• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于芳香四羧酸構(gòu)筑的兩種配位聚合物的熒光及磁性質(zhì)

    2020-02-11 09:00:02翟麗軍高玲玲賈焦焦牛宇嵐胡拖平
    無機化學學報 2020年1期
    關(guān)鍵詞:化學系中北大學理學院

    翟麗軍 張 婕 高玲玲 高 婷 賈焦焦 牛宇嵐 胡拖平*,

    (1 中北大學理學院化學系,太原 030051)

    (2 太原工業(yè)學院化學與化工系,太原 030008)

    Coordination polymers (CPs) have caused extensive attention from researchers as a new kind of functional hybrid materials because they have fascinating structures and extensive application in gas storage and separation[1-4], optics properties[5-10], magnetism[11-12], catalysis[13-14]and drug sustained release[15],etc. At present, there have also been a lot of reports on the research of CPs in luminescence probe.Compared with traditional instrument methods,luminescence sensing is considered as a promising method due to its advantages of quick response, high sensitivity, low cost, simple operation, and so on[16-18].

    In the past few years, with the rapid development of economy and the explosive growth of the population, the problems such as environmental pollution and public health are arousing more and more concerns[19]. Fe3+is not only necessary for metabolism,but also widely used in industry[20]. However, excessive amounts of Fe3+in the human body are harmful, and Fe3+can contaminate the environment by being carelessly discarded[21]. While Cr6+is widely used in diverse industrial applications, improper disposal of Cr6+will pollute the living conditions of people[22]. So,it is very urgent to synthesize materials that can selectively and sensitively identify these ions. In recent years, researchers have agreed that CPs are one of the promising alternatives for luminescent probe. One of the biggest challenges is the design and construction of CPs with stable structure and ideal function. In the process of self-assembly, the construction of the desired CPs depends on organic ligands and metal ions[23]. In terms of ligands, studies have shown that aromatic polycarboxylic acids are extensively used to construct CPs due to the following advantages: firstly, their multiple binding nodes;secondly, their carboxylate groups can be partially or completely deprotonated to form multiple structures;furthermore, aromatic conjugated systems can coordinate with d10center ions forming CPs materials with excellent luminescence properties. At the same time,the introduction of the second nitrogen-containing ligand is helpful to construct CPs with novel structures.

    So, based on the ligands of p-terphenyl-3,3″,5,5″-tetracarb oxylic acid (H4tptc), 1,4-bis(imidazol-1-ylmethyl) benzene (1,4-bimb) or 1,2-bis(imidazol-1-ylmethyl) benzene (1,2-bimb) (Scheme 1), two novel CPs, namely {[Zn2(tptc)(1,4-bimb)2]·H2O}n(1) and {[Ni(tptc)0.5(1,2-bimb)(H2O)]·H2O}n(2), have been synthesized under solvothermal method and characterized by luminescence properties (1) and magnetic properties (2).

    Scheme 1 Structures of the ligands

    1 Experimental

    1.1 Materials and physical measurements

    All chemicals were purchased commercially and used without further purification. IR (KBr pellet)spectra were recorded under a FTIR-8400S spectrometer in a range of 4 000 ~400 cm-1. Thermogravimetric analyses (TGA) were collected on a METTLER TGA analyzer at a heating rate of 10 ℃·min-1under N2atmosphere from room temperature to 750 ℃.Elemental analyses (C, H, and N) were performed by using a PerkinElmer 2400C elemental analyzer (EA).Powder X-ray diffraction (PXRD) was performed using a Rigaku D/Max-2500 PC diffractometer (Mo Kα radiation, λ=0.154 06 nm) at 50 kV, 30 mA with the 2θ range of 5°~50°. Luminescence spectra were performed on Hitachi F4600 spectrophotometer.Magnetic properties were measured by Quantum Design MPMS-XL-7 SQUID magnetometer.

    1.2 Synthesis of the complexes

    1.2.1 Synthesis of {[Zn2(tptc)(1,4-bimb)2]·H2O}n(1)

    Zn(NO3)2·6H2O (0.015 mmol, 4.5 mg), H4tptc(0.005 mmol,2.1 mg),1,4-bimb (0.005 mmol,1.2 mg),0.15 mL NaOH aqueous solution (0.5 mol·L-1) and 1 mL H2O/DMF (1∶1, V/V) were mixed in a stainless steel vessel (25 mL), kept at 130 ℃for 72 h and then naturally cooled to ambient temperature to obtain colorless crystals.Yield:41%(based on Zn).Elemental analysis Calcd. for C50H40N8O9Zn2(%): C, 58.48; H,3.91;N,10.85.Found(%):C,58.54;H,3.95;N,10.89.IR(KBr,cm-1):3 455(m),1 630(s),1 524(vs),1 393(s),742 (s), 733 (s), 683 (m), 678 (m) (Supporting information, Fig.S1).

