• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Marine Mineral Classification Based on Single-Output Chebyshev-Polynomial Neural Network

    2020-02-05 12:50:36

    (1.School of Information Science and Engineering,Lanzhou University,Lanzhou 730000,Gansu,China;2.College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150000,Heilongjiang,China)

    Abstract: Aiming at the classification of marine minerals,an improved single-output Chebyshev-polynomial neural network with general solution(SOCPNN-G) was proposed.This model uses the general solution of pseudo-inverse to find the parameters and expand the solution space,and it can obtain weights with better ge-neralization performances.In addition,in this model,the subset method was used to determine the initial nu-mber of neurons and obtain the optimal number of the cross validation.Finally,the modified SOCPNN-G was tested in the marine mineral data set.The experimental results show that the training accuracy and test accuracy of the model can reach 90.96% and 83.33%,respectively,and the requirements for computing perfor-mance are low.These advantages indicate that this model has excellent application prospects in marine minerals.

    Key words:marine mineral;classification;single-output Chebyshev-polynomial neural network with general solution(SOCPNN-G);weights;accuracy

    0 Introduction

    Mineral resources are divided into land resources and marine resources.At present,there is a serious shortage of mineral resources on land,which are difficult to regenerate in a short time.However,research shows that there are many kinds of metallic and nonmetallic mineral resources in the ocean,and the reserves are huge[1].In recent years,scientific research institutions and marine mining companies in various countries have been committed to the research and development of marine mining technology.Due to the rapid attenuation of electromagnetic waves in the ocean,sonar technology plays an irreplaceable role in the process of ocean mining[1].With the help of sonar technology,the use of underwater acoustic information for distinguishing between metal and rock can greatly improve mining efficiency[2].Moreover,acquiring multi-directional target signals can reduce noise interference and improve classification accuracy[2- 4].

    Machine learning performs well in the fields of classification,prediction,automatic control,instance segmentation,etc.,and is developing rapidly[5- 10].There are two main components that critically affect the performance of the machine learning model:data and algorithms.On the one hand,the quantity and quality of data determine the boundary that machine learning can reach.To the best of our knowledge,there is no machine learning model which can learn from insufficient data and still performs well.On the other hand,the algorithm determines the model’s ability to extract useful information from the data.These two components are both essential and complement each other.Neural network(NN),as one of the most important algorithms in machine learning,performs well in pattern classification and has significant advantages[9].In recent years,the NN has been widely used in many fields because of its prominent advantages,such as nonlinear system modeling,self-learning and self-adjustment ability[11- 13].Researchers also use NNs to improve research efficiency and realize intelligence.The research in the ocean is no exception.Through a large number of literatures,it is found that most research in the field of ocean is carried out based on the traditional back propagation(BP) NN.However,due to its inherent defects,such as slow convergence speed,exi-stence of local minimum and weak generalization ability[14- 15],the traditional NN is not ideal in some practical fields such as ocean exploration.In order to improve work efficiency of the traditional BPNN,Ref.[16] presents a NN based on Chebyshev polynomial[17],which proves superior in pattern classification.At the same time,the gradient descent algorithm adopted in BP neural network significantly increases the computational complexity and reduces computational efficiency[14]due to its lengthy iteration.Based on this phenomenon,a large number of experiments related to weights and structure determination(WASD) algorithm[18- 19]prove that the WASD algorithm plays an excellent role in the determination of weights and network structure in the NN.

    This paper proposes a method for obtaining all solutions of the equation to get all weights,which gives a large solution space and can obtain weights with exce-llent generalization ability.Based on this method,single-output Chebyshev polynomial neural network with general solution(SOCPNN-G) is proposed.In addition,in SOCPNN-G,the initial number of neurons in the data set is determined using the subset method.Moreover,the subset method is also used to obtain the optimal fold of cross validation.

    The rest of the paper is organized into four sections.The theoretical bases and model structure of the SOCPNN-G are given in Section 1.In Section 2,the algorithm of the SOCPNN-G is introduced,which contains the general solution of weights direct determination(WDD) algorithm,subset method and unfixed-fold cross-validation(uFCV) algorithm method.Sonar dataset of marine minerals is described in Section 3,and experiments based on marine mineral data set are conducted to assess the performance of the SOCPNN-G in the marine mining industry.Finally,Section 4 summarizes final remarks.

    1 Theoretical Basis and Model Structure

    This section introduces the theoretical basis involved in the model,and then outlines the structure of the SOCPNN-G model.

    1.1 Theoretical Basis

    The basic theoretical knowledge used in the trai-ning SOCPNN-G model is described in detail,including the approximation of function and the graded lexicographic order algorithm.

