黃潔瑩
(廣東省廣州市海珠區(qū)大元帥府小學(xué) 廣東廣州 510000)
數(shù)學(xué)知識(shí)體系非常龐大,很多內(nèi)容之間都是息息相關(guān)的,且公式定理、知識(shí)概念內(nèi)容豐富多彩,要想使學(xué)生解決問(wèn)題的能力得到發(fā)展,要通過(guò)使其掌握基礎(chǔ)概念、掌握解題技巧、參與課堂活動(dòng)、進(jìn)行課后復(fù)習(xí)等多方面入手[1]。
數(shù)學(xué)是一門(mén)較為抽象的學(xué)科,其中蘊(yùn)含著很多公式定理和知識(shí)概念,這些內(nèi)容是促使學(xué)生解決數(shù)學(xué)問(wèn)題的基礎(chǔ)。好比醫(yī)生手中的手術(shù)刀、戰(zhàn)士手中的槍?zhuān)绻麤](méi)能掌握這些必要內(nèi)容,接下來(lái)的做題環(huán)節(jié),將寸步難行。作為學(xué)生的引導(dǎo)者,教師要讓學(xué)生認(rèn)識(shí)到對(duì)公式定理進(jìn)行全面了解的重要性[2]。
比如,在解決如下問(wèn)題時(shí):1.一塊長(zhǎng)方形的木牌,它的寬是3分米,長(zhǎng)是寬的2倍。要把木牌用彩帶在周?chē)b飾得漂亮一些,至少需要多長(zhǎng)的彩帶?2.一個(gè)長(zhǎng)方形和一個(gè)正方形的周長(zhǎng)相等,長(zhǎng)方形的長(zhǎng)為12米,寬為8米,那么正方形的邊長(zhǎng)為多少米?這些問(wèn)題其實(shí)是長(zhǎng)方形和正方形的周長(zhǎng)求解,如果學(xué)生對(duì)相關(guān)公式定理不熟悉,則很難得出問(wèn)題的結(jié)果。因此,在此之前,學(xué)生要明確如下公式內(nèi)容:長(zhǎng)方形的周長(zhǎng)公式:L(周長(zhǎng))=2(a+b)(a,b分別為長(zhǎng)方形的長(zhǎng)和寬);正方形的周長(zhǎng)公式:L(周長(zhǎng))=4a(a為長(zhǎng)方形的一邊長(zhǎng))。按照公式指引,學(xué)生才能在解題時(shí)找到對(duì)應(yīng)的內(nèi)容,并得出最終結(jié)果。
數(shù)學(xué)學(xué)科雖然較為抽象,但數(shù)學(xué)問(wèn)題的求解方式卻可以是靈活多樣的。為了提高學(xué)生的解題效率,教師可以教給學(xué)生一些解答問(wèn)題的方法,使其能不斷拓展思路,優(yōu)化思維方式,增強(qiáng)對(duì)數(shù)學(xué)問(wèn)題的探究興趣。
比如,學(xué)習(xí)“加減混合”這部分內(nèi)容時(shí),教師要明確如下教學(xué)目標(biāo):引導(dǎo)學(xué)生認(rèn)識(shí)加、減混合運(yùn)算式題,掌握加、減混合運(yùn)算式題的運(yùn)算順序,能正確計(jì)算加、減混合式題。在引導(dǎo)學(xué)生做數(shù)學(xué)題時(shí),可以運(yùn)用“數(shù)形結(jié)合”的方式。比如:4+2-3=( );2+3-1=( );5+1-3=( )。在解答“4+2-3”這道題時(shí),如果學(xué)生空想,可能會(huì)耗費(fèi)大量時(shí)間,對(duì)此,教師可以教會(huì)學(xué)生如何運(yùn)用“數(shù)形結(jié)合”來(lái)解答,比如,先畫(huà)出4個(gè)小火柴棒,再畫(huà)出2根,表示“4+2”,學(xué)生通過(guò)數(shù)數(shù),可得出“4+2=6”,再表示“減3”時(shí),則可以再用橡皮擦去3根火柴棒,最終,剩余的火柴棒數(shù)量就是“4+2-3”的解,這樣的方式能提高學(xué)生的運(yùn)算準(zhǔn)確率,使其慢慢感受“數(shù)形結(jié)合”的優(yōu)勢(shì)?!皵?shù)形結(jié)合”的解題方法還可以運(yùn)用到很多內(nèi)容中,比如對(duì)距離的測(cè)算、對(duì)圖形面積的求解等。此外,教師還可以針對(duì)不同問(wèn)題,向?qū)W生介紹更多方法,如“排除法”“代入法”等,使學(xué)生感受解題的樂(lè)趣,同時(shí)發(fā)展思維能力。