    1.2.2 Synthesis of {[Ni(tptc)0.5(1,2-bimb)(H2O)]·H2O}n(2)

    Ni(NO3)2·6H2O (0.03 mmol, 8.8 mg), H4tptc (0.01 mmol, 4.2 mg), 1,2-bimb (0.02 mmol, 4.8 mg) and 8 mL CH3CN/H2O (1∶1, V/V) were placed in a 25 mL autoclave and heated to 130 ℃for 72 h. After slowly being cooled to ambient temperature, green crystals were gained. Yield: 46% (based on Ni). Elemental Analysis Calcd. for C25H23N4NiO6(%): C, 56.16; H,4.30;N,10.48.Found(%):C,56.24;H,4.25; N,10.68.IR(KBr,cm-1):3 402(vs),1 613(vs),1 546 (vs),1 526(s),1 402(vs),1 371(s),986(m),977(m). 870 (s), 782(s), 773 (s), 685 (m), 653 (m) (Fig.S1).

    1.3 X-ray crystallographic study

    All crystallographic data were collected on a Bruker APEX ⅡCCD diffractionmeter using Mo Kα radiation (λ=0.071 073 nm) at 25 ℃. The structures were determined by direct methods and refined by the full-matrix least-squares method based on F2using SHELXL program and OLEX 2[24-25]. All nonhydrogen atoms were refined with anisotropic displacement parameters and hydrogen atoms were placed geometrically and refined using a riding model. Crystal structural parameters, some selected bond lengths and angles are listed in Table 1 and Table S1,respectively. The topology of CPs was analyzed by using TOPOs 4.0 program package[26].

    CCDC: 1911100, 1; 1911101, 2.

    Table 1 Crystal structure data and refinement parameters of 1 and 2

    2 Results and discussion

    2.1 IR spectra

    The absorption spectrum at 3 440 ~3 460 cm-1corresponds to the characteristic peak of the stretching vibration of the O-H group in water molecules. The peaks at 1 393 cm-1(1) or 1 376 cm-1(2) and 1 630 cm-1(1) or 1 546 cm-1(2) are attributed to the symmetric and asymmetric stretching vibration of the carboxylate group, respectively. For 1~2, the lack of strong peak in a range of 1 690~1 730 cm-1demonstrates that the H4tptc ligand is completely deprotonated(Fig.S1).

    2.2 Descriptions of crystal structures

    2.2.1 Crystal structure of {[Zn2(tptc)(1,4-bimb)2]·H2O}n(1)

    Complex 1 crystallizes in the monoclinic system with the P21space group. Its asymmetric unit contains two Zn2+ions, one tptc4-linker, two 1,4-bimb linkers and one lattice water molecule.Both Zn2+ions are fourcoordinated and exhibit distorted tetrahedron geometries (Fig.1a). Each Zn2+ion is bound to two oxygen atoms of two distinct tptc4-linkers and two nitrogen atoms provided by two 1,4-bimb ligands. The bond angles around Zn2+range from 97.7° to 129.1°,and the bond lengths of Zn-O and Zn-N vary from 0.193 4 to 0.197 1 nm and 0.200 4 to 0.202 1 nm,respectively.

    The H4tptc ligands in 1 are completely deprotonated. All carboxylate groups adopt monodentate bridging coordination modes to link Zn2+ions forming a 2D network (Fig.1b), which are further expanded by 1,4-bimb linkers to construct 3D structures (Fig.1c).Topologically, complex 1 reveals a 2-nodal (4,4)-c network with the topology of (86) by denoting Zn2+ions and H4tptc ligands to be 4-c nodes, respectively.

    2.2.2 Crystal structure of {[Ni(tptc)0.5(1,2-bimb)(H2O)]·H2O}n(2)

    Complex 2 crystallizes in the triclinic system P1 space group. There are one Ni2+ion, half of tptc4-linkers, one 1,2-bimb, and one coordinated water molecule in the asymmetric unit of 2. As exhibited in Fig.2a, each Ni2+ion is coordinated by three carboxylate O atoms (Ni1-O1 0.214 26 nm, Ni1-O2 0.214 44 nm, Ni1-O3i0.202 80 nm), a lattice water O atom(Ni1-O5W 0.207 47 nm), and two N atoms of two 1,4-bimb (Ni1-N1 0.205 47 nm and Ni-N4ii0.206 35 nm),presenting a pseudo-octahedral geometry. The bond angles around Ni1 range from 61.46° to 179.23°.

    Fig.1 (a) Coordination environment of Zn2+ions in 1; (b) 2D network of 1 based on Zn2+ion and tptc4-observed along a-axis; (c) 3D structure of 1 viewed along a-axis; (d) Overall topological network for complex 1

    As shown in Fig.2b, four carboxylate groups of the H4tcpb ligand adopt two different coordination patterns (bridging mode and chelating mode). The H4tcpb ligands link the Ni2+ions to get an interesting 1D rectangle chain (Fig.3a), while 1,2-bimb ligands link with the Ni2+ions to form a 1D [Ni(1,2-bimb)]nlinear chain (Fig.3b). These two chains intertwine each other to form a 2D sheet by sharing metal centers (Fig.3c). Finally, 3D supramolecular structure is formed through O5W-H5WA …O2 and O5WH5WB…O4 hydrogen bonds interactions between the adjacent sheets (Fig.4). Topological analysis indicates that the framework of 2 can be simplified to a new(4,4)-c network with the point symbol of {4.64.8}2{42.64}, where H4tptc ligands and Ni2+ions are taken as 4-connected nodes, respectively.