    1.1.1ApproximationofFunction

    Definition1 Assume thatx∈[-1,1],

    L0(x)=1,

    L1(x)=x,

    On the basis of polynomial interpolation and approximation theory[21],when a given continuous functionf(x) is defined within the interval [-1,1],it can be approximated by the Chebyshev polynomials as follows:

    (1)

    Definition2 Assume thatx∈[0,1],

    is called Bernstein polynomial which is a series of polynomials used to estimate a continuous function.Bn(f,x) is called thenth order Bernstein polynomial off.Iffis continuous on[0,1],Bn(f) uniformly converges tofon[0,1][22].

    Based on Ref.[22],iff(x) is a continuous real value function ofMvariables,which is defined inx=[x1x2…xM]T∈[0,1]M×1(the superscript T stands for getting the transpose of a vector),the Bernstein polynomials off(x) can be constructed as follows:

    wherem=1,2,…,M.

    LetPk1,…,kM(x)=pk1(x1)…pkM(xM),one has

    Pk1,…,kM(x)≈

    Thus,ifNis sufficiently large,

    Therefore,for the objective functionf(x) of the unknown continuous real numbers defined inx∈[0,1]M×1,we could get the optimal weight {wi1,…,iM} of its basis function {Li1(x1)…LiM(xM)} to perform the optimal function approximation.

    1.1.2GradedLexicographicOrder

    Condition 1:|C|>|C′|;

    Therefore,the best approximation to the target functionf(x) can be obtained by the following formula:

    whereGis the number of basis functions for the best approximation of the target functionf(x),and {hg(x)|g=1,2,…,G} denotes the set of basis functions with the graded lexicographic order and {wg|g=1,2,…,G} is the set of weights corresponding to the basis functions.

    1.2 Model Structure

    The structure of the SOCPNN-G model is shown in Fig.1,which adopts a typical three-layer neural network model structure,including an input layer,a hidden layer and an output layer.

    Fig.1 Model structure

    The number of neurons in the input layer is denoted asM,which signifies theMattributes of the input sample.Because of the single output characteristic of SOCPNN-G model,the number of neurons in the output layer is 1.From the previous discussion,it can be seen that the number of neurons in the hidden layer greatly affects the performance of the neural network model.Therefore,the optimal number of neurons in the hidden layer is also what we need to focus on in this paper.Meanwhile,the activation functions of the input layer and the output layer are simple linear functions,and the activation functions of the hidden layer are the aforementioned basis functions {hg(x)|g=1,2,…,G}.To simplify the model,the neuronal bias of all layers is set to 0.Each connection weight between the input layer and the hidden layer is fixed as 1,and each connection weight between the hidden layer and the output layer is {wg|g=1,2,…,G}.In this paper,the determination ofwgis performed by modified WDD algorithm,which will be introduced in more detail later.Therefore,the output of SOCPNN-G can be expressed as follows:

    2 Algorithm of SOCPNN-G

    In this section,the algorithm used in SOCPNN-G and the improvements are described in detail.

    2.1 General Solution of WDD Method

    Traditional NNs use gradient descent algorithm to adjust parameters.However,it is easy to fall into the local minimum,and the NN requires multiple iterations,which is very time-consuming[14].Some scho-lars are committed to the WDD method[17-18],so as to overcome the defects of the traditional gradient descent method.A large number of experiments show that using the WDD method to determine the weight is effective and efficient.

    In this paper,a method to obtain the general solution of the network is proposed to improve the traditional WDD method.Before further discussion,some descriptions of symbols are given.The training data set is defined as {(xz,yz)|z=1,2,…,Z},wherexz=[xz1,xz2,…,xzM] represents thezth training sample,andyzreveals the NN output of the sample.The connection weight matrix of the hidden layer and output layer is defined asw=[w1,w2,…,wG]T∈RG×1,activation function

    On the basis of the WDD method,one can obtain the optimal weight matrix as follows[24- 26]:

    w=H?y

    (2)

    wherey∈RZ×1is the output of the network and the superscript ? denotes to get the pseudoinverse of a matrix.Equation (2) can be deemed as the unique minimum norm least squares solution of the equation.With this in mind,general form of the least square solution of the equation is presented to find the ideal weights,that is

    w=H?y+(I-H?H)s

    (3)

    whereH?y∈RG×1,I∈RG×Gis the identity matrix,ands∈RG×1is an arbitrary vector.Equation (3) possesses the capability to obtain all solutions of the network,regardless of whether the equation is under-determined,well-defined,or over-determined.The weights calculated by the modified WDD method contain the solutions of the traditional WDD method,which enables to obtain more outputs and to determine the optimal weights in the light of the performance of the network on the validation set.

