• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition

    2014-07-30 09:55:22YongZhaoTianlinWangandZhiZong

    Yong Zhao, Tianlin Wang and Zhi Zong

    1. Transportation Equipment and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China

    2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China 3. School of Naval Architecture, Dalian University of Technology, Dalian 116024, China

    1 Introduction1

    As a fundamental problem, transition prediction and its flow features are important in many engineering applications,such as ship hydrodynamics, aircraft, space vehicles, ground vehicles, turbo machinery blades, and wind turbines (Levin and Henningson, 2003; Maet al., 2007; Yeet al., 2012). The frictional resistance on the wall in a turbulent boundary layer is much greater than that in the laminar flow. Therefore, a suppression or delay of the transition from laminar flow to turbulence can reduce the drag acting on the surface of structures, leading to an improvement of energy efficiency(Lee, 2002; Hackenberget al., 1995). Hence, it is important to predict transition position and understand the corresponding physics. So, transitional flow has received much attention (Wang and Fu, 2009a, 2009b, 2011; Cao, 2009;Wassermann and Kloker, 2005). Besides experimental research (Klewickiet al., 2011), some numerical simulations based on Reynolds averaged numerical simulation (RANS)are conducted on the transition in the last decade (Biauet al.,2007; Jacobs and Durbin, 2000; Xiaoet al.,2006; Yang,2012). However, due to the short length of transition zone with rapid variation of flow parameters, it raises higher request for the turbulent model in RANS method (Wang and Guo, 2012; Chen and Chen, 2010; Fanet al., 2011).

    Therefore, in this paper an attempt is taken for the numerical investigation on transition by RANS with advanced turbulence models which have good performance in complicated flows’ simulation, such ask-ωmodel, stress-ωmodel and their corresponding low Reynolds number correction versions (Wilcox, 2006). Despite that the geometric boundary has serious impact on the flow field, the fundamental understanding of the transition lies in the flat plate boundary flow. So the flat plate boundary layer flow is chosen as the research object. Hence one main purpose of this paper is to clarify the above four models’ performance on predicting the frictional resistance along the plate by the available experimental data, and the second purpose is to understand the flow through the numerical study with the best model.

    2 Governing equations and turbulence models

    The two-dimensional incompressible and steady flow is taken into account. The corresponding governing equations are as follows:

    whereU,Vare streamwise and normal averaged velocity components;r,Pare fluid density and pressure;n,Tnare molecular and turbulent eddy kinetic viscosities.

    Thek-ωmodel was firstly created independently by Kolmogorov and later by Saffman (1970), Wilcox has continually refined and improved the model during the past three decades and demonstrated its accuracy for a wide range of turbulent flow (Wilcox and Alber, 1972; Wilcox,1988; Wilcox, 2006). The latest version was put forward in 2006, termed as Wilcox (2006)k-ωmodel, the turbulent eddy viscosity:

    Reynolds stress for incompressible flow is:

    Turbulence kinetic energy equation:

    Specific dissipation rate:

    Closure coefficients and auxiliary relations:

    where,

    As it can be easily verified, the quantitywcis zero for two-dimensional flows. As to the solid wall, the boundary is under no-slip condition, i.e.

    For the model equation, the boundary condition is specified as:

    wheredis the distance from the nearest grid to the wall.

    If the low Reynolds effect is included in the Wilcox (2006)k-ωmodel, the corrected closure coefficients are the following ones:

    The quantityReTis turbulence Reynolds number defined by

    In the meanwhile, Wilcox also improved the stress-ωmodel in 2006, which is an advanced model to solve the six Reynolds stress equations, including its low Reynolds number correction. For the detailed information of stress-ωmodel and its low Reynolds number correction, the interested readers may refer to Wilcox (2006).

    3 Numerical experiment

    3.1 Flow parameters

    The flow parameters are the followings: the free stream air’s velocity is 24.36 m/s, temperature is 293 K, density is 1.21 kg/m3, pressure is 1.01×105Pa, the length of the plate is 2.8 m, and the Reynolds number based on the flat’s length 4.5×107. These parameters are consistent with the experiment by Schubauer and Klebanoff (1955) in order to validate our numerical experiment by their measured resistance coefficient. The coefficient is defined as, where. This physical quantity is determined by the derivative of velocity and eddy viscosity, thus it is a good candidate for checking numerical simulation.