    Fig.2 (a) Coordination environment of Ni2+ions in 2; (b) Coordination mode of the H4tcpb ligand in complex 2

    Fig.3 (a) One dimensional rectangle chain based on H4tcpb and Ni2+ions; (b) 1D [Ni(1,2-bimb)]n linear chain constructed by 1,2-bimb ligands and Ni2+ions; (c) View of the 2D network of 2

    Fig.4 Hydrogen bonds between adjacent 2D layers of 2

    Fig.5 Schematic diagram of the 4,4-connected net of 2 with the point symbol of{4.64.8}2{42.64}

    2.3 Powder X-ray diffraction analyses and TGA analyses

    To evaluate the phase purity of CPs, the PXRD patterns of the as-synthesized samples were analyzed at ambient temperature (Fig.S2). The key peaks of the experimental PXRD patterns were almost consistent with the simulated ones, indicating that the phase purity of CPs is good. The difference in strength may be caused by the preferred orientation of crystal powder samples.

    As shown in Fig.S3, complex 1 exhibits a weightlessness of 1.76% (Calcd. 1.75%) below 159 ℃,which is attributed to the loss of a lattice water molecule. After that, its framework is stable below 400 ℃. As for 2, the first weight loss of 6.88% (Calcd.6.74%) corresponds to the release of a lattice water and a coordinated water molecule under 196 ℃. The framework of 2 started to break down after 396 ℃.

    2.4 Luminescence properties

    The luminescence properties of ligands (H4tptc and 1,4-bimb) and complex 1 were measured under room temperature (Fig.6). The emission spectra of H4tptc and 1,4-bimb ligands were observed at 408 and 457 nm (λex=280 nm), respectively, which can be attributed to the π-π*and π*-n transition[27-31].Furthermore, compared with the emission bands of H4tptc and 1,4-bimb, complex 1 was blue-shifted and exhibited an obvious emission maximum at 359 nm (λex=280 nm). This is due to structural changes in ligands because of coordination with metal ions, which greatly enhances the rigidity of CP and decreases the energy loss through radiation less decay[32].

    Fig.6 Solid-state luminescence emissions of H4tptc,1,4-bimb and complex 1

    In addition, from the perspective of practical application, the luminescence sensing properties of 1 in common solvents are also investigated. The ground samples were dispersed in different solvents (2 mL),including H2O, DMA, DMF, methanol, acetonitrile,ethanol, acetone, DMSO, etc., by ultrasonic treatment for 30 min to obtain uniform 1@solvent suspensions.As exhibited in Fig.7, the luminescence intensity of 1 depends on the types of the solvent. It is worth noting that 1 exhibited the strongest emission peak in H2O and the weakest emission in acetone, which may be the result of interaction between the network of CPs and solvent molecules with disparate polarities[33].

    Fig.7 Luminescence intensities of complex 1 scattered in different organic solvents

    Furthermore, because of water stability of complex 1, luminescence sensing properties of 1 towards metal ions in aqueous solution were carried out. The finely ground sample of 1 was dispersed in M(NO3)xaqueous solutions (0.01 mol·L-1, M=Na+,Cd2+, K+, Cu2+, Pb2+, Ag+, Fe3+, Mn2+, Cr3+, Zn2+, Co2+,Ni2+, Ba2+, Al3+, Hg2+, Ni2+) to form 1@M suspensions treated by the ultrasonic for 30 min. As presented in Fig.8, the luminescence intensity of 1 presents iondependent changes. Al3+and Na+ions enhanced its luminescence intensity, while the other cations reduced its luminescence intensities. Particularly, the luminescence intensity of 1 was almost completely quenched by Fe3+ion, implying that 1 can be one of the luminescent probes sensing Fe3+ion.

    Fig.8 Luminescence intensity of complex 1 in different cationic water solutions

    To test the sensitivity of 1 for sensing Fe3+ion,the titration experiments were carried out. 2 mg crystal samples were dispersed in 3 mL aqueous solution to form 1@H2O suspensions, and then 30 μL Fe(NO3)3solution (0.01 mol·L-1) was gradually added into the above suspensions at a time. As can be seen in Fig.9, the luminescence intensity of 1@H2O suspension decreases gradually with the addition of Fe3+ion. When the concentration of Fe3+ion was 0.7 mmol·L-1, the luminescence intensity of 1 was almost completely quenched. The relationship between I0/I and the concentration of Fe3+ion can be expressed by the equation of I0/I=0.74exp(cM/0.26)+0.44, where cMrepresents the concentration of Fe3+, I0and I stand for luminescence intensities of 1@H2O and 1@Fe3+suspension, respectively. When the concentration of Fe3+ion is low, the Stern-Volmer (S-V) curve can be expressed as a linear equation of I0/I=1+KsvcM(Fig.9)[34]. The Ksvvalue of Fe3+was 5.29×103L·mol-1.The detection limit was calculated by 3σ/Ksvto be as low as 4.63×10-4mol·L-1(σ is the standard deviations by measuring the blank solution for 5 times at room temperature).