    2.2 Subset Method

    A large number of studies find that mental representations are improved based on experience[27- 29].Inspired by this phenomenon,the SOCPNN-G model adopts the method of subset to determine the initial number of neurons and the fold of cross validation[30].The network performance depends largely on the number of neurons[31- 33].In general,the number of polynomial approximations on a subset of a dataset is sma-ller than the total dataset[30].Therefore,we can obtain the initial optimal number of neurons by training the model with subsets,and take it as the initial number of neurons of the whole dataset.This can make training process of NN more effective and efficient.For different NN models and different experimental data,the optimal fold of the cross validation may vary in the process of training a better NN model.By using the subset method and setting the loop in the experiment,SOCPNN-G can explore the optimal fold of the cross validation without consuming too much computation time and improve the performance of the model.

    2.3 uFCV Algorithm

    Before introducing theuFCV algorithm in detail,the concept of the root mean squared error(RMSE) needs to be introduced,which is defined as fo-llows[34]:

    whereZrepresents the size of the input data,rzsignifies the actual value of thezth input sample,and they(xz) denotes the NN output of thezth input sample.A larger value of RMSE means a larger gap between the actual value and the output of the NN,and the performance of the NN model is poorer.On the contrary,to obtain the smaller RMSE value is the purpose of NN training,so that the output of NN is closer to the real value of samples.In theuFCV algorithm,we utilize the relative relation of RMSE corresponding to different neurons to determine the fold of cross validation and the optimal number of neurons.

    In the area of pattern classification,approximation and generalization performances are both important for evaluating neural networks,and they are mainly determined by the number of neurons.In the SOCPNN-G model,the number of neurons in the input layer is uniquely determined by the number of attri-butes of the input samples,while the number of neurons in the output layer is 1.Therefore,the number of neurons in the hidden layer contributes to the perfor-mance of the NN greatly.Besides,for NNs,the problem of overfitting has not been completely solved.At the beginning of network training,with the number of neurons increasing,the accuracy of training set and test set increases.When the number of neurons reaches a specific value and then continues to increase,the training accuracy will continue to raise,but the test accuracy declines,which is the phenomenon of “overfitting”.Inspired by the multiple-fold cross-validation algorithm presented by Ref.[33],in our mo-del,the folduof the cross validation is determined by using the subset method.ThenuFCV algorithm is used to determine the optimal number of neurons.

    TheuFCV algorithm is mainly divided into two steps:determining the folduofuFCV,and usinguFCV algorithm to determine the optimal number of neurons.The specific steps are as follows:

    Step1 Use the subset method to extract part of the training dataset and test dataset,and label them as small training dataset and small test dataset,separately.

    Step2 In a certain number of loops(such asutaken in Refs.[1,15]),we use the small dataset obtained in step 1 to train the model.After the loop,output theucorresponding to the minimum RMSE as the optimal fold for cross validation.Step 3 begins to implement theuFCV algorithm.

    Step3 Randomly divide the training dataset intousubsets with similar sizes.In theuth loop,theuth subset is used as the validation set and the remainingu-1 subsets are used as the training set.In the process of determining the number of neurons in each round,if the RMSE corresponding to the validation set keeps increasing in the past calculation,the cycle will be stopped,and the number of neurons corresponding to the previous minimum validation error will be taken as the output of the loop.

    Step4 After theuloops,average and round the results to obtain the optimal number of hidden-layer neurons.

    3 Data Set and Experiments

    This section introduces the data set used,and various simulation experiments are provided and analyzed to substantiate the efficacy,superiority,and physical realizability of the proposed SOCPNN-G model.

    3.1 Descriptions of the Data Set

    The sonar data set provided by UCI machine learning repository is used for training,validation,and testing.This data set contains sonar signals reflected from metal and rock from various angles and can be used for the training and validation of the SOCPNN-G.Specifically,the dataset contains 208 instances with 60 attributes.The attributes in the range 0.0 to 1.0 represent the energy in a particular frequency band.In addition,after modifying the characteristic column(column 61) of the original data set,the number 0 is used to represent rock and is used to represent metal in our experiment(in the original dataset,the letter “R” stands for rock and “M” for metal).

    3.2 Experiments

    In the same NN model and a different data set,the optimal number of folds for cross validation in the NN may not be consistent,so the SOCPNN-G is proposed.Different from the traditional models using the fixed 4FCV,8FCV and 10FCV algorithms,subset method is used to determine the optimal foldufor cross validation.Then theuFCV algorithm is used to train the SOCPNN-G.The SOCPNN model is used to classify the sonar data set obtained from the UCI machine learning repository.In order to verify the necessity and feasibility of theuFCV algorithm,five experiments are conducted.The experimental results are shown in Table 1,where the “Fold” column indicates that the optimal folds for cross validation determined are different.Furthermore,the traditional fixed-cross validation algorithms are used to train the model on the same data set.In order to avoid accidents in the experiment,three repeated experiments are performed for each method,and the average of the three results is taken as the final result.The training accuracy rate and test accuracy rate are shown in Table 2.As shown in Table 2,for the model corresponding to the fixed cross-validation algorithm(u=4,8,10),the experimental results vary greatly each time.

