE I W, HARPER M, BOYCE J D, ADLER B.: diseases and pathogenesis., 2012, 361(9):1-22.
[22] ASKI H S, TABATABAEI M. Occurrence of virulence-associated genes inisolates obtained from different hosts., 2016, 96: 52-57.
[23] 趙戰(zhàn)勤, 劉倩玉, 席曉劍, 王樂, 鄧雯, 薛云, 張春杰. 豬源A型和D型多殺性巴氏桿菌強毒菌株的生物學(xué)特性比較研究. 中國預(yù)防獸醫(yī)學(xué)報, 2016, 38(5): 366-370.
ZHAO Z Q, LIU Q Y, XI X J, WANG L, DENG W, XUE Y, ZHANG C J. A comparative study on biological characterization ofserogroups A and D isolates from swine in China., 2016, 38(5): 366-370. (in Chinese)
[24] 趙戰(zhàn)勤, 喬鵬蕓, 劉倩玉, 薛云, 丁軻. 多殺性巴氏桿菌的分型及其滅活疫苗研究進展. 中國預(yù)防獸醫(yī)學(xué)報, 2017, 39(7): 600-604.
ZHAO Z Q, QIAO P Y, LIU Q Y, XUE Y, DING K. Advances in the classification and inactivated vaccine of., 2017, 39(7): 600-604. (in Chinese)
[25] 席曉劍, 趙戰(zhàn)勤, 薛云, 龍塔, 王樂, 劉會勝. 豬源多殺性巴氏桿菌的病原流行病學(xué)及其毒力特性. 中國獸醫(yī)學(xué)報, 2015, 35(8): 1205-1210.
XI X J, ZHAO Z Q, XUE Y, LONG T, WANG L, LIU H S. Prevalence and virulence ofin pig farms in central China., 2015, 35(8): 1205-1210. (in Chinese)
[26] LIU H S, ZHAO Z Q, XI X J, XUE Q, LONG T, XUE Y. Occurrence ofamong pigs with respiratory disease in China between 2011 and 2015., 2017, 70: 2.
[27] ROSNER H, GRIMMECKE H D, KNIREL Y A, SHASHKOV A S. Hyaluronic acid and a (1→4)-β-d-xylan, extracellular polysaccharides of(Carter type A) strain 880., 1992, 223(4): 329.
[28] DEANGELIS P L. Hyaluronan synthases: fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses., 1999, 56(7/8): 670-682.
[29] DEANGELIS P L. Microbial glycosaminoglycan glycosyltransferases., 2002, 12(1): 9R-16R.
[30] TOWNLEY R A, BULOW H E. Deciphering functional glycosaminoglycan motifs in development., 2018, 50: 144-154.
[31] DEANGELIS P L. Evolution of glycosaminoglycans and their glycosyltransferases: implications for the extracellular matrices of animals and the capsules of pathogenic bacteria., 2010, 268(3): 317-326.
[32] BOYCE J D, CHUNG J Y, ADLER B. Genetic organisation of the capsule biosynthetic locus ofM1404 (B:2)., 2000, 72:121-134.
[33] CHUNG J Y, ZHANG Y, ADLER B. The capsule biosynthetic locus ofA:1., 1998, 166(2): 289-296.
[34] BOYCE J D, CHUNG J Y, ADLER B.capsule: composition, function and genetics., 2000, 83(1): 153-160.
[35] LIU W, YANG M, XU Z, ZHENG H, LIANG W, ZHOU R, WU B, CHEN H. Complete genome sequence ofHN06, a toxigenic strain of serogroup D., 2012, 194(12): 3292-3293.
[36] TOWNSEND K M, BOYCE J D, CHUNG J Y, FROST A J, ADLER B. Genetic organization ofcap loci and development of a multiplex capsular PCR typing system., 2001, 39(3): 924-929.
[37] ROBERTS I S. The biochemistry and genetics of capsular polysaccharide production in bacteria., 1996, 50: 285-315.
[38] DEANGELIS P L. Enzymological characterization of thehyaluronic acid synthase., 1996, 35(30): 9768-9771.
[39] DEANGELIS P L, WHITE C L. Identification and molecular cloning of a heparosan synthase fromtype D., 2002, 277(9): 7209-7213.
[40] DEANGELIS P L, PADGETT-MCCUE A J. Identification and molecular cloning of a chondroitin synthase fromtype F., 2000, 275(31): 24124-24129.