    Fig.9 Influence of the addition of Fe3+ions on the emission spectra of 1 dispersed in water solution

    The luminescence experimental procedure of anions is similar to that of cations except substituting M(NO3)xwith KnX (0.01 mol·L-1, X=Cr2O72-, HPO42-,SCN-,CO32-,H2PO4-,I-,HCO3-,PO43-,Br-,SCN-,SO42-,H2PO4-and Cl-). As exhibited in Fig.10, compared to other anions, Cr2O72-ion has the remarkable quenching effect to the luminescence of 1. Similarly, the titration experiment of Cr2O72-anion is shown in Fig.11, and the S-V curve is linear at low concentration and gradually deviated from linearity with the increasing of Cr2O72-concentration. The quenching constant (KSV)was calculated to be 6.15×103L·mol-1, which was higher than that of the reported MOFs for sensing Cr2O72-ions (Table S2)[35-36].

    Fig.10 Luminescence intensity of complex 1 in aqueous solution containing different anions

    Fig.11 Influence of the addition of Cr2O72-ions on the emission spectra of 1 dispersed in water solution

    2.5 Quenching mechanism

    In order to explore the mechanism of luminescence quenching, PXRD patterns of samples were measured before and after luminescence experiment,and the results showed that PXRD patterns of samples after luminescence experiment were almost identical with those of the original ones, which indicates that the structural collapse of complex is not the cause of luminescence quenching (Fig.S4). Furthermore, the UV-Vis absorption spectra (Fig.S5) showed that there were the partial overlap between the excitation band of 1 and the absorption band of Fe3+/Cr2O72-ions,which shows the competitive absorption of energy between the frameworks and that Fe3+/Cr2O72-ions is responsible for luminescence quenching[37].

    2.6 Magnetic properties

    The direct-current (dc) magneti c susceptibility of 2 was measured in a temperature range of 2~300 K under a 1 000 Oe applied field. As exhibited in Fig.12, the χMT value is 1.08 cm3·K·mol-1at room temperature, which is close to the theoretical value of 1.0 cm3·K·mol-1for one isolated Ni2+ion (S=1,g=2.0).The χMT value decreased slowly to 0.49 cm3·K·mol-1at 30 K, and then decreased sharply, which may be attributed to the antiferromagnetic interaction between Ni2+ions. Furthermore, the curve of the reciprocal susceptibilities( χM-1)vs T was well fitted by the Curie-W moeli-s1s alnadw :θχ=M-T2=.C68/( TK- θi)n,wahtiecmh pgearvaeturCe=r1a.n0g7e comf3·5K0·~300 K, confirming the antiferromagnetic interaction between Ni2+ions.

    Fig.12 Temperature properties of χMT vs T and χM-1 vs T for 2

    3 Conclusions

    In short, two new CPs have been successfully synthesized by utilizing the mixed ligands strategy.Complex 1 shows a 3D network with the point symbol of (86), and complex 2 is a 3D supramolecular architecture formed by the H-bond interaction between the adjacent 2D layers. Furthermore, the luminescence properties show that 1 has good sensing selectivity for Fe3+/Cr2O72-ions in aqueous solution, which indicates 1 has potential application in the detection of Fe3+and Cr2O72-ions.Moreover,magnetic measurements indicate that there is the antiferromagnetic interaction between Ni2+ions in 2.