    3.2 Numerical method and the grids convergence validation

    On the basis of laminar flow, the codes are supplemented to the four advanced models for calculating the transitional flow. Iterative algorithm is used to solve the equations according to the order of the momentum equations, the continuous equation and the turbulence model equations. A threshold value setting as 1×104for streamwise averaged velocity’s relative error between the two consecutive iterative values is used for checking numerical convergence.In the discrete equations, the second-order upwind difference format is used for the convection items and others are second-order central difference scheme. Uniform incoming velocity, free outflow, no-slip wall and periodic boundary conditions are defined for the boundary conditions.In order to check grids’ convergence, three nested grids are used, with nodes number of 301×101, 151×51, and 75×25 to discrete the computational zone 2.8 m×0.03 m. It is found that the grids’ convergence is satisfied for all the four turbulence models. For example, in the case of Wilcox(2006)k-ωmodel and its low Reynolds number correction,the frictional resistance coefficient along the plate is shown in Fig. 1, indicating the numerical results’ independence on the grids’ density. So in the following calculation, the middle density grid is chosen, i.e. 151×51.

    Fig. 1 The comparison of local frictional coefficient along the plate on three distributed grids

    3.3 Models testing

    In this section, the four candidate models are tested through the frictional resistance coefficients along the wall with the experimental ones in the transient zone particularly.Fig. 2 shows the comparisons in the case of Wilcox (2006)k-ωmodel and its low Reynolds number correction. As shown in Fig. 2, the result predicted by the low Reynolds number correction model is very close to the experimental ones. While in no correction version, the results are far from the experimental ones. Turbulence model is brought forward by the hypothesis of fully developed turbulence, and therefore it is natural to see that in the range of laminar flow,simulation without low Reynolds number is not able to give good prediction, and it will over-predict the frictional resistance.

    Fig. 2 The comparison of local frictional coefficient along the plate between Wilcox (2006) k-ω model and its low Reynolds number correction’s numerical and experimental results

    The similar comparison is conducted in the case of stress-ωmodel and its low Reynolds number correction version is shown in Fig. 3. In addition, over prediction appears again in the case of no low Reynolds correction. But in the corrected version, the numerical simulation underestimates the coefficients. Compared to Fig. 2, it is concluded that the Wilcox (2006)k-ωmodel with low Reynolds number correction is the best candidate model to calculate the transitional flow from laminar to turbulence.Therefore, the following numerical results are calculated by this model in this paper.

    Fig. 3 The comparison of local frictional coefficient along the plate between stress-ω model and its low Reynolds number correction’s numerical and experimental results

    3.4 Results and discussion

    For the purpose of understanding the transient flow, in this section, the velocity profiles or its dimensionless ones at several positions, eddy viscous coefficient and turbulent kinetic energy’s distribution in the boundary layer will be studied. Fig. 4 shows the averaged streamwise velocity profiles at the position ofx=1.7, 1.9, 2.1 m in transitional zone. As the distance increases, profile becomes more and more plump, which is in line with the qualitative analysis.Meanwhile, it can be noticed that the variation among these profiles is changed quickly in the transition and it is thought that this brings the main difficulty for turbulence models’numerical prediction.

    Fig. 4 Comparisons of averaged stream-wise velocity profiles near the transition

    It is known the averaged dimensionless velocity has analytical solution. Defining the dimensionless velocityU+and the distance from the platey+as:

    Correlation of measurements indicatesC≈5.0 for smooth surface andk≈4.1 for smooth and rough surfaces. These analytical solutions will be used in fully turbulent flow as reference for the transitional flow’s behavior.

    The profiles on some typical positions are investigated, i.e.in the zone of laminar (shown in Fig. 5), transitional (in Fig.6) and turbulent flow (in Fig. 7). In Fig. 5, both profiles at positionx=1.0, 1.5 m are overlapped quite well in the region wherey+>lt;30; meanwhile, they nearly coincide with the viscous sub-layerU+=y+, according to the property of laminar flow.

    Fig. 5 Comparison of dimensionless averaged stream-wise velocity numerical profiles in laminar zone and analytical solution for laminar flow

    In Fig. 6, the profiles in the transitional zone are plotted.The three profiles differ much from each other. The profile atx=1.7 m is quite similar to laminar flow’s behavior. While in profiles at positions ofx=1.8 m and 1.9 m, the departure increases aftery+=40, and both of them do not meet the turbulent logarithmic solution. Meanwhile, the viscous sub-layer is decreased byy+>lt;7, indicating that transitional flow is in a chaotic and disordered state.

    In Fig. 7, profiles on positionx=2.0, 2.5 m in turbulence region are plotted. It is found that the numerical result agrees with the turbulent logarithmic solution well, as well as the viscous sub-layer solution wherey+>lt;7. As indicated by Figs. 5–7, the numerical results agree with qualitative and quantitative analysis.

