• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Material Selection for Hawsers for a Side-by-side Offloading System

    2014-07-30 09:56:48JiayuQianLipingSunandLinfengSong

    Jiayu Qian, Liping Sun and Linfeng Song

    Deep Water Engineering Research Center, Harbin Engineering University, Harbin 150001, China

    1 Introduction1

    Floating production, storage and offloading (FPSO) has become a popular solution for exploitation activities concerning ocean oil and gas resources throughout the world.As a part of the marine oil and gas development system, it generally comes with a shutter tanker and subsea production unit consisting of a complete production system. The FPSO offloading system is a type of transmission form, which transfers crude oil and natural gas from the FPSO to the shuttle tanker by a marine hose or offloading arm directly.

    The MingZhu FPSO side-by-side offloading system in the field BZ25-1 is presented here. Several types of ropes can be used to connect the FPSO to the tanker; four fenders are set between the vessels to prevent collisions. Especially, the FPSO is moored by a yoke system. Four different types of ropes with strong viscoelasticity characteristics, such as polyester and nylon, are analyzed in this work. The properties of the stress-strain relationship of the fiber ropes within the elastic range are mainly shown as nonlinear. Due to the strong nonlinearity of the axial stiffness, many scholars (Websteret al., 2012) have carried out the relevant research regarding the effects of the synthetic rope materials on the floating structure dynamics.

    Del Vecchio and Chaplin (1992) applied fiber rope in a deep water mooring system which indicated that high-strength material could reduce the line dynamic tension under wave excitation forces. A two-dimensional calculation was performed to estimate the stress-strain relationship of the fiber rope accurately by Liuet al. (1997). The exponential function can be expressed by the load-strain relationship of the fiber rope through model test analysis(Mc Kenna and Wong, 1979). The elastic modulus of the long-period formula (Fernandeset al., 1998) was utilized to calculate the fiber line tension; and Kimet al. (2003)applied it to the spar platform. The empirical formula(Bosman and Hooker, 1999) was applied to calculate the fiber line tension of a spar mooring system (Tahar and Kim,2008). Davieset al. (2008) studied the influence of the fiber stiffness on the deepwater mooring line response. Yuanet al.(2010) compared the performance of the mooring system for a spar platform with a linear and nonlinear elastic model to fit the stress-strain relationship of the fiber rope, respectively.The results of the spar platform with the nonlinear elastic model are different from the ones using the linear elastic model. Kimet al. (2011) applied a viscoelastic model considering multiple relaxation times and nonlinearity in dynamic stiffness into a spar platform. Taharet al. (2012)presented the global performance comparison between the dual stiffness method and the traditional method when using polyester mooring lines. The above research and the reference (Qianet al., 2013) indicate that it is important to use a nonlinear mathematical model of fiber ropes in terms of analyzing the dynamic responses of the floating structures.

    According to the researches mentioned above, the dynamic time-domain coupled method is discussed here to study the impact of using different types of hawser materials on the FPSO offloading system. The most suitable hawser material for the FPSO offloading system is chosen through comparing the relative motion of two vessels and the hawser line tension. To obtain the accurate hawser line tension, a polynomial function is applied here to simulate the nonlinear stress-strain relationship of the lines. Especially,as for the polyester rope, this paper uses lower and upper bound linear stiffness to calculate the line tension, and the results agree well with the results of the nonlinear stiffness.Then the polynomial fitting method used to calculate the nonlinear stiffness of the fiber ropes is verified.

    2 Mathematical formulations

    The 3D potential flow theory is used to calculate the hydrodynamic interaction coefficients of the multi-body in the limited frequency range. And then the coefficients including the added mass, damping and second-order transfer function matrix are prepared for solving the motion equations of the vessels in the time-domain simulation. To adopt the accurate dynamic response of the offloading system, a polynomial function is made in the application to fit the rope stiffness. Different types of fiber ropes have different stiffness characteristics. This paper focuses on selecting the most suitable fiber rope for FPSO offloading systems through a series of calculations.