    Acknowle dgements:The authors sincerely thank the National Natural Science Foundation of China (Grant No.21676258), the international Scientific and Technological Cooperation Projects of Shanxi Province (Grant No.201803D421080).Meanwhile, the authors honestly acknowledge the support of innovative investigated group of inorganic-organic mixed functional materials in North University of China.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    化學系中北大學理學院
    《中北大學學報(社會科學版)》征稿啟事
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    昆明理工大學理學院學科簡介
    昆明理工大學理學院簡介
    中北大學信創(chuàng)產(chǎn)業(yè)學院入選首批現(xiàn)代產(chǎn)業(yè)學院
    科學導報(2021年91期)2021-01-11 07:02:14
    《中北大學學報(自然科學版)》征稿簡則
    首都師范大學化學系自充電功能材料研究取得重要進展
    有機相化學鍍鋁法制備Al/石墨烯復合材料粉末
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    西安航空學院專業(yè)介紹
    ———理學院
    露出奶头的视频| 久久草成人影院| 波多野结衣一区麻豆| 一边摸一边抽搐一进一小说| 欧美日韩乱码在线| 色综合站精品国产| 久久久久久久午夜电影 | 高清毛片免费观看视频网站 | 久久这里只有精品19| 午夜免费激情av| 亚洲黑人精品在线| 久久人妻福利社区极品人妻图片| 女生性感内裤真人,穿戴方法视频| 日韩欧美三级三区| av视频免费观看在线观看| 免费少妇av软件| 色在线成人网| 亚洲专区中文字幕在线| 女人被躁到高潮嗷嗷叫费观| 久久国产精品影院| 手机成人av网站| 国产伦一二天堂av在线观看| 热re99久久国产66热| 看免费av毛片| 亚洲欧美日韩高清在线视频| 免费久久久久久久精品成人欧美视频| 大码成人一级视频| 大码成人一级视频| 在线av久久热| 夜夜夜夜夜久久久久| 免费在线观看亚洲国产| 亚洲一卡2卡3卡4卡5卡精品中文| 久久午夜亚洲精品久久| 日韩高清综合在线| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区蜜桃av| 中文字幕人妻丝袜制服| 免费观看人在逋| 国产精品av久久久久免费| 免费高清在线观看日韩| 午夜福利在线免费观看网站| 国产精品自产拍在线观看55亚洲| 成人免费观看视频高清| 成人免费观看视频高清| 91成年电影在线观看| 亚洲熟妇熟女久久| 一二三四社区在线视频社区8| 国产一卡二卡三卡精品| 欧美老熟妇乱子伦牲交| 宅男免费午夜| 宅男免费午夜| 99精品欧美一区二区三区四区| 国产精品二区激情视频| 久久精品影院6| 亚洲精品国产精品久久久不卡| 欧美日本中文国产一区发布| www.999成人在线观看| 亚洲久久久国产精品| 岛国视频午夜一区免费看| 亚洲全国av大片| 亚洲成人久久性| 亚洲成人免费电影在线观看| 亚洲欧美激情在线| 日韩中文字幕欧美一区二区| 亚洲成人免费电影在线观看| 欧美成人午夜精品| 一级a爱视频在线免费观看| 9热在线视频观看99| 亚洲午夜理论影院| 91在线观看av| 久久精品国产综合久久久| 99久久99久久久精品蜜桃| 色综合婷婷激情| 女人爽到高潮嗷嗷叫在线视频| 国产激情欧美一区二区| 可以在线观看毛片的网站| 丁香六月欧美| 午夜91福利影院| 99国产精品一区二区三区| 久久精品亚洲熟妇少妇任你| 色婷婷久久久亚洲欧美| 一边摸一边抽搐一进一出视频| 成年版毛片免费区| 少妇 在线观看| 丰满饥渴人妻一区二区三| 亚洲精品国产区一区二| 12—13女人毛片做爰片一| 日本免费一区二区三区高清不卡 | 精品少妇一区二区三区视频日本电影| 午夜激情av网站| 黑人巨大精品欧美一区二区mp4| 精品国产亚洲在线| 成人国产一区最新在线观看| 午夜影院日韩av| 99re在线观看精品视频| 精品一品国产午夜福利视频| 国产蜜桃级精品一区二区三区| 午夜福利一区二区在线看| 欧美老熟妇乱子伦牲交| 天堂动漫精品| 久久久久久久午夜电影 | 久久人人爽av亚洲精品天堂| 久久人人爽av亚洲精品天堂| 亚洲色图综合在线观看| 久久 成人 亚洲| 午夜福利影视在线免费观看| 欧美人与性动交α欧美软件| 亚洲色图av天堂| 中文亚洲av片在线观看爽| 