[41] WILLIS L M, STUPAK J, RICHARDS M R, LOWARY T L, LI J, WHITFIELD C. Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens., 2013, 110(19): 7868-7873.
[42] WILLIS L M, WHITFIELD C. KpsC and KpsS are retaining 3-deoxy-D-manno-oct-2-uloso-nic acid (Kdo) transferases involved in synthesis of bacterial capsules., 2013, 110(51): 20753-20758.
[43] OVCHINNIKOVA O G, MALLETTE E, KOIZUMI A, LOWARY T L, KIMBER M S, WHITFIELD C. Bacterial beta-Kdo glycosyltransferases represent a new glycosyltransferase family (GT99)., 2016, 113(22): E3120-3129.
[44] DEANGELIS P L, WHITE C L. Identification of a distinct, cryptic heparosan synthase fromtypes A, D, and F., 2004, 186(24): 8529-8532.
[45] DEANGELIS P L. Molecular directionality of polysaccharide polymerization by thehyaluronan synthase., 1999, 274(37): 26557-26562.
[46] JING W, DEANGELIS P L. Dissection of the two transferase activities of thehyaluronan synthase: two active sites exist in one polypeptide., 2000, 10(9): 883-889.
[47] KANE T A, WHITE C L, DEANGELIS P L. Functional characterization of PmHS1, aheparosan synthase., 2006, 281(44): 33192-33197.
[48] LINHARDT R J, DORDICK J S, DEANGELIS P L, LIU J. Enzymatic synthesis of glycosaminoglycan heparin., 2007, 33(5): 453-465.
[49] TRACY B S, AVCI F Y, LINHARDT R J, DeAngelis P L. Acceptor specificity of the Pasteurella hyaluronan and chondroitin synthases and production of chimeric glycosaminoglycans., 2007, 282(1): 337-344.
[50] WILLIS E. Structure and biosynthesis of capsular polysaccharides synthesized via ABC transporter-dependent processes., 2013,378: 35-44.
[51] STEEN J A, STEEN J A, PAUL H, TORSTEN S, IAN W, MARINA H, BEN A, BOYCE J D. Fis is essential for capsule production inand regulates expression of other important virulence factors., 2010, 6(2): e1000750.
[52] DORMAN C J, DEIGHAN P. Regulation of gene expression by histone-like proteins in bacteria., 2003, 13(2): 179-184.
[53] BAGCHI A. Structural characterization of Fis - a transcriptional regulator from pathogenicessential for expression of virulence factors., 2015, 554(2): 249-253.
[54] WATT J M, SWIATLO E, WADE M M, CHAMPLIN F R. Regulation of capsule biosynthesis in serotype A strains of., 2003, 225(1): 9-14.
[55] PENG Z, LIANG W, LIU W, WU B, TANG B, TAN C, ZHOU R, CHEN H. Genomic characterization ofHB01, a serotype A bovine isolate from China., 2016, 581(1): 85-93.
[56] MEGROZ M, KLEIFELE O, WRIGHT A, POWELL D, HARRISON P, ADLER B, HARPER M, BOYCE J D. The RNA-binding chaperone Hfq is an important global regulator of gene expression inand plays a crucial role in production of a number of virulence factors, including hyaluronic acid capsule., 2016, 84(5):1361-1370.
[57] CARMICHAEL G G. Isolation of bacterial and phage proteins by homopolymer RNA-cellulose chromatography., 1975, 250(15): 6160-6167.
[58] FELICIANO J R, GRILO A M, GUERREIRO S I, Sousa S A, Leitao J H. Hfq: a multifaceted RNA chaperone involved in virulence., 2016, 11(1): 137-151.
[59] GULLIVER E L, WRIGHT A, LUCAS D D, MEGROZ M, KLEIFELD O, SCHITTENHELM R B, POWELL D R, SEEMANN T, BULITTA J B, HARPER M, BOYCE J D. Determination of the small RNA GcvB regulon in the Gram-negative bacterial pathogenand identification of the GcvB seed binding region., 2018, 24(5): 704-720.
[60] FROHLICH K S, VOGEL J. Activation of gene expression by small RNA., 2009, 12(6): 674-682.
[61] ZHOU G, GROTH T. Host responses to biomaterials and anti- inflammatory design-a brief review., 2018: e1800112.