    2.1 Equations of motion for mutual floating bodies

    Floating structures contend with wind force, hydrostatic restoring force, wave radiation/diffraction force, gravity,inertia force and flow force from wind, waves and currents.The assumption is made that there arenfloating bodies,considering the mutual interference between the floating bodies. According to Newton’s second law, the 6×ndegree of freedom time-domain coupled equation (Songet al., 2013)of the bodies under the environmental load is as follows:

    whereMmis the mass matrix of floating bodym,m=1,…,n;ukjis the added mass matrix of floating bodym, including itself and mutual interference;bkjis the impulse response function in the time-domain of the floating bodym,including itself and mutual interference;Ckjis the hydrostatic restoring force coefficient with the interaction of thekandjmotion modes of the floating body,k=1,…,6;ηjrepresents thejmotion mode of the floating body,j=1,…,6;Fmrepresents the floating bodymsubjected to an external load.

    2.2 Calculation of the nonlinear stiffness of fiber ropes

    Because the fiber rope belongs to the viscoelastic material, the global behavior of the stress-strain curve for the fiber rope was nonlinear. According to the guidance(Bridon, 2007), Fig. 1 plots the relationship between the load and extension of the four kinds of fiber ropes.

    Nylon A and nylon B belong to the high-tenacity nylon multifilament fiber. Polyester M and polyester N represent worked and new braidlines, which are part of the high-tenacity polyester rope.

    There are no specific nonlinear stiffness values of these ropes. So it is necessary to use a mathematical formula to fit the load-extension curves of the ropes. This paper uses the polynomial function to fit the curves and then obtains the corresponding nonlinear stiffness values. The equations for calculating the fiber rope nonlinear stiffness are as follows:

    whereEAis the line elastic modulus;k1,k2andk3are the coefficients of the polynomial function and they are constants;εrepresents the line strain.

    Fig. 1 The load-extension relationship of the fiber ropes

    2.3 Environment condition

    The frequency range of the FPSO and tanker is chosen from 0.1 to 1.7 rad/s; the working depth is 17.4 m. The irregular waves are generated using the JONSWAP spectra;the significant wave height is 3.2 m, and the wave period is 7.9 s. The unsteady current velocity is 1.34 m/s. The one-hour average wind speed is 18 m/s. The incident angle of the wind, waves and current are all from the FPSO bow pointing stern. The dynamic response is recorded in the duration of three hours and the time interval is 0.1 s. The wind and current loads are directly proportional to the square of the corresponding speed, and the equation is as follows to calculate the environment loads on the hull:

    whereFjrepresents the wind force or current force in thejdirection;Vthe average wind speed or current speed, which exist at a certain distance from the static water;Cjthe wind or current coefficient in thejdirection, which accords with OCIMF (1994) specification; andAthe hull wind area or hull current area.

    3 Numerical models

    The FPSO offloading system consists of five parts,including the FPSO, offloading hawsers, shutter tanker, soft yoke system and fenders. The universal joints connect the soft yoke and mooring structure, and the tube unit is used here to simulate the yoke system. The stress-strain relationship of the hawser line is nonlinear. And the hawser line tension is zero when it is slack. Similarly, the stress-strain relationship of the fenders is also nonlinear.

    3.1 The model of the FPSO and tanker

    The yoke mooring system is used to position the FPSO with a mooring force of 410 tons. The working depth of the FPSO offloading system is 17.4 m. In order to prevent the FPSO and shuttle tanker from colliding, there are four fenders between the two vessels to absorb energy. The fenders are modeled as springs, which are kept on the water surface at all times. The diameter of the fender is 2.5 m and the length is 5.5 m. Each fender can absorb 211 kN·m when they are 60% shaped. The specific performance parameters of the fenders can be seen with the reference (Sunet al.,2011). The main parameters of the FPSO and shuttle tanker are shown in Table 1. The distribution of the surface mesh of the two vessels is shown in Fig. 2.

    Item FPSO Tanker Length overall/m 218.3 180 LBP/m 210 171.2 Breadth/m 32.8 32.2 Depth/m 18.2 14.2 Draft/m 11.7 5.43 Displacement/t 75 501.5 24 216.9 Gx /m 100.775 86.157 Gz /m 12.248 8.71 Wind area (frontal)/m2 541.2 604.4 Wind area (side)/m2 2 619 1 689.6

    Fig. 2 FPSO offloading system

    3.2 The hawser line

    There are ten hawser lines between the FPSO and shutter Tanker. Four lines are set in the bow and stern of the FPSO and shuttle tanker. And two lines are set across each other in the middle of the two vessels. To prevent the hawser line from being damaged, the pretension will be controlled within the range of 30% breaking strength (American Petroleum Institute, 2001; Wanget al., 2010) and applied to each hawser to provide the initial stiffness.