    Fig. 6 Comparison of dimensionless averaged stream-wise velocity numerical profiles in transitional zone and analytical solutions both for laminar and turbulent flow

    Fig. 7 Comparison of dimensionless averaged stream-wise velocity’s numerical profiles in turbulence zone and analytical solutions both for laminar and turbulent flow

    Fig. 8 shows contour lines of the ratio between eddy viscous and molecular viscous coefficient. Turbulent viscous coefficient is the key quantity in RANS. Larger value indicates turbulence is more fully developed. It can be noticed that this value undergoes a great increase at the positionx=1.7 m, which is consistent with the position where local frictional resistance coefficient increases obviously in Fig. 2. Furthermore, based on the eddy viscous coefficient’s distribution, the boundary layer flow’s structure can be observed. After the transition, the flow becomes active and the fully developed turbulence is located in the middle of the latter part.

    The turbulent kinetic energy is also associated with turbulence development level. Fig. 9 shows the contour lines of turbulent kinetic energy. Similar to turbulent eddy viscous coefficient distribution, the kinetic energy experiences a sharp raise at the position where transition occurs. It can be noticed that the larger value part is located near the wall surface, which is different from turbulence eddy viscosity coefficient’s distribution, where the larger value is distributed in the middle of the latter part.

    Fig. 8 Contour lines of the ratio between eddy and molecular viscous coefficient

    Fig. 9 Contour lines of turbulent kinetic energy

    Fig. 10 Contour lines of the ratio between tangential Reynolds stress and frictional resistance stress τw

    Contour lines of the ratio between tangential Reynolds stress and skin resistance stresswtare shown in Fig. 10.Tangential Reynolds stress’ distribution is similar to that of turbulent kinetic energy and it’s more concentrated in the transitional zone.

    4 Conclusions

    Numerical computations are performed to investigate transitional flow from laminar flow to turbulence in twodimensional boundary layer flow by RANS. The simulation applies the Wilcox (2006)k-ωand stress-ωturbulence models and corresponding low Reynolds number correction.By comparison of numerical and experimental local frictional resistance coefficients, it is found that Wilcox(2006)k-ωmodel with correction is the best model to simulate this complicated flow. By comparing the dimensionlessU+~y+profiles at particular positions, the flow in transitional zone corrects the velocity profile rapidly and the flow is more chaotic and disordered; in the two ends,i.e. laminar and turbulence zone, theU+~y+profiles are in line with the corresponding analytical solution. The characteristics of turbulence, such as turbulent kinetic energy, eddy viscosity and Reynolds stress are also studied,which indicate that most of the larger values of these quantities are concentrated in the transitional and turbulence regions. However, many factors, such as pressure gradient,turbulent intensity and wall surface roughness can affect transition remarkably, which will be included in the future research.

    Biau D, Arnal D, Vermeersch O (2007). A transition prediction model for boundary layers subjected to free-stream turbulence.Aerospace Science and Technology, 11(5), 370-375.

    Cao W (2009). A study of the transition prediction of hypersonic boundary layer on plane and wedge flow.Acta Aerodynamica Sinica, 27(5), 516-523. (in Chinese)

    Chen JC, Chen WJ (2010). The complex nature of turbulence transition in boundary layer flow over a flat surface.International Journal of Emerging Multidisciplinary Fluid Sciences, 2(2),183-203.

    Fan M, Cao W, Fang XJ (2011). Prediction of hypersonic boundary layer transition with variable specific heat on plane flow.Science China: Physics, Mechanics and Astronomy,54(11),2064-2070.

    Hackenberg PJ, Rioual L, Tutty OR (1995). The automatic control of boundary layer transition experiments and computation.Applied Scientific Research, 54(4), 293-311.

    Jacobs RG, Durbin PA (2000). Simulations of bypass transition.Journal of Fluid Mechanics, 428, 185-212.

    Klewicki J, Ebner R, Wu X (2011). Mean dynamics of transitional boundary-layer flow.Journal of Fluid Mechanics, 682,617-651.

    Lee KH (2002). Control of boundary layer flow transition via distributed reduced-order controller.KSME International Journal, 16(12), 1561-1575.

    Levin O, Henningson DS (2003). Exponential vs algebraic growth and transition prediction in boundary layer flow.Flow,Turbulence and Combustion, 70, 183-210.

    Ma HD, Pan HL, Wang Q (2007). Study of flow transition process induced by oblique wave instability in a supersonic flat-plate boundary layer.Chinese Journal of Theoretical and Applied Mechanics, 39(2), 153-157. (in Chinese)

    Saffman PG (1970). A model for inhomogeneous turbulent flow.Proceedings of the Royal Society of London, Series A:Mathematical and Physical Sciences, 317, 417-433.