    Table 1 SOCPNN-G to determine the optimal fold

    Table 2 Performance comparisons of different FCV methods %

    Sometimes the model performs well,while sometimes its performance is extremely poor.On the contrary,for theuFCV algorithm with unfixed number of folds,the SOCPNN-G model consistently performs well.

    The subset method is also used to determine the initial number of neurons.As mentioned in Section 2.2,it is important and effective to determine the initial number of neurons of the NN.Not using the fixed initial neuron number,the subset method improves the efficiency of the NN in some situations.The superiority of the subset method is verified by experiments.As a comparison,original SOCPNN is trained that determines the initial neuron number of the NN as 1.In order to avoid accidents in the experiment,it is repeated thrice,and the experimental results are shown in Table 3,which shows that the SOCPNN-G adopting the subset method is superior to the original SOCPNN mo-del.On the one hand,the subset method is used once,but two parameters ofuFCV and the initial structure of the NN are determined,which play an important role in the performance of the NN.On the other hand,the subset method only requires a subset of the whole dataset,hence there is not much time overhead in this subset model.

    With the aid of the general solution form of matrix equations,the modified WDD algorithm used in this paper can obtain all solutions with the smallest error on the training set,among which there may be some solu-

    Table 3 Comparison of experiment results among different classification methods1) %

    tions that are better than the minimus norm least squares solution on the validation set.Experiments corresponding to original WDD algorithm and the modified WDD algorithm are carried out,severally.In order to avoid accidents in the experiment,each experiment is repeated thrice,and the experimental results are shown in Table 3.The results show that the modified WDD method can improve the performance of NN.

    After several experiments,the SOCPNN-G model performs well on the sonar data set,in which the trai-ning accuracy and test accuracy reach 90.96% and 83.33%,severally.The experimental results are shown in Fig.2.In order to evaluate the performance of the SOCPNN-G after various improvements,comparative experiments are conducted among the SOCPNN-G and other NN models.The models used for comparison are feed-forward back propagation NN(FFBPNN),layer recurrent NN(LRNN),perceptron NN(PNN),and nonlinear auto-regressive with reversible inputs NN(NARXNN).These models are used to classify the sonar data.In order to avoid accidents in the experiment and facilitate the analysis of model performance,these models and SOCPNN-G are tested three times,separately,and the experimental results are shown in Table 3,which show that the SOCPNN-G model performs best in the classification of marine mineral data sets.Therefore,the SOCPNN-G can be used for marine mineral classification and better serve the marine mining industry.All the experiments are conducted on Matlab 2019 with a computer equipped with 2.90 GHz Intel i5-9400CPU,8 GB memory.

    4 Conclusion

    Using the general solution form of matrix equations,the modified WDD algorithm obtaining all solutions with the smallest error has been proposed,among which there may be some solutions that are better than the minimus norm least squares solution.The modified WDD algorithm has been applied to the SOCPNN-G.With the aid of subset method,the SOCPNN-G adaptively determines the fold of cross validation and determines the initial structure of the NN.The performance of the original SOCPNN has been significantly improved in the comparative experiments.The experimental results have shown that the SOCPNN-G performs best,and the training accuracy and test accuracy reach 90.96% and 83.33%,respectively.Considering that the SOCPNN-G has higher accuracy and lower computational overhead,it has potential for application in the marine mining industry.