    The most suitable fiber rope will be chosen by analyzing the dynamic response of the FPSO offloading system when the hawser uses types of fiber ropes with different characteristics. The diameter of the fiber ropes is 120 mm.The wet weight and minimum breaking strength (MBS) of the polyester rope are 2.79 kg/m and 2 697 kN, respectively.The wet weight and minimum breaking strength of the nylon are 0.86 kg/m and 3 246 kN, respectively.

    The specific arrangement of the hawsers is shown in Fig. 3.Table 2 illustrates the positions of the hawser ropes in the FPSO and tanker.

    Table 2 The position of hawsers in the FPSO and tanker

    Fig. 3 The arrangement of hawser lines

    4 Simulation and discussion

    The hydrodynamic coefficients of the mutual influence between the FPSO and tanker can be acquired based on the 3D potential flow theory, and then the corresponding wave forces can be obtained. It may produce abnormal values in the hydrodynamic coupled analysis. This paper uses a rigid lid between the two vessels to suppress the abnormal values,which can be seen in these references (Buchneret al., 2001;Newman, 2004). In order to get a more accurate slow drift force, the near-field integral method is utilized here.

    4.1 The relative motion of the FPSO and shuttle tanker

    As for the four different types of fiber ropes, considering the interaction of the FPSO, soft yoke, tanker and the hawser lines, the dynamic response of the system can be required through time-domain simulation. This paper utilizes the root mean square (RMS) to estimate the relative motion amplitude of the two vessels. The relative motion results with different materials can be seen in Table 3. Figs. 4–6 present the relative surge, sway and heave motion of the FPSO and tanker, respectively.

    The polyester N material reaches the smallest response amplitude in the vertical relative motion of the two vessels.Taking #5 fairlead as an example, the surge RMS of the polyester N material is 0.221 7, which is less than the numbers of the polyester M, nylon A and nylon B material by 69.0%, 23.0% and 6.6%, respectively. The results illustrate that the external load has a small effect on the line elongation,and it would be more beneficial to the vessel stability in the longitudinal direction. In the lateral direction, using polyester N and nylon B will allow for the smaller relative motion of sway of the two vessels than the polyester M and nylon A material. The results indicate that the stiffness characteristic of the fiber rope has a large effect on the relative sway motion of the vessels when the external load is greater than 11% MBS. Generally, polyester N has the smaller impact on the relative heave motion of the vessels because it has larger stiffness and a bigger curvature of the load-extension relationship. For example, the heave RMS value of polyester N is 0.245 9 in the #12 fairlead, which is less than the numbers of the polyester M, nylon A and nylon B material by 20.9%, 0.2% and 7.6%, respectively.

    Table 3 The relative motion results with different materials

    Fig. 4 Relative surge motion of vessels on the #5 fairlead

    Fig. 5 Relative sway motion of vessels on the #5 fairlead

    Fig. 6 Relative heave motion of vessels on the #5 fairlead

    4.2 The hawser line tension

    The tension with the polyester M, polyester N, nylon A and nylon B material can be acquired through time-domain simulation. The specific values are shown in Table 4. The stiffness characteristic of the hawsers has a larger effect on its own tension than on the relative motion of the FPSO and shuttle tanker. The max-tension of the hawsers using nylon B is the smallest among the four different types of fiber ropes. Take #5 fairlead as an example, the max-tension using nylon B is 191.3 kN, which is less than the numbers of the polyester M, polyester N and nylon A material by 250%,27.9% and 420%, respectively. The results indicate that the line tension can be reduced by the smaller stiffness and bigger curvature of the load-extension relationship for the fiber rope.

    As for the mean tension of the hawsers, it is common for the polyester N and nylon B material to get smaller tension values than the polyester M and nylon A. The discrepancy between the mean tension of polyester N and nylon B is less than 16.4%. In terms of the hawser lines’ tension, it can be found that there exists a critical value of the load. The curvature has a smaller effect on the mean tension of the hawsers when the external load is lower than 11% MBS.The mean tension of the hawsers will be reduced with the increasing curvature when the external load exceeds 11%MBS.