    Schlichting H (2003).Boundary-layer theory. 8th edtion. Springer,New York, USA, 272-273.

    Schubauer GB, Klebanoff PS (1955).Contributions on the mechanics of boundary-layer transition. NACA technical reports, No. 1289.

    Wang L, Fu S (2009a). Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach.Science in China, Series G: Physics, Mechanics and Astronomy, 52(5), 768-774.

    Wang L, Fu S (2009b). New transition/turbulence model for the flow transition in supersonic boundary layer.Chinese Journal of Theoretical and Applied Mechanics, 41(2), 162-168. (in Chinese)

    Wang L, Fu S (2011). Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition.Flow, Turbulence and Combustion, 87(1),165-187.

    Wang WX, Guo RW (2012). Study of flow characteristics of hypersonic inlet based on boundary layer transition.Acta Aeronautica et Astronautica Sinica, 33(10), 1772-1780. (in Chinese)

    Wassermann P, Kloker M (2005). Transition mechanisms in a three-dimensional boundary-layer flow with pressure-gradient changeover.Journal of Fluid Mechanics, 530, 265-293.

    Wilcox DC (1988). Reassessment of the scale determining equation for advanced turbulence models.American Institute of Aeronautics and Astronautics Journal, 26(11), 1299-1310.

    Wilcox DC (2006).Turbulence modeling for CFD. 3rd edition.DCW Industries, La Canada, CA, USA, 124-126.

    Wilcox DC, Alber IE (1972). A turbulence model for high speed flows.Proceedings of the Heat Transfer and Fluid Mechanics Institute, Northridge, California, USA, 231-252.

    Xiao ZX, Chen HX, Li QB, Fu S (2006). A primary study of transitions in turbulence models.Chinese Journal of Computational Physics, 23(1), 61-65. (in Chinese)

    Yang ZY (2012). Numerical study of transition process in a separated boundary layer on a flat plate with two different leading edges.WSEAS Transactions on Applied and Theoretical Mechanics, 7(1), 49-58.Ye HX, Shen ZR, Wan DC (2012). Numerical prediction of added resistance and vertical ship motions in regular head waves.

    Journal of Marine Science and Application, 11(4), 410-416.