    国产精品久久久久成人av| 人妻夜夜爽99麻豆av| 人妻夜夜爽99麻豆av| 男人操女人黄网站| 精品久久蜜臀av无| 日日摸夜夜添夜夜爱| 午夜老司机福利剧场| 久久国内精品自在自线图片| 飞空精品影院首页| 少妇被粗大的猛进出69影院 | 亚洲精品久久成人aⅴ小说 | 亚洲高清免费不卡视频| 亚洲av福利一区| 欧美日韩视频高清一区二区三区二| 少妇猛男粗大的猛烈进出视频| 插阴视频在线观看视频| 亚洲欧洲精品一区二区精品久久久 | 新久久久久国产一级毛片| 免费人成在线观看视频色| 色5月婷婷丁香| 成人亚洲精品一区在线观看| 大香蕉久久成人网| 大码成人一级视频| 精品少妇内射三级| 国产精品一二三区在线看| 极品少妇高潮喷水抽搐| 国产不卡av网站在线观看| 国产av一区二区精品久久| 大香蕉久久网| 18在线观看网站| 国产国语露脸激情在线看| 大香蕉久久网| 高清黄色对白视频在线免费看| 国产精品无大码| 成人影院久久| 一边摸一边做爽爽视频免费| 亚洲,欧美,日韩| 日产精品乱码卡一卡2卡三| 97在线视频观看| 欧美日韩av久久| 大又大粗又爽又黄少妇毛片口| 欧美日韩一区二区视频在线观看视频在线| xxx大片免费视频| 亚洲欧美清纯卡通| 一区二区日韩欧美中文字幕 | 中文天堂在线官网| 色哟哟·www| 下体分泌物呈黄色| 久久av网站| a级毛片在线看网站| 亚洲色图 男人天堂 中文字幕 | 国产一区亚洲一区在线观看| 丝袜脚勾引网站| 日韩电影二区| 边亲边吃奶的免费视频| 亚洲欧洲精品一区二区精品久久久 | 久久久精品免费免费高清| 高清黄色对白视频在线免费看| 五月玫瑰六月丁香| 亚洲五月色婷婷综合| 午夜视频国产福利| 欧美精品一区二区免费开放| 亚洲精品av麻豆狂野| 国产精品久久久久久久久免| 黑丝袜美女国产一区| 精品久久久久久电影网| 午夜91福利影院| 内地一区二区视频在线| 国产免费福利视频在线观看| 国产片内射在线| 一级黄片播放器| 18+在线观看网站| 亚洲精品日韩在线中文字幕| 亚洲国产精品一区三区| 久久久久久久国产电影| 欧美日韩一区二区视频在线观看视频在线| 日韩中文字幕视频在线看片| 三级国产精品片| 在线播放无遮挡| 超色免费av| 丰满迷人的少妇在线观看| 青春草国产在线视频| 日日摸夜夜添夜夜添av毛片| 最黄视频免费看| 午夜福利视频精品| 老熟女久久久| 高清黄色对白视频在线免费看| 精品久久国产蜜桃| 国产精品久久久久久精品古装| 精品少妇黑人巨大在线播放| 天天操日日干夜夜撸| av免费观看日本| 精品午夜福利在线看| 国产成人精品婷婷| 久久99热这里只频精品6学生| 亚洲欧美清纯卡通| 丝袜在线中文字幕| 久久国产精品男人的天堂亚洲 | 成人免费观看视频高清| av网站免费在线观看视频| 少妇被粗大猛烈的视频| 18禁裸乳无遮挡动漫免费视频| 国产成人a∨麻豆精品| 久久精品国产亚洲av天美| 欧美最新免费一区二区三区| 国产成人精品婷婷| 亚洲欧美日韩另类电影网站| 久久鲁丝午夜福利片| 欧美bdsm另类| 国产精品熟女久久久久浪| 精品视频人人做人人爽| 国产极品天堂在线| 亚洲国产av影院在线观看| 久久国产亚洲av麻豆专区| 成年av动漫网址| 熟女电影av网| 激情五月婷婷亚洲| 超碰97精品在线观看| 黄色配什么色好看| 菩萨蛮人人尽说江南好唐韦庄| av卡一久久| 亚洲欧美日韩另类电影网站| 欧美激情国产日韩精品一区| 日韩不卡一区二区三区视频在线| 久久久久网色| 麻豆成人av视频| 精品久久久久久久久亚洲| 热re99久久国产66热| 午夜福利视频在线观看免费| 亚洲av国产av综合av卡| 亚洲高清免费不卡视频| 少妇的逼水好多| 欧美精品一区二区免费开放| 免费观看的影片在线观看| 男女无遮挡免费网站观看| 亚洲精品视频女| 人人澡人人妻人| 高清毛片免费看| 美女脱内裤让男人舔精品视频| 日韩三级伦理在线观看| 日本黄色片子视频| 免费观看在线日韩| 18禁在线播放成人免费| 精品99又大又爽又粗少妇毛片| 国产欧美亚洲国产| 午夜激情久久久久久久| 韩国高清视频一区二区三区| 国产成人精品福利久久| 欧美人与性动交α欧美精品济南到 | 青春草国产在线视频| 18+在线观看网站| 精品人妻熟女毛片av久久网站| 2022亚洲国产成人精品| 一级毛片 在线播放| 一区二区三区四区激情视频| 亚洲精品中文字幕在线视频| 青春草视频在线免费观看| 五月开心婷婷网| 