免费在线观看影片大全网站| 黄色 视频免费看| 18禁观看日本| 亚洲欧美日韩无卡精品| 亚洲片人在线观看| 宅男免费午夜| 国产黄a三级三级三级人| 久久久久久大精品| 久久中文字幕人妻熟女| 丝袜美腿诱惑在线| 99国产精品一区二区蜜桃av| 国产黄色免费在线视频| 午夜免费激情av| bbb黄色大片| 成年女人毛片免费观看观看9| 欧美中文综合在线视频| 欧美日韩亚洲国产一区二区在线观看| 国产片内射在线| 淫妇啪啪啪对白视频| 可以在线观看毛片的网站| 美国免费a级毛片| 老司机在亚洲福利影院| 午夜两性在线视频| 91字幕亚洲| 日韩 欧美 亚洲 中文字幕| 岛国视频午夜一区免费看| 免费高清在线观看日韩| 人成视频在线观看免费观看| 一区二区三区精品91| 最新在线观看一区二区三区| 中文字幕最新亚洲高清| 美女福利国产在线| 久久久久国产精品人妻aⅴ院| 一边摸一边做爽爽视频免费| 纯流量卡能插随身wifi吗| 亚洲美女黄片视频| 一区福利在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品 欧美亚洲| 高潮久久久久久久久久久不卡| 国产成+人综合+亚洲专区| 国产精品免费视频内射| 成人av一区二区三区在线看| 涩涩av久久男人的天堂| 日韩欧美一区二区三区在线观看| 在线免费观看的www视频| 女生性感内裤真人,穿戴方法视频| 精品国产乱码久久久久久男人| 人成视频在线观看免费观看| 真人一进一出gif抽搐免费| 日本wwww免费看| 人人妻人人澡人人看| 老司机午夜福利在线观看视频| 搡老乐熟女国产| 亚洲av片天天在线观看| 亚洲欧美精品综合一区二区三区| 少妇粗大呻吟视频| 欧美日本亚洲视频在线播放| 国产高清激情床上av| 国产午夜精品久久久久久| 一夜夜www| 超色免费av| 欧美中文日本在线观看视频| 国产av一区在线观看免费| 国产激情欧美一区二区| 欧美日韩瑟瑟在线播放| 亚洲国产欧美日韩在线播放| 国产一区在线观看成人免费| 在线天堂中文资源库| 亚洲aⅴ乱码一区二区在线播放 | 亚洲黑人精品在线| 别揉我奶头~嗯~啊~动态视频| 少妇的丰满在线观看| 精品国内亚洲2022精品成人| 国产免费男女视频| 亚洲成人免费电影在线观看| 涩涩av久久男人的天堂| 在线免费观看的www视频| 日本免费a在线| 黄片大片在线免费观看| 欧美中文日本在线观看视频| xxxhd国产人妻xxx| 超碰成人久久| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费视频网站a站| av有码第一页| 免费看十八禁软件| 最新在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 老司机深夜福利视频在线观看| 一边摸一边做爽爽视频免费| 国产三级在线视频| 免费在线观看完整版高清| 国产有黄有色有爽视频| 一区在线观看完整版| 可以免费在线观看a视频的电影网站| 精品久久久久久久久久免费视频 | 欧美一区二区精品小视频在线| 巨乳人妻的诱惑在线观看| av有码第一页| 国产成人影院久久av| 日本wwww免费看| 久久国产精品人妻蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 韩国av一区二区三区四区| 欧美日韩av久久| 欧美激情久久久久久爽电影 | 热99国产精品久久久久久7| 每晚都被弄得嗷嗷叫到高潮| av视频免费观看在线观看| 露出奶头的视频| 中文欧美无线码| 男女高潮啪啪啪动态图| 欧美乱色亚洲激情| 亚洲成人久久性| 欧美午夜高清在线| 午夜亚洲福利在线播放| 国产极品粉嫩免费观看在线| 伦理电影免费视频| 在线十欧美十亚洲十日本专区| 欧美一区二区精品小视频在线| 国产一卡二卡三卡精品| 一个人观看的视频www高清免费观看 | 青草久久国产| 法律面前人人平等表现在哪些方面| netflix在线观看网站| 亚洲欧美日韩另类电影网站| 日本欧美视频一区| 淫秽高清视频在线观看| 香蕉国产在线看| 国产精品一区二区在线不卡| 日韩国内少妇激情av| 999精品在线视频| 另类亚洲欧美激情| 一夜夜www| 色婷婷av一区二区三区视频| 人妻丰满熟妇av一区二区三区| 少妇 在线观看| 在线观看一区二区三区| 99精国产麻豆久久婷婷| 波多野结衣一区麻豆| svipshipincom国产片| 岛国在线观看网站| av中文乱码字幕在线| 成年人免费黄色播放视频| 桃红色精品国产亚洲av| 精品日产1卡2卡| 韩国av一区二区三区四区| 好男人电影高清在线观看| 中文字幕人妻丝袜一区二区| 麻豆av在线久日| 精品日产1卡2卡| 美国免费a级毛片| 亚洲全国av大片| 亚洲av美国av| 久久亚洲真实| 一级片'在线观看视频| 午夜福利影视在线免费观看| 午夜精品国产一区二区电影| 深夜精品福利| 丝袜人妻中文字幕| 国产精品亚洲av一区麻豆| 中文字幕高清在线视频| 成人特级黄色片久久久久久久| 男女下面进入的视频免费午夜 | 久久精品亚洲av国产电影网| 久久伊人香网站| 久热爱精品视频在线9| 在线观看免费视频网站a站| 