    桃花免费在线播放| 久久久久久久大尺度免费视频| 最近中文字幕高清免费大全6| 色吧在线观看| 色婷婷av一区二区三区视频| 美女主播在线视频| 欧美人与性动交α欧美精品济南到 | 亚洲精品成人av观看孕妇| 色婷婷久久久亚洲欧美| 91精品伊人久久大香线蕉| 日本爱情动作片www.在线观看| 国产一区亚洲一区在线观看| av在线观看视频网站免费| 天天操日日干夜夜撸| kizo精华| 秋霞伦理黄片| 丁香六月天网| 丝瓜视频免费看黄片| 欧美亚洲日本最大视频资源| 春色校园在线视频观看| 国产免费视频播放在线视频| av国产精品久久久久影院| 天美传媒精品一区二区| 观看美女的网站| 黑人欧美特级aaaaaa片| 丰满乱子伦码专区| 亚洲内射少妇av| av又黄又爽大尺度在线免费看| 国产一区二区在线观看日韩| 国产精品无大码| 黄片无遮挡物在线观看| 18在线观看网站| 夜夜看夜夜爽夜夜摸| 国产成人精品福利久久| 人妻一区二区av| 国产精品麻豆人妻色哟哟久久| 久久精品国产亚洲av天美| 特大巨黑吊av在线直播| 亚洲国产色片| 免费日韩欧美在线观看| 国产在视频线精品| av女优亚洲男人天堂| 丝袜美足系列| 日日摸夜夜添夜夜爱| 久久99热这里只频精品6学生| 多毛熟女@视频| 一区二区三区四区激情视频| 免费观看的影片在线观看| 婷婷色av中文字幕| 午夜精品国产一区二区电影| 秋霞伦理黄片| av在线老鸭窝| 国产在线一区二区三区精| 18禁观看日本| 欧美日韩亚洲高清精品| 久久久久久久国产电影| 中文字幕亚洲精品专区| 国产日韩欧美视频二区| 亚洲人与动物交配视频| 免费黄色在线免费观看| 欧美日韩亚洲高清精品| 精品亚洲成国产av| 午夜激情福利司机影院| 内地一区二区视频在线| 男女无遮挡免费网站观看| 晚上一个人看的免费电影| 久久久精品区二区三区| 久热久热在线精品观看| 少妇 在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲国产最新在线播放| 大片免费播放器 马上看| 国产黄片视频在线免费观看| 亚洲国产精品一区三区| 综合色丁香网| 国产av国产精品国产| 91精品伊人久久大香线蕉| 精品国产国语对白av| 久久久久网色| 免费日韩欧美在线观看| 老司机亚洲免费影院| 51国产日韩欧美| 欧美xxxx性猛交bbbb| 另类精品久久| 超碰97精品在线观看| 熟妇人妻不卡中文字幕| 午夜精品国产一区二区电影| 自线自在国产av| 18禁动态无遮挡网站| 国产精品蜜桃在线观看| 久久久久久久国产电影| 中文字幕制服av| 中文字幕制服av| 老女人水多毛片| 久久久久久久亚洲中文字幕| 国产乱人偷精品视频| 精品人妻一区二区三区麻豆| 极品少妇高潮喷水抽搐| 乱码一卡2卡4卡精品| 亚洲人成网站在线观看播放| a级片在线免费高清观看视频| 国产精品国产av在线观看| 一级毛片aaaaaa免费看小| 日韩一区二区视频免费看| 久久这里有精品视频免费| 18+在线观看网站| 伦精品一区二区三区| 女性生殖器流出的白浆| 99re6热这里在线精品视频| 欧美激情极品国产一区二区三区 | 国产探花极品一区二区| 亚洲精品一区蜜桃| 久久ye,这里只有精品| 一级毛片 在线播放| 99精国产麻豆久久婷婷| 人体艺术视频欧美日本| 边亲边吃奶的免费视频| 午夜日本视频在线| 久久精品国产自在天天线| 草草在线视频免费看| 99热国产这里只有精品6| 69精品国产乱码久久久| 七月丁香在线播放| 大片电影免费在线观看免费| 久久ye,这里只有精品| 在线观看免费高清a一片| 最近手机中文字幕大全| 国产片特级美女逼逼视频| 久久人人爽人人片av| 国产精品国产三级国产专区5o| 韩国高清视频一区二区三区| 99久久人妻综合| 国产淫语在线视频| 久久精品国产亚洲av涩爱| 色94色欧美一区二区| 肉色欧美久久久久久久蜜桃| 纵有疾风起免费观看全集完整版| av在线观看视频网站免费| 亚洲精品色激情综合| 久久ye,这里只有精品| 欧美日韩视频高清一区二区三区二| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久精品电影小说| 韩国高清视频一区二区三区| 久久精品国产亚洲av天美| 欧美一级a爱片免费观看看| 伦精品一区二区三区| 国产成人精品久久久久久| 国产 一区精品| 极品人妻少妇av视频| 日韩中文字幕视频在线看片| 中文精品一卡2卡3卡4更新| 在线观看国产h片| 久久韩国三级中文字幕| 丰满少妇做爰视频| 在线 av 中文字幕| 性色av一级| 内地一区二区视频在线| 国产成人午夜福利电影在线观看| 亚洲国产日韩一区二区| 国产精品一区www在线观看| 成人无遮挡网站| 99热全是精品| 中文字幕免费在线视频6| 在线观看人妻少妇| 80岁老熟妇乱子伦牲交| 在线精品无人区一区二区三| 国产白丝娇喘喷水9色精品| 午夜福利网站1000一区二区三区| 91国产中文字幕| www.