    Fairlead No.Tension Polyester N Polyester M Nylon B Nylon A 5Max 244.8681.7191.31009 Mean 61.8102.659.97113.3 7 Max 218.3609.8168.4 746.4 Mean 48.9585.1557.02 65.55 9Max 191.1469.5135.8679.7 Mean 114.2155.2106141.5 10Max 146.2271.8120.2276 Mean 86.05 70.83 92.98 78.65?12 Max 284 700.4 185.1 946.3 Mean 113.7 134.8 109.7 187 14 Max 255.1 629.8 173.8 861.9 Mean 99.48 118.4 104.2 138.2

    4.3 The reliability of the method

    In this subsection, the strain versus the MBS curves of the three ways is shown in Fig. 7, which is based on the research conducted by the American Bureau of Shipping(2011) and Royal Lankhorst Euronete (2011). Three curves represent the upper bound linear stiffness, lower bound linear stiffness and nonlinear stiffness, respectively.

    Taking the #5 fairlead as an example, the max-tension of the hawser is 913 kN, 281 kN and 677 kN when using the upper bound, lower bound linear stiffness and nonlinear stiffness, respectively. The max-tension is 681.7 kN when using the polynomial fitting function to simulate the line stiffness, which agrees well with 677 kN when using Lankhorst nonlinear stiffness. Then it can be validated that the method of fitting the nonlinear stiffness of the fiber ropes is reasonable and reliable.

    Fig. 7 Strain-MBS relationship of polyester rope

    5 Conclusions

    The method of polynomial fitting has proven to be an effective way to simulate the hawser lines’ nonlinear stiffness of the FPSO offloading system. Focusing on the effects of the yoke mooring system, hawser lines, fenders and the hydrodynamic interaction between the two vessels,we acquired the dynamic responses of the vessels and the hawser lines’ tension while using different types of hawser materials, which was based on the time-domain coupled calculation. The following conclusions can be drawn:

    1) The polynomial fitting method for calculating the nonlinear stiffness of fiber ropes has been proven to be more accurate than linear stiffness. Therefore the nonlinear stiffness model of the fiber rope should be used in the practical engineering calculation.

    2) The larger stiffness and curvature of the load-extension curve are beneficial to reduce the relative motion of the two vessels. Nonlinear stiffness has a small effect on the dynamic response of the FPSO and shuttle tanker.

    3) There exists a critical value of the external load, which results in the material of one rope having multiple tension characteristics. For the polyester and nylon rope, the critical value is 11% MBS. When the external load is below 11%MBS, the max-tension of the hawser lines can be improved by lowering the curvature of the load-extension relationship or decreasing line stiffness; when the external load is above 11% MBS, the mean tension of the hawser is reduced with the increasing curvature of the load-extension relationship.

    4) Comparing the dynamic response of the FPSO offloading system with the hawser lines’ tension, the nylon B is recommended to be the material for the hawser lines of the FPSO offloading system.

    American Bureau of Shipping (2011).Guidance notes on the application of fiber ropes for offshore mooring. ABS Plaza,Houston, USA, 9-13.

    American Petroleum Institute (2001).Recommended practice for design, manufacture, installation, and maintenance of synthetic fiber ropes for offshore mooring. API, Washington, D.C., USA,11-13.

    Bosman RLM, Hooker J (1999). The elastic modulus characteristics of polyester mooring ropes.Annual Offshore Technology Conference, Houston, USA, OTC-10779.

    Bridon (2007).Specialist fiber rope solutions. 3A the Centre, High Street Polegate, East Sussex, BN26 6AQ, United Kingdom,10-13.

    Buchner B, Van DA, De Wilde J (2001). Numerical multiple-body simulation of side-by-side mooring to an FPSO.International Offshore and Polar Engineering Conference, Stavanger,Norway, 343-353.

    Davies P, Baron P, Salomon K, Bideaud C, Labbé JP, Stéphane T,Francois M, Francois G, Bunsell T, Moysan AG (2008).Influence of fiber stiffness on deepwater mooring line response.

    International Conference on Offshore Mechanics and Arctic Engineering, Rotterdam, Berlin, Germany, 179-187.

    Del Vecchio CJM, Chaplin CR (1992). Appraisal of lightweight moorings for deep water.The 24th Annual Offshore Technology Conference, Houston, USA, 189-199.

    Fernandes AC, Del Vecchio CJM, Castro GAV (1998). Mechanical properties of polyester mooring ropes.International Journal of Offshore and Polar Engineering, 9(3), 248-254.

    Kim JW, Kyoung JH, Sablok A, Lambrakos K (2011). A nonlinear viscoelastic model for polyester mooring line analysis.