一夜夜www| 大码成人一级视频| www日本在线高清视频| 波多野结衣av一区二区av| 少妇裸体淫交视频免费看高清 | 天天添夜夜摸| 99香蕉大伊视频| 日韩大尺度精品在线看网址 | 手机成人av网站| 一a级毛片在线观看| 欧美成人性av电影在线观看| 亚洲一区高清亚洲精品| 亚洲欧美一区二区三区久久| 自线自在国产av| 亚洲精品粉嫩美女一区| 欧美精品一区二区免费开放| 国产人伦9x9x在线观看| 手机成人av网站| 在线观看免费视频网站a站| 日日干狠狠操夜夜爽| 国产97色在线日韩免费| 国产亚洲精品一区二区www| 最好的美女福利视频网| 嫩草影院精品99| 别揉我奶头~嗯~啊~动态视频| 精品第一国产精品| 一二三四在线观看免费中文在| 黄色女人牲交| 桃红色精品国产亚洲av| 天堂影院成人在线观看| 午夜两性在线视频| 亚洲第一青青草原| 久久天躁狠狠躁夜夜2o2o| 成人亚洲精品av一区二区 | 日本精品一区二区三区蜜桃| 欧美精品一区二区免费开放| 色尼玛亚洲综合影院| 欧美精品啪啪一区二区三区| 日韩 欧美 亚洲 中文字幕| 亚洲一码二码三码区别大吗| 色综合欧美亚洲国产小说| 免费在线观看视频国产中文字幕亚洲| 午夜免费成人在线视频| 精品久久久久久久毛片微露脸| 精品一区二区三区四区五区乱码| 亚洲av片天天在线观看| 亚洲av成人不卡在线观看播放网| 国产精品一区二区三区四区久久 | 女人被狂操c到高潮| 不卡av一区二区三区| 亚洲第一av免费看| 一个人观看的视频www高清免费观看 | 久久精品成人免费网站| 怎么达到女性高潮| 亚洲精品中文字幕在线视频| 免费高清视频大片| 69精品国产乱码久久久| 日日夜夜操网爽| 精品人妻1区二区| 久久久精品欧美日韩精品| 亚洲熟妇熟女久久| 日韩高清综合在线| 人人澡人人妻人| 老汉色∧v一级毛片| 久久久久久久午夜电影 | 亚洲五月色婷婷综合| 国产欧美日韩一区二区三| 又大又爽又粗| 亚洲欧美日韩高清在线视频| 日本免费一区二区三区高清不卡 | 成年人免费黄色播放视频| 精品国产一区二区久久| 亚洲一区二区三区不卡视频| 99re在线观看精品视频| 最近最新免费中文字幕在线| 欧美久久黑人一区二区| 午夜精品国产一区二区电影| 亚洲人成77777在线视频| 欧美中文日本在线观看视频| 欧美不卡视频在线免费观看 | 国产精品98久久久久久宅男小说| 久久精品国产亚洲av香蕉五月| 嫁个100分男人电影在线观看| 亚洲精品久久午夜乱码| 老司机靠b影院| 成人亚洲精品一区在线观看| 性欧美人与动物交配| 欧美日韩av久久| 午夜福利,免费看| 国产极品粉嫩免费观看在线| 香蕉久久夜色| 国产又色又爽无遮挡免费看| 又大又爽又粗| 脱女人内裤的视频| 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美另类亚洲清纯唯美| 亚洲人成网站在线播放欧美日韩| 老汉色av国产亚洲站长工具| 精品国产一区二区久久| 亚洲精品国产精品久久久不卡| 欧美日韩一级在线毛片| 日韩欧美在线二视频| 国产精品亚洲一级av第二区| 亚洲熟妇中文字幕五十中出 | 亚洲 欧美 日韩 在线 免费| 欧美激情极品国产一区二区三区| e午夜精品久久久久久久| 亚洲午夜精品一区,二区,三区| 久久精品国产清高在天天线| 成人黄色视频免费在线看| 色综合婷婷激情| 亚洲第一av免费看| 亚洲一区二区三区欧美精品| 午夜免费鲁丝| 国产精品影院久久| 久久亚洲真实| 人妻丰满熟妇av一区二区三区| 最好的美女福利视频网| 母亲3免费完整高清在线观看| 精品久久久久久久久久免费视频 | 中文字幕人妻丝袜一区二区| 国产亚洲欧美98| 亚洲欧美精品综合一区二区三区| 国产一区二区在线av高清观看| 亚洲成国产人片在线观看| 欧美成人午夜精品| 国产精品九九99| 99久久综合精品五月天人人| 久久精品91蜜桃| 久久中文字幕人妻熟女| 欧美中文综合在线视频| 国产精品综合久久久久久久免费 | 欧美一区二区精品小视频在线| 大陆偷拍与自拍| 成人18禁在线播放| 三上悠亚av全集在线观看| 亚洲一码二码三码区别大吗| 黄片播放在线免费| 久久欧美精品欧美久久欧美| 免费女性裸体啪啪无遮挡网站| 丰满人妻熟妇乱又伦精品不卡| 一进一出抽搐gif免费好疼 | 免费一级毛片在线播放高清视频 | 国产野战对白在线观看| a级毛片在线看网站| 窝窝影院91人妻| 精品国产一区二区三区四区第35| 欧美乱妇无乱码| 欧美日韩国产mv在线观看视频| 一区二区日韩欧美中文字幕| 99精品久久久久人妻精品| 曰老女人黄片| 19禁男女啪啪无遮挡网站| 法律面前人人平等表现在哪些方面| 纯流量卡能插随身wifi吗| 人人妻人人澡人人看| 好看av亚洲va欧美ⅴa在| 91麻豆精品激情在线观看国产 | 每晚都被弄得嗷嗷叫到高潮| 男女之事视频高清在线观看| 久久国产精品人妻蜜桃| www.