色视频.com| √禁漫天堂资源中文www| 大片免费播放器 马上看| 五月天丁香电影| 欧美日韩亚洲高清精品| 日韩视频在线欧美| 国产一区二区三区综合在线观看 | 十八禁网站网址无遮挡| 国产伦理片在线播放av一区| 精品酒店卫生间| 美女大奶头黄色视频| 99热国产这里只有精品6| 亚洲av福利一区| 亚洲色图综合在线观看| 国内精品宾馆在线| 亚洲av综合色区一区| 天天影视国产精品| 国产探花极品一区二区| 欧美xxⅹ黑人| 成人手机av| 亚洲精品色激情综合| 在线观看美女被高潮喷水网站| 我要看黄色一级片免费的| 国产一级毛片在线| 夜夜爽夜夜爽视频| 久久久久久久久久人人人人人人| 大香蕉久久成人网| 亚洲综合色网址| 亚洲高清免费不卡视频| 另类精品久久| 欧美97在线视频| 国产在线视频一区二区| 高清黄色对白视频在线免费看| 黄片无遮挡物在线观看| 菩萨蛮人人尽说江南好唐韦庄| 少妇的逼好多水| 精品少妇内射三级| 久久精品国产亚洲网站| 久久久a久久爽久久v久久| 国产欧美亚洲国产| 久久99一区二区三区| 久久精品久久久久久噜噜老黄| 爱豆传媒免费全集在线观看| 美女xxoo啪啪120秒动态图| videossex国产| 麻豆乱淫一区二区| 黑人巨大精品欧美一区二区蜜桃 | 少妇熟女欧美另类| 熟妇人妻不卡中文字幕| 日本91视频免费播放| 国产成人午夜福利电影在线观看| 在线精品无人区一区二区三| 久久99一区二区三区| 国产一区二区三区av在线| xxx大片免费视频| 久久午夜福利片| 一边摸一边做爽爽视频免费| 人妻系列 视频| 老熟女久久久| 97超碰精品成人国产| 在线看a的网站| 欧美日韩视频精品一区| 精品久久蜜臀av无| 91久久精品国产一区二区成人| 51国产日韩欧美| 日日啪夜夜爽| 亚洲久久久国产精品| 亚洲一区二区三区欧美精品| 国产一区亚洲一区在线观看| 18禁在线播放成人免费| 国产精品一区www在线观看| 在线观看一区二区三区激情| 久久久国产精品麻豆| 制服诱惑二区| av一本久久久久| 一本一本综合久久| 国产精品蜜桃在线观看| 涩涩av久久男人的天堂| 亚洲中文av在线| 97超视频在线观看视频| 黄色怎么调成土黄色| 国产精品一区www在线观看| av线在线观看网站| 日韩成人伦理影院| 亚洲第一区二区三区不卡| 亚洲国产精品专区欧美| 欧美性感艳星| 免费黄色在线免费观看| 午夜免费观看性视频| 午夜福利在线观看免费完整高清在| 久久久久精品久久久久真实原创| 午夜久久久在线观看| 王馨瑶露胸无遮挡在线观看| 免费看av在线观看网站| 日韩电影二区| 久久久久久久久久人人人人人人| 亚洲精品日韩av片在线观看| 日韩强制内射视频| av不卡在线播放| 婷婷色av中文字幕| 国产精品国产av在线观看| 亚洲一区二区三区欧美精品| 国产欧美另类精品又又久久亚洲欧美| 免费观看无遮挡的男女| a级毛片黄视频| av线在线观看网站| 久久久国产精品麻豆| 亚洲熟女精品中文字幕| 9色porny在线观看| 国产精品国产三级国产专区5o| 男人添女人高潮全过程视频| 三级国产精品欧美在线观看| 国产成人91sexporn| 久久韩国三级中文字幕| 特大巨黑吊av在线直播| 国产探花极品一区二区| 国产熟女午夜一区二区三区 | 日韩视频在线欧美| 一级毛片黄色毛片免费观看视频| 少妇人妻 视频| 日本爱情动作片www.