[62] BAT-ERDENE U, QUAN E, CHAN K, LEE B M, MATOOK W, LEE K Y, ROSALES J L. Neutrophil TLR4 and PKR are targets of breast cancer cell glycosaminoglycans and effectors of glycosaminoglycan- induced APRIL secretion., 2018, 7(6): 45.
[63] GOVINDARAJU P, TODD L, SHETYE S, MONSLOW J, PURE E. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing., 2019, 75-76: 314-330.
[64] BOUGATEF H, KRICHEN F, CAPITANI F, AMOR I B, MACCARI F, MANTOVANI, V, GALEOTTI F, VOLPI N, BOUGATEF A, SILA A. Chondroitin sulfate or dermatan sulfate from corb (Sciaena umbra) skin: purification, structural analysis and anticoagulant effect., 2018, 196: 272-278.
[65] JIAN W H, WANG H C, KUAN C H, Chen M H, Wu H C, Sun J S, Wang T W. Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration., 2018, 174: 17-30.
[66] FINLAND M, SUTLIFF W D. Specific antibody response of human subjects to intracutaneous injection of pneumococcus products., 1932, 55(6): 853-865.
[67] HOAGLAND C L, BEESON P B, GOEBEL W F. The capsular polysaccharide of the type XIV pneumococcus and its relationship to the specific substances of human blood., 1938, 88(2281): 261-263.
[68] ROBBINS J B, AUSTRIAN R, LEE C J, RASTOGI S C, SCHIFFMAN G, HENRICHSEN J, M?KEL? P H, BROOME C V, FACKLAM R R, TIESJEMA R H. Considerations for formulating the second-generation pneumococcal capsular polysaccharide vaccine with emphasis on the cross-reactive types within groups., 1983, 148(6): 1136-1159.
[69] HARRISON L H. Prospects for vaccine prevention of meningococcal infection., 2006, 19(1): 142-164.
[70] ZAREI A E, ALMEHDAR H A, REDWAN E M. Hib vaccines: past, present, and future perspectives., 2016, 2016: 7203587.
[71] CILLóNIZ C, AMARO R,TORRES A. Pneumococcal vaccination., 2016, 29(2): 187-196.
[72] HARRISON L H, MOHAN N, KIRKPATRICK P. Meningococcal group A, C, Y and W-135 conjugate vaccine., 2010, 9(6): 429-430.
[73] 劉秀麗, 郝永清, 郭宇. 奶牛乳房炎金黃色葡萄球菌莢膜多糖研究概況. 動物醫(yī)學(xué)進展, 2011, 32(3): 117-120.
LIU X L, HAO Y Q, GUO Y. Progress on capsular polysaccharides ofisolated from cow mastitis., 2011, 32(3): 117-120. (in Chinese)
[74] 赫娜, 王長法, 楊宏軍, 何洪彬, 楊少華, 王立群, 高運東, 仲躋峰. 牛源金黃色葡萄球菌突變株的篩選、鑒定及其免疫原性的研究. 中國農(nóng)業(yè)科學(xué), 2010, 43(10): 2174-2181.
HE N, WANG C F, YANG H J, HE H B, YANG S H, WANG L Q, GAO Y D, ZHONG J F. Screening an attenuated strain and immunogenicity in mice of a bovine mastitismutant., 2010, 43(10): 2174-2181. (in Chinese)
[75] FATTOM A, FULLER S, PROPST M, WINSTON S, MUENZ L, HE D, NASO R, HORWITH G. Safety and immunogenicity of a booster dose oftypes 5 and 8 capsular polysaccharide conjugate vaccine (StaphVAX) in hemodialysis patients., 2004, 23(5): 656-663.
[76] 張哲. 奶牛乳房炎金黃色葡萄球菌莢膜多糖蛋白結(jié)合疫苗的研究[D]. 甘肅農(nóng)業(yè)大學(xué), 2017.
ZHANG Z. Study on protein conjugate polysaccharide vaccine offor bovine mastitis[D]., 2017. (in Chinese)
[77] LATTAR S M, NOTO LLANA M, DENO?L P, GERMAIN S, BUZZOLA F R, LEE J C, SORDELLI D O. Protein antigens increase the protective efficacy of a capsule-based vaccine againstin a rat model of osteomyelitis., 2014, 82(1): 83-91.