自偷自拍.com| 18禁裸乳无遮挡免费网站照片 | 欧美亚洲日本最大视频资源| 午夜福利在线免费观看网站| 亚洲精品国产色婷婷电影| 国产深夜福利视频在线观看| a级毛片在线看网站| 99久久99久久久精品蜜桃| 国产蜜桃级精品一区二区三区| 在线观看日韩欧美| 9热在线视频观看99| 久久久国产精品麻豆| 免费av中文字幕在线| 99久久人妻综合| 久久精品91无色码中文字幕| 在线观看免费高清a一片| av视频免费观看在线观看| 免费在线观看亚洲国产| 黑人巨大精品欧美一区二区mp4| 丝袜美腿诱惑在线| 久久午夜综合久久蜜桃| 国产亚洲精品第一综合不卡| 欧美精品一区二区免费开放| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人av| 欧美成人免费av一区二区三区| 午夜精品国产一区二区电影| 一个人观看的视频www高清免费观看 | 可以免费在线观看a视频的电影网站| 999精品在线视频| 免费人成视频x8x8入口观看| av国产精品久久久久影院| 日本 av在线| 99久久精品国产亚洲精品| 777久久人妻少妇嫩草av网站| 久久亚洲精品不卡| 老司机午夜十八禁免费视频| 激情视频va一区二区三区| 少妇裸体淫交视频免费看高清 | 在线观看免费日韩欧美大片| 欧美乱码精品一区二区三区| 天堂动漫精品| www.精华液| 国产三级在线视频| 亚洲色图 男人天堂 中文字幕| 一边摸一边抽搐一进一出视频| 一个人免费在线观看的高清视频| 成人18禁高潮啪啪吃奶动态图| 丁香欧美五月| 人人妻人人澡人人看| 国产视频一区二区在线看| 亚洲国产精品一区二区三区在线| 日日夜夜操网爽| 18禁国产床啪视频网站| 成年女人毛片免费观看观看9| 久久人人97超碰香蕉20202| 丝袜人妻中文字幕| 又黄又爽又免费观看的视频| 色综合站精品国产| 精品一区二区三区av网在线观看| 99re在线观看精品视频| 午夜a级毛片| 校园春色视频在线观看| 久久国产精品男人的天堂亚洲| 人妻久久中文字幕网| 啦啦啦免费观看视频1| 亚洲国产中文字幕在线视频| av视频免费观看在线观看| 久久国产精品人妻蜜桃| 亚洲精品美女久久久久99蜜臀| 国产成人欧美在线观看| 国产一区在线观看成人免费| 国产精品 欧美亚洲| 久久中文看片网| 黄色怎么调成土黄色| 女性生殖器流出的白浆| netflix在线观看网站| 91av网站免费观看| 757午夜福利合集在线观看| 免费人成视频x8x8入口观看| 一二三四在线观看免费中文在| 十八禁人妻一区二区| 欧美亚洲日本最大视频资源| 女警被强在线播放| 99国产极品粉嫩在线观看| 国产精品亚洲av一区麻豆| 国产不卡一卡二| 成人亚洲精品av一区二区 | 18禁黄网站禁片午夜丰满| 国产无遮挡羞羞视频在线观看| 亚洲人成电影观看| 水蜜桃什么品种好| 国产成人精品无人区| 不卡av一区二区三区| 欧美日韩亚洲综合一区二区三区_| 午夜免费鲁丝| 亚洲av美国av| 欧美久久黑人一区二区| 欧美午夜高清在线| 国内久久婷婷六月综合欲色啪| av欧美777| 成人亚洲精品av一区二区 | 99热国产这里只有精品6| 国产99白浆流出| 一个人观看的视频www高清免费观看 | 黄色怎么调成土黄色| 宅男免费午夜| www.精华液| 午夜a级毛片| 国产亚洲欧美精品永久| 国产精品久久久av美女十八| 免费不卡黄色视频| 好男人电影高清在线观看| 中文字幕人妻熟女乱码| 国产亚洲精品久久久久久毛片| 欧美成人性av电影在线观看| 99国产精品一区二区三区| 99国产综合亚洲精品| 99国产精品99久久久久| 琪琪午夜伦伦电影理论片6080| 精品国内亚洲2022精品成人| 岛国视频午夜一区免费看| 亚洲精品国产色婷婷电影| 国产精品国产av在线观看| svipshipincom国产片| 精品人妻在线不人妻| 精品欧美一区二区三区在线| 亚洲自拍偷在线| 久久精品国产99精品国产亚洲性色 | 大香蕉久久成人网| 夜夜看夜夜爽夜夜摸 | 亚洲成国产人片在线观看| 亚洲成人精品中文字幕电影 | av国产精品久久久久影院| 亚洲熟妇中文字幕五十中出 | 国产av一区二区精品久久| av网站在线播放免费| 男女下面进入的视频免费午夜 | 99精品在免费线老司机午夜| 精品一区二区三卡| 国产欧美日韩综合在线一区二区| 国产高清视频在线播放一区| 国产精品久久视频播放| 成人精品一区二区免费| 亚洲av成人av| 亚洲色图综合在线观看| 国产精品九九99| 看黄色毛片网站| 90打野战视频偷拍视频| 精品卡一卡二卡四卡免费| 黄色视频,在线免费观看| 搡老熟女国产l中国老女人| 大陆偷拍与自拍| 韩国av一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 久久精品亚洲精品国产色婷小说| 久久人妻熟女aⅴ| a级毛片黄视频| 国产精品久久视频播放| 女同久久另类99精品国产91| 国产色视频综合| 精品一区二区三区视频在线观看免费 | 日本免费a在线| 热99国产精品久久久久久7| 在线看a的网站| 亚洲色图av天堂| 亚洲精华国产精华精| 久热爱精品视频在线9| 18禁裸乳无遮挡免费网站照片 | 国产91精品成人一区二区三区| 最新美女视频免费是黄的| 老汉色av国产亚洲站长工具| 成人精品一区二区免费| 午夜亚洲福利在线播放|