在线观看| 少妇熟女欧美另类| 久久久精品免费免费高清| 国产成人精品无人区| 久久99精品国语久久久| 丰满乱子伦码专区| av不卡在线播放| 伊人久久国产一区二区| 国产一区二区三区综合在线观看 | 国产精品 国内视频| 久久久久视频综合| videossex国产| 国产色爽女视频免费观看| 女性生殖器流出的白浆| 日韩不卡一区二区三区视频在线| 观看美女的网站| 一级黄片播放器| 欧美人与善性xxx| 少妇丰满av| 免费观看性生交大片5| 中文字幕亚洲精品专区| 国产精品一区二区三区四区免费观看| 一区二区三区精品91| 成人18禁高潮啪啪吃奶动态图 | 国产爽快片一区二区三区| 人妻一区二区av| 午夜日本视频在线| 亚洲国产精品一区三区| 亚洲精品456在线播放app| 日日摸夜夜添夜夜添av毛片| 久久99蜜桃精品久久| 国产精品女同一区二区软件| 九色亚洲精品在线播放| 久久这里有精品视频免费| 天天躁夜夜躁狠狠久久av| av又黄又爽大尺度在线免费看| 王馨瑶露胸无遮挡在线观看| 国产爽快片一区二区三区| 岛国毛片在线播放| 99热国产这里只有精品6| 黄色毛片三级朝国网站| 三上悠亚av全集在线观看| 亚洲精品美女久久av网站| 美女主播在线视频| 久久国产亚洲av麻豆专区| 九九爱精品视频在线观看| 久久这里有精品视频免费| 你懂的网址亚洲精品在线观看| 我的女老师完整版在线观看| 国精品久久久久久国模美| 国产亚洲一区二区精品| 亚洲在久久综合| 少妇被粗大猛烈的视频| 亚洲精品av麻豆狂野| 香蕉精品网在线| 日韩成人伦理影院| 一区二区三区精品91| 国产成人av激情在线播放 | 国产精品久久久久久精品古装| 久久这里有精品视频免费| 日本-黄色视频高清免费观看| 18禁裸乳无遮挡动漫免费视频| 2021少妇久久久久久久久久久| av在线老鸭窝| 寂寞人妻少妇视频99o| 国产亚洲午夜精品一区二区久久| 国产成人aa在线观看| 黄色欧美视频在线观看| 纵有疾风起免费观看全集完整版| 国产精品三级大全| 99热全是精品| 国产精品一区二区三区四区免费观看| 成人国产麻豆网| 嫩草影院入口| 国产日韩欧美亚洲二区| 成人毛片a级毛片在线播放| 欧美国产精品一级二级三级| 亚洲av免费高清在线观看| 久久久精品免费免费高清| 亚洲精品,欧美精品| 国精品久久久久久国模美| 亚洲不卡免费看| 人成视频在线观看免费观看| 亚洲av电影在线观看一区二区三区| 九色亚洲精品在线播放| 日韩一区二区视频免费看| 国产黄频视频在线观看| 丰满迷人的少妇在线观看| 欧美 日韩 精品 国产| 国产高清不卡午夜福利| 精品久久蜜臀av无| 三级国产精品片| 成人免费观看视频高清| 日本猛色少妇xxxxx猛交久久| 亚洲欧美日韩另类电影网站| 久久鲁丝午夜福利片| 七月丁香在线播放| 成人无遮挡网站| 亚洲精品久久成人aⅴ小说 | 青春草亚洲视频在线观看| 国产深夜福利视频在线观看| 亚洲欧美一区二区三区黑人 | 国产伦理片在线播放av一区| 亚洲国产精品专区欧美| av在线播放精品| 亚洲av不卡在线观看| 高清黄色对白视频在线免费看| 男的添女的下面高潮视频| 精品一区在线观看国产| 欧美丝袜亚洲另类| 免费大片黄手机在线观看| 亚洲天堂av无毛| 久久久久人妻精品一区果冻| 狠狠精品人妻久久久久久综合| 中国美白少妇内射xxxbb| av播播在线观看一区| 国产高清有码在线观看视频| av在线app专区| 我的老师免费观看完整版| 在线观看国产h片| 久久久久久久久久久丰满| 成人毛片60女人毛片免费| 青青草视频在线视频观看| 99久久人妻综合| 日韩一本色道免费dvd| 大片免费播放器 马上看| 18+在线观看网站| 日本vs欧美在线观看视频| 99热6这里只有精品| 国产精品一区二区在线观看99| 亚洲综合色网址| 国产精品久久久久久久久免| 久久久久久久久久人人人人人人| 九色成人免费人妻av| 成人二区视频| 色网站视频免费| 美女xxoo啪啪120秒动态图| 亚洲av在线观看美女高潮| 亚洲国产精品一区二区三区在线| 国产精品一区二区在线不卡| 91成人精品电影| 国产精品国产三级专区第一集| 在线观看美女被高潮喷水网站| 久久久国产欧美日韩av| 一区二区三区精品91| 亚洲综合精品二区| 少妇的逼水好多| 亚洲欧美成人综合另类久久久| 日韩一区二区三区影片| 中文字幕人妻熟人妻熟丝袜美| 我的老师免费观看完整版| 国产精品欧美亚洲77777| 91精品国产九色| 男女边摸边吃奶| 午夜福利视频精品| 欧美激情 高清一区二区三区| 最新中文字幕久久久久| 国产成人aa在线观看| 亚洲中文av在线| 制服人妻中文乱码| 老熟女久久久| 婷婷色麻豆天堂久久| 高清欧美精品videossex| kizo精华| 亚洲综合色惰| a 毛片基地| 伊人亚洲综合成人网| 男的添女的下面高潮视频| 