一区二区三区精品91| 午夜久久久在线观看| 日韩亚洲欧美综合| 亚洲av在线观看美女高潮| 伊人久久精品亚洲午夜| 免费高清在线观看视频在线观看| 亚洲av.av天堂| av卡一久久| 国产精品麻豆人妻色哟哟久久| 99精国产麻豆久久婷婷| 少妇丰满av| 天堂8中文在线网| 欧美xxxx性猛交bbbb| 精品亚洲成国产av| 免费av不卡在线播放| 久久精品国产自在天天线| 免费大片18禁| 久久精品夜色国产| 涩涩av久久男人的天堂| 亚洲经典国产精华液单| 搡女人真爽免费视频火全软件| 视频中文字幕在线观看| 麻豆精品久久久久久蜜桃| 在线观看免费视频网站a站| 免费观看av网站的网址| 亚洲av男天堂| 精品卡一卡二卡四卡免费| 亚洲美女搞黄在线观看| 国产成人精品福利久久| 大片电影免费在线观看免费| 晚上一个人看的免费电影| 国产成人精品久久久久久| 黑人欧美特级aaaaaa片| 天天影视国产精品| 又大又黄又爽视频免费| 麻豆乱淫一区二区| 免费观看在线日韩| 男男h啪啪无遮挡| 精品久久久噜噜| 日本与韩国留学比较| 一区二区三区免费毛片| 精品人妻熟女毛片av久久网站| 亚州av有码| 国产69精品久久久久777片| 国产av精品麻豆| 中国国产av一级| 亚洲图色成人| 久久99蜜桃精品久久| 成人无遮挡网站| 久热这里只有精品99| 最黄视频免费看| av女优亚洲男人天堂| 不卡视频在线观看欧美| 夫妻午夜视频| 久久久国产欧美日韩av| 最新中文字幕久久久久| 丝袜脚勾引网站| 国产精品.久久久| 黑人猛操日本美女一级片| 亚洲美女搞黄在线观看| 制服诱惑二区| 婷婷色综合www| 久久av网站| 亚州av有码| 欧美亚洲日本最大视频资源| 亚洲精品视频女| 能在线免费看毛片的网站| 日日摸夜夜添夜夜添av毛片| 午夜久久久在线观看| 欧美成人午夜免费资源| 制服诱惑二区| 老司机影院成人| 伊人久久精品亚洲午夜| 搡老乐熟女国产| 精品人妻一区二区三区麻豆| 精品国产乱码久久久久久小说| 午夜激情av网站| 日韩熟女老妇一区二区性免费视频| 欧美少妇被猛烈插入视频| 97在线人人人人妻| 3wmmmm亚洲av在线观看| 欧美丝袜亚洲另类| 日韩av不卡免费在线播放| 亚洲成人手机| 国产欧美亚洲国产| 黄片播放在线免费| 久久精品熟女亚洲av麻豆精品| 99热国产这里只有精品6| 在现免费观看毛片| 亚洲中文av在线| 97在线视频观看| 亚洲国产成人一精品久久久| 欧美精品一区二区大全| 欧美 亚洲 国产 日韩一| 久久久久国产网址| 国产一区亚洲一区在线观看| 中文字幕人妻熟人妻熟丝袜美| 一区二区三区精品91| 女性被躁到高潮视频| 日本黄色日本黄色录像| 视频在线观看一区二区三区| 一级毛片我不卡| 免费看光身美女| 亚州av有码| 国产爽快片一区二区三区| 国产精品国产三级专区第一集| 美女cb高潮喷水在线观看| 岛国毛片在线播放| 国产亚洲欧美精品永久| 新久久久久国产一级毛片| av免费观看日本| 国产成人aa在线观看| 欧美日韩综合久久久久久| 免费大片18禁| 日日摸夜夜添夜夜添av毛片| 狂野欧美激情性xxxx在线观看| 午夜福利视频在线观看免费| av福利片在线| 999精品在线视频| 天天操日日干夜夜撸| 美女福利国产在线| 一个人看视频在线观看www免费| 2018国产大陆天天弄谢| 成人综合一区亚洲| 97超视频在线观看视频| 18禁动态无遮挡网站| 91午夜精品亚洲一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产探花极品一区二区| 亚洲国产精品一区三区| 亚洲欧美成人精品一区二区| 免费av中文字幕在线| 久久久a久久爽久久v久久| 婷婷色综合大香蕉| 国产精品蜜桃在线观看| 69精品国产乱码久久久| 国产无遮挡羞羞视频在线观看| 中文天堂在线官网| 欧美日韩av久久| 欧美三级亚洲精品| 我要看黄色一级片免费的| 国产在线免费精品| 免费观看性生交大片5| 亚洲人成网站在线观看播放| 国产男女内射视频| 亚洲精品久久成人aⅴ小说 | 亚洲av在线观看美女高潮| 亚洲精品日韩av片在线观看| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 麻豆乱淫一区二区| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品成人久久小说| 