在傳統(tǒng)數(shù)學(xué)課堂上,大多是教師占主體地位,教師主動(dòng)地講,學(xué)生被動(dòng)地聽(tīng)。學(xué)生長(zhǎng)期處于被動(dòng)地位,難以調(diào)動(dòng)自身的學(xué)習(xí)能動(dòng)性,在解答數(shù)學(xué)問(wèn)題時(shí),如果學(xué)生不能迸發(fā)思維的火花,將難以對(duì)相關(guān)知識(shí)有更深入、全面的把握。對(duì)此,教師可以重建教學(xué)模式,如構(gòu)建課堂學(xué)習(xí)小組,對(duì)于相關(guān)問(wèn)題的解答,可以使學(xué)生通過(guò)小組活動(dòng)來(lái)完成,在組內(nèi)交流時(shí),學(xué)生會(huì)不斷感受他人的思維模式,以?xún)?yōu)化自己的思路,從而提升對(duì)問(wèn)題的解答效率[3]。
比如,學(xué)習(xí)“正方形的面積”這部分內(nèi)容時(shí),教師可以把相關(guān)題目的解答時(shí)間交給學(xué)生,使其通過(guò)小組活動(dòng)完成對(duì)如下題目的探究,如:1.一個(gè)長(zhǎng)方形的長(zhǎng)是15厘米,寬是4厘米,這個(gè)長(zhǎng)方形的周長(zhǎng)和面積各是多少?2.一個(gè)正方形的水稻田,邊長(zhǎng)是30米,它的邊長(zhǎng)都增加200分米,現(xiàn)在的面積是多少?在小組學(xué)習(xí)期間,學(xué)生可以先自主思考,然后訂正答案,當(dāng)遇到答案不統(tǒng)一的情況時(shí),可以交流探討,提高準(zhǔn)確度。比如在解答問(wèn)題2時(shí),很多學(xué)生會(huì)出錯(cuò)的原因是忽略了對(duì)單位的換算,直接使用題目中的兩個(gè)數(shù)進(jìn)行計(jì)算,這樣得出的結(jié)果必然是不準(zhǔn)確的。通過(guò)合作學(xué)習(xí),可以使學(xué)生有效規(guī)避此類(lèi)問(wèn)題,全面提升解答正確率。
復(fù)習(xí)是開(kāi)展數(shù)學(xué)學(xué)習(xí)的重要環(huán)節(jié),復(fù)習(xí)可以幫助學(xué)生深入理解相關(guān)知識(shí)內(nèi)容,對(duì)所學(xué)公式定理、解題思路有進(jìn)行深化鞏固,對(duì)于學(xué)生的解題過(guò)程也會(huì)有更多幫助。對(duì)此,教師要注重引導(dǎo)學(xué)生開(kāi)展復(fù)習(xí)活動(dòng),以提升其解答數(shù)學(xué)問(wèn)題的能力。
比如,學(xué)習(xí)“千米的認(rèn)識(shí)”這部分內(nèi)容時(shí),在課后復(fù)習(xí)過(guò)程中,教師要引導(dǎo)學(xué)生做好對(duì)教材內(nèi)容的梳理,并對(duì)相關(guān)概念、定理、公式進(jìn)行歸納總結(jié),比如:除km與m之間的進(jìn)率是1000外,其余相鄰兩個(gè)長(zhǎng)度單位的進(jìn)率是10;1千米=1000米,即1km=1000m;計(jì)量比較短的距離通常用厘米或毫米作單位。直尺上最小1格的長(zhǎng)度是1毫米。通過(guò)復(fù)習(xí)總結(jié),可以提高學(xué)生對(duì)知識(shí)的把握效率,并能使其在解題過(guò)程中對(duì)更好地運(yùn)用。
教無(wú)定法,貴在得法。綜上所述,在幫助學(xué)生提高解決數(shù)學(xué)問(wèn)題的活動(dòng)中,方式可以靈活多樣,形式也可以不斷變換,為了全面提升學(xué)生的數(shù)學(xué)效率,教師可以制定明確的教學(xué)方案,創(chuàng)新教學(xué)方式,將教學(xué)活動(dòng)和最新的教育理念相結(jié)合,使學(xué)生能在學(xué)習(xí)過(guò)程中不斷提升對(duì)數(shù)學(xué)問(wèn)題的探究興趣,切實(shí)增強(qiáng)自身學(xué)習(xí)效率。