一区二区三区四区激情视频| 热99久久久久精品小说推荐| 日日撸夜夜添| 久久久久久久大尺度免费视频| 如日韩欧美国产精品一区二区三区 | 如何舔出高潮| 伊人亚洲综合成人网| 日本欧美国产在线视频| 亚洲经典国产精华液单| 国产精品欧美亚洲77777| 国产色爽女视频免费观看| 最新中文字幕久久久久| 久久99热6这里只有精品| 欧美xxⅹ黑人| 国产成人a∨麻豆精品| 免费大片黄手机在线观看| 在线观看国产h片| 三上悠亚av全集在线观看| 免费观看在线日韩| 精品少妇久久久久久888优播| 久久久久久久亚洲中文字幕| 国产精品秋霞免费鲁丝片| 少妇 在线观看| 在线天堂最新版资源| 久久青草综合色| 国产成人精品福利久久| 18禁在线播放成人免费| 美女国产高潮福利片在线看| 最近中文字幕高清免费大全6| 国产精品女同一区二区软件| 亚洲精品一区蜜桃| 成人毛片60女人毛片免费| 一区二区三区四区激情视频| 涩涩av久久男人的天堂| 婷婷色麻豆天堂久久| 国产av国产精品国产| 亚洲第一av免费看| 欧美人与性动交α欧美精品济南到 | 国产乱人偷精品视频| 全区人妻精品视频| 亚洲熟女精品中文字幕| 少妇猛男粗大的猛烈进出视频| 精品人妻一区二区三区麻豆| 亚洲欧美精品自产自拍| 久久午夜综合久久蜜桃| av在线app专区| 最新的欧美精品一区二区| 免费观看无遮挡的男女| 在线观看一区二区三区激情| 欧美xxⅹ黑人| 中文字幕最新亚洲高清| 99热这里只有精品一区| 精品少妇久久久久久888优播| 三级国产精品片| 制服丝袜香蕉在线| 人人澡人人妻人| 久久精品熟女亚洲av麻豆精品| 精品国产乱码久久久久久小说| 国产日韩欧美视频二区| 国产在线免费精品| 人人澡人人妻人| 亚洲性久久影院| 国产高清国产精品国产三级| 天天影视国产精品| 欧美日韩精品成人综合77777| 久久人人爽人人片av| 亚洲欧美一区二区三区黑人 | 亚洲人成网站在线播| 国产黄频视频在线观看| 精品久久久精品久久久| 最近中文字幕2019免费版| 国产成人免费无遮挡视频| 午夜免费观看性视频| 免费不卡的大黄色大毛片视频在线观看| 香蕉精品网在线| 人妻夜夜爽99麻豆av| 嫩草影院入口| 欧美人与善性xxx| 国产精品免费大片| 丝瓜视频免费看黄片| 2022亚洲国产成人精品| 亚洲欧美清纯卡通| 人妻制服诱惑在线中文字幕| 色哟哟·www| tube8黄色片| 精品久久久久久电影网| 蜜桃久久精品国产亚洲av| 国产欧美日韩综合在线一区二区| 成人二区视频| 欧美人与性动交α欧美精品济南到 | 搡女人真爽免费视频火全软件| 欧美日韩av久久| 美女脱内裤让男人舔精品视频| 美女福利国产在线| 久久av网站| 免费av中文字幕在线| 欧美97在线视频| 18禁裸乳无遮挡动漫免费视频| 欧美精品高潮呻吟av久久| 久久久久视频综合| 欧美一级a爱片免费观看看| 一级毛片 在线播放| 新久久久久国产一级毛片| 桃花免费在线播放| 夜夜爽夜夜爽视频| 国产亚洲欧美精品永久| 午夜免费观看性视频| 亚洲av电影在线观看一区二区三区| 亚洲精品一二三| 美女xxoo啪啪120秒动态图| 欧美变态另类bdsm刘玥| 国产男女内射视频| 免费少妇av软件| 精品久久久久久久久av| 一个人免费看片子| 亚洲国产精品专区欧美| 自线自在国产av| 国产国语露脸激情在线看| 三上悠亚av全集在线观看| 精品久久久久久电影网| 亚洲欧美色中文字幕在线| 欧美另类一区| 欧美老熟妇乱子伦牲交| av国产精品久久久久影院| 久久国产精品大桥未久av| 中文字幕精品免费在线观看视频 | 国产不卡av网站在线观看| 久久久国产一区二区| 天天影视国产精品| 日韩三级伦理在线观看| 亚洲精品一区蜜桃| 国产精品秋霞免费鲁丝片| 三级国产精品片| 汤姆久久久久久久影院中文字幕| 热99国产精品久久久久久7| 亚洲性久久影院| 9色porny在线观看| 日韩电影二区| 国产精品人妻久久久影院| 丁香六月天网| 色婷婷av一区二区三区视频| 18禁观看日本| 日韩中字成人| 国产精品久久久久久精品古装| 男女啪啪激烈高潮av片| 老司机亚洲免费影院| 日本免费在线观看一区| 嫩草影院入口| 波野结衣二区三区在线| 久久 成人 亚洲| 91精品三级在线观看| 久久久久人妻精品一区果冻| 日韩欧美一区视频在线观看| av又黄又爽大尺度在线免费看| 91成人精品电影| 七月丁香在线播放| av黄色大香蕉|