[78] CRESS B F, ENGLAENDER J A, HE W, KASPER D, LINHARDT R J, KOFFAS M A. Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules., 2014, 38(4): 660-697.
[79] PRUIMBOOM I M, RIMLER R B, ACKERMANN M R. Enhanced adhesion ofto cultured turkey peripheral blood monocytes., 1999, 67(3): 1292-1296.
Advances in Mechanisms of Biosynthesis and Regulation ofCapsule
GUAN LiJun1, XUE Yun1, DING WenWen1, ZHAO ZhanQin1, 2
(1Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan;2College of Animal Science and Technology, Henan University of Science and Technology/ Key-Disciplines Laboratory of Safety of Environment and Animal Product, Luoyang 471003, Henan)
can be widely infected with a variety of animals, causing hemorrhagic septicemia or infectious pneumonia.possess a viscous capsular polysaccharide on the cell surface, which is a critical structural component and virulence factor, and plays an important role in the interaction between bacteria and the host, promoting the adhesion of bacteria to the host surface and enhancing the virulence of the bacteria. The molecular structure of thecapsule is similar to that of vertebrate glycosaminoglycan, which is polymerized by repeated disaccharide units to form a linear polysaccharide chain, which is an important immunological material basis for molecular mimicry, resistance to phagocytosis, and immune evasion during the infection of the host. In recent years, a series of important research advances have been made in the biosynthesis and regulation mechanism aspects ofcapsule, providing a certain basic knowledge for the molecular pathogenesis ofcapsule, and supplying a theoretical basis for the development of the capsular polysaccharide vaccine of. This paper systematically illuminates the biosynthesis and expression regulation mechanisms ofcapsule, including the serotyping of the capsule, the composition and structure of the capsular polysaccharide, the biosynthesis gene cluster and function of the capsule, the molecular synthesis mechanism of capsular polysaccharide, the expression regulation mechanism of capsular biosynthesis gene cluster, a total of five aspects.According to the capsular antigen,is divided into five capsular serogroups of A, B, D, E, and F. The type A capsule GAG component is hyaluronic acid; the type D is heparosan; the type F is chondroitin,which is repeatedly composed of its corresponding disaccharide unit [β-GlcUA/β-GlcNAc], [β-GlcUA/α-GlcNAc], [β-GlcUA/β-GalNAc], respectively; the type B capsular polysaccharide is composed of arabinose, mannose and galactose in a certain structural form, and the composition and chemical structure of type E capsular polysaccharide are uncertain. Genes related to the biosynthesis of A, B, D, E and F capsules ofexist in the form of gene clusters and are divided into three distinct functional regions, R1, R2 and R3; the R1 region is responsible for transporting the capsular polysaccharide, the R2 region is responsible for the activation of the monosaccharide and the assembly of the capsular polysaccharide, and the R3 region is responsible for the modification of capsular polysaccharide (phospholipid replacement); according to the structure and the number of genes of the R2 region, the biosynthetic gene clusters of the five capsules can be divided into two categories: type A, D and F are Class I, and R2 contains 4 genes; types B and E are Class II, and R2 contains 9 genes, and using the specific gene in the R2 region to design primers, the capsular serotype ofcan be rapidly identified by PCR. The capsular GAG ofis synthesized in the cytoplasm, and then exported to the cell surface via the ABC transporter formed by the protein encoded by the R1 region, and tightly bound to the cell surface by covalent attachment to the phospholipid; during the biosynthesis of thecapsular GAG, the glycosyltransferase gene located in the R2 region determines the type of activated monosaccharide and the type of capsular polysaccharide after assembly. In the biosynthetic gene cluster of thecapsule, the R1 and R2 regions form an operon with the same transcriptional direction, while the R3 transcription direction is opposite, and the promoter regions of both are located on the DNA sequence between the R2 and R3 regions; the transcriptional process of thecapsular biosynthesis gene cluster is positive regulated by the Fis protein, and the translation process is mainly positive regulated by Hfq protein.
; capsule; glycosaminoglycan; biosynthesis; expression regulation
2018-09-03;
2019-11-05
國家自然科學(xué)基金項目(31302106, U1704117, 31672530)
關(guān)麗君,E-mail:gljguanlijun@163.com。通信作者趙戰(zhàn)勤,Tel:0379-64282341;E-mail:zhaozhanqin@126.com
(責(zé)任編輯 林鑒非)