午夜福利网站1000一区二区三区| 国产在视频线精品| 99国产综合亚洲精品| 久久97久久精品| 久久av网站| 亚洲精品国产色婷婷电影| 精品视频人人做人人爽| 少妇的逼好多水| 一级爰片在线观看| 欧美人与性动交α欧美精品济南到 | 成人手机av| 热99国产精品久久久久久7| 国产成人一区二区在线| 成人国产av品久久久| 老熟女久久久| 免费观看在线日韩| 国产高清有码在线观看视频| 日本91视频免费播放| 日韩av在线免费看完整版不卡| 午夜福利视频精品| 国产成人午夜福利电影在线观看| 成人国产av品久久久| 婷婷成人精品国产| 纵有疾风起免费观看全集完整版| 黄片播放在线免费| 99久久精品一区二区三区| 欧美人与性动交α欧美精品济南到 | 狠狠精品人妻久久久久久综合| 国产男女超爽视频在线观看| 一级毛片电影观看| 久久久国产欧美日韩av| 欧美人与性动交α欧美精品济南到 | 熟妇人妻不卡中文字幕| 亚洲国产精品一区二区三区在线| 丰满乱子伦码专区| 婷婷成人精品国产| 欧美三级亚洲精品| 亚洲情色 制服丝袜| 中文字幕人妻熟人妻熟丝袜美| 男女边摸边吃奶| 男男h啪啪无遮挡| 午夜视频国产福利| 菩萨蛮人人尽说江南好唐韦庄| 最近2019中文字幕mv第一页| 欧美最新免费一区二区三区| 国产片内射在线| 新久久久久国产一级毛片| 日本与韩国留学比较| 婷婷色综合www| 精品人妻熟女毛片av久久网站| 777米奇影视久久| 欧美亚洲日本最大视频资源| 成人毛片60女人毛片免费| 91精品国产国语对白视频| 蜜桃在线观看..| 大码成人一级视频| 999精品在线视频| a级毛片在线看网站| 国产精品99久久99久久久不卡 | 女的被弄到高潮叫床怎么办| 日韩不卡一区二区三区视频在线| 精品人妻一区二区三区麻豆| 女人精品久久久久毛片| 亚洲av成人精品一区久久| 日韩中文字幕视频在线看片| 久久婷婷青草| 精品一区在线观看国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 伊人亚洲综合成人网| 国产老妇伦熟女老妇高清| 制服丝袜香蕉在线| 日韩 亚洲 欧美在线| 日韩av不卡免费在线播放| 97精品久久久久久久久久精品| 精品人妻偷拍中文字幕| 亚洲精品成人av观看孕妇| 日产精品乱码卡一卡2卡三| 韩国高清视频一区二区三区| 欧美日韩在线观看h| 在线观看www视频免费| 国产黄频视频在线观看| 久热久热在线精品观看| 九九久久精品国产亚洲av麻豆| 高清在线视频一区二区三区| 在线观看三级黄色| 久久毛片免费看一区二区三区| 制服人妻中文乱码| 91精品三级在线观看| 中文字幕av电影在线播放| 黄色一级大片看看| 在线观看免费高清a一片| 成人免费观看视频高清| videossex国产| 一级毛片黄色毛片免费观看视频| 下体分泌物呈黄色| av播播在线观看一区| 欧美 日韩 精品 国产| 人人妻人人澡人人看| 97在线人人人人妻| 国产国拍精品亚洲av在线观看| 日韩精品免费视频一区二区三区 | 91精品伊人久久大香线蕉| 九草在线视频观看| 王馨瑶露胸无遮挡在线观看| 日本-黄色视频高清免费观看| 在线 av 中文字幕| 欧美日韩成人在线一区二区| 麻豆精品久久久久久蜜桃| 男人操女人黄网站| 亚洲av综合色区一区| 少妇丰满av| 亚洲少妇的诱惑av| 精品久久久久久久久av| 80岁老熟妇乱子伦牲交| 日韩成人av中文字幕在线观看| av有码第一页| 久久国内精品自在自线图片| 久久久亚洲精品成人影院| 国产亚洲一区二区精品| 亚洲欧美成人综合另类久久久| 亚洲精品一区蜜桃| 美女国产视频在线观看| 成人综合一区亚洲| 一级二级三级毛片免费看| 国产成人一区二区在线| av一本久久久久| 精品一区二区三卡| 亚洲精品久久久久久婷婷小说| 久久精品久久久久久噜噜老黄| 成人二区视频| 成人手机av| 国产视频内射| 一级,二级,三级黄色视频| 九色亚洲精品在线播放| 国产成人精品久久久久久| 美女内射精品一级片tv| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产欧美日韩在线播放| 欧美日韩视频精品一区| 免费看av在线观看网站| 22中文网久久字幕| 日韩亚洲欧美综合| 免费观看在线日韩| 99久久精品国产国产毛片| 成年美女黄网站色视频大全免费 | 少妇高潮的动态图| 黄色怎么调成土黄色| 国产毛片在线视频| 日韩强制内射视频| 日韩在线高清观看一区二区三区| 免费av中文字幕在线| 免费黄网站久久成人精品| 日韩伦理黄色片| 啦啦啦啦在线视频资源| 亚洲av中文av极速乱| 国产精品99久久99久久久不卡 | 22中文网久久字幕| 亚洲高清免费不卡视频| 嘟嘟电影网在线观看| 国产永久视频网站| 插阴视频在线观看视频| 亚洲人成77777在线视频| 国产免费视频播放在线视频| 伊人久久精品亚洲午夜| 免费大片18禁| 尾随美女入室| 国国产精品蜜臀av免费| 欧美97在线视频| 国产成人精品婷婷| 国产日韩欧美在线精品| 亚洲欧洲国产日韩| 亚洲av综合色区一区| 又大又黄又爽视频免费| 日韩精品免费视频一区二区三区 | 亚洲精品国产av成人精品| 国产精品 国内视频| 晚上一个人看的免费电影| 各种免费的搞黄视频| 蜜桃在线观看..| 毛片一级片免费看久久久久| 午夜福利网站1000一区二区三区| 999精品在线视频| 日韩大片免费观看网站| 欧美激情 高清一区二区三区| 精品少妇内射三级| 天天躁夜夜躁狠狠久久av| 欧美亚洲日本最大视频资源| 爱豆传媒免费全集在线观看| 亚洲性久久影院| 精品久久久精品久久久| 亚洲精品乱码久久久久久按摩| 亚洲精品国产av蜜桃| 午夜激情久久久久久久| 日韩,欧美,国产一区二区三区| 99久久精品国产国产毛片| 大香蕉久久成人网| 老女人水多毛片| 激情五月婷婷亚洲| 性高湖久久久久久久久免费观看| a 毛片基地| 日韩伦理黄色片| 国产淫语在线视频| 免费观看无遮挡的男女| 男的添女的下面高潮视频| 亚洲精品456在线播放app| 一本—道久久a久久精品蜜桃钙片| 免费看不卡的av| 免费观看无遮挡的男女| 国产成人精品久久久久久| 超碰97精品在线观看| 97超视频在线观看视频| 国产精品99久久久久久久久| 一本一本综合久久| 制服诱惑二区| 精品一区二区三卡| 啦啦啦视频在线资源免费观看| 国产免费福利视频在线观看| 飞空精品影院首页| 2018国产大陆天天弄谢| 少妇高潮的动态图| 最近2019中文字幕mv第一页| 亚洲国产av影院在线观看| 赤兔流量卡办理| 大片免费播放器 马上看| 欧美精品一区二区大全| 自线自在国产av| 免费av中文字幕在线| .国产精品久久| 韩国av在线不卡| 一级毛片 在线播放| 亚洲性久久影院| 2021少妇久久久久久久久久久| 国产精品偷伦视频观看了| 极品少妇高潮喷水抽搐| 久久综合国产亚洲精品| 日本黄大片高清| 久久久久久久大尺度免费视频| 日韩av免费高清视频| 久久久久国产网址| 人妻少妇偷人精品九色| 国产极品粉嫩免费观看在线 | 精品久久蜜臀av无| 久久鲁丝午夜福利片| 国产 精品1| 日韩制服骚丝袜av| 免费看不卡的av| 插阴视频在线观看视频| 欧美日韩视频精品一区| 一级毛片aaaaaa免费看小| 热re99久久国产66热| freevideosex欧美| 国产色爽女视频免费观看| 午夜免费鲁丝| 男的添女的下面高潮视频| 国产深夜福利视频在线观看| 丰满乱子伦码专区| 精品国产露脸久久av麻豆| 国产精品久久久久久精品古装| 大片电影免费在线观看免费| 久久精品人人爽人人爽视色| 国产乱来视频区| 亚洲精品色激情综合| www.av在线官网国产| 久久久久国产精品人妻一区二区| 国产一区二区在线观看av| 国产不卡av网站在线观看| 高清欧美精品videossex| 观看av在线不卡| 免费人成在线观看视频色| 精品卡一卡二卡四卡免费| 国产黄频视频在线观看| 欧美97在线视频| 亚洲成人手机| 中文欧美无线码| 美女中出高潮动态图| 亚洲高清免费不卡视频| 成人手机av| 精品一品国产午夜福利视频| 午夜91福利影院| 国产 一区精品| 久久久精品免费免费高清| 国语对白做爰xxxⅹ性视频网站| 成人黄色视频免费在线看| 一区二区日韩欧美中文字幕 | 一边摸一边做爽爽视频免费| 黑人高潮一二区| 日韩熟女老妇一区二区性免费视频| 国产日韩欧美视频二区| 亚洲综合色网址| 国产男女超爽视频在线观看| 国产精品久久久久久精品古装| 有码 亚洲区| 国产熟女欧美一区二区| 久久久久久久大尺度免费视频| 狂野欧美激情性xxxx在线观看| 午夜福利在线观看免费完整高清在| 亚洲精品国产av蜜桃| 亚洲国产精品一区三区| 天天操日日干夜夜撸| 中文字幕人妻熟人妻熟丝袜美| 国产高清有码在线观看视频| freevideosex欧美| 久久狼人影院| 插阴视频在线观看视频|