    International Conference on Offshore Mechanics and Arctic Engineering, Rotterdam, Netherlands, 797-803.

    Kim MH, Ding Y, Zhang J (2003). Dynamic simulation of polyester mooring lines.International Symposium on Deepwater Mooring Systems Concepts, Design Analysis, and Materials, Houston, USA, 101-114.

    Liu Yingzhong, Miao Guoping, Li Yile (1997). A time domain computation method for dynamic behavior of mooring system.

    Journal of Shanghai Jiao Tong University, 31(11), 7-12. (in Chinese)

    Mc Kenna HA, Wong RK (1979). Synthetic fiber rope, properties and calculations relating to mooring systems.International Conference on Offshore Mechanics and Arctic Engineering,New York, USA, 189-198.

    Newman JN (2004). Progress in wave load computations on offshore structures. Invited lecture on theOcean, Offshore and Arctic Engineering Conference, Vancouver, Canada.

    Qian Jiayu, Sun Liping, Song Linfeng (2013). The effect of material nonlinearity on the dynamics of hull/mooring coupled system.International Conference on Offshore Mechanics and Arctic Engineering, Nantes, France, OMAE-10034.

    Oil Companies International Marine Forum (1994).Prediction of Wind and Current Loads on VLCCs. Oil Companies International Marine Forum, Bermuda, London, 15-19.

    Royal Lankhorst Euronete (2011).Ropes for deep water mooring.The Royal Lankhorst Euronete Group, Póvoa de Varzim,Portugal, 6-9.

    Song Linfeng, Sun Liping, Wang Dejun (2013). Coupling analysis of stinger-lay barge-pipeline of S-lay installation in deep water.

    Journal of Harbin Engineering University, 34(4), 415-420. (in Chinese)

    Sun Liping, He Qiang, Ai Shangmao (2011). Safety assessment for a side-by-side offloading mooring system.Journal of Marine Science and Application, 10(3), 315-320.

    Tahar A, Kim MH (2008). Coupled dynamic analysis of floating structures with polyester mooring lines.Journal of Ocean Engineering, 35(17-18), 1676-1685.

    Tahar A, Sidarta D, Ran A (2012). Dual stiffness approach for polyester mooring line analysis in time domain.International Conference on Offshore Mechanics and Arctic Engineering,Rio de Janeiro, Brazil, 513-521.

    Wang Hongwei, Luo Yong, Ma Gang, Hu Kaiye (2010). Research on fiber material mooring scheme of the deepwater semi-submersible drilling platform.JournalofShip Engineering, 32(3), 58-62. (in Chinese)

    Webster William C, Kim JW, Jing XN (2012). Rod dynamics with large stretch.International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, 345-354.

    Yuan Meng, Fan Ju, Miao Guoping, Zhu Renchuan (2010).Mooring performance of nonlinear elastic mooring lines.

    Journal of Shanghai Jiao Tong University, 44(6), 820-827. (in Chinese)

    日本成人三级电影网站| 在线国产一区二区在线| 高清毛片免费观看视频网站| 免费电影在线观看免费观看| 老汉色∧v一级毛片| 久久久久久久久中文| 99热这里只有精品一区 | 99在线人妻在线中文字幕| 丝袜在线中文字幕| 欧美日韩瑟瑟在线播放| 级片在线观看| 久久这里只有精品19| 一本久久中文字幕| 丝袜美腿诱惑在线| 精品乱码久久久久久99久播| 999久久久国产精品视频| 欧美性长视频在线观看| 亚洲av电影不卡..在线观看| 91国产中文字幕| 日韩视频一区二区在线观看| 国产av一区二区精品久久| 日韩免费av在线播放| 99国产精品一区二区三区| 欧美大码av| 色av中文字幕| 淫秽高清视频在线观看| 长腿黑丝高跟| 97人妻精品一区二区三区麻豆 | 波多野结衣高清无吗| www.精华液| 日本一区二区免费在线视频| 国产黄色小视频在线观看| 99在线人妻在线中文字幕| 黄片小视频在线播放| 国产爱豆传媒在线观看 | 国产成人精品久久二区二区免费| 午夜免费激情av| videosex国产| 香蕉av资源在线| 久久精品aⅴ一区二区三区四区| 身体一侧抽搐| 老熟妇乱子伦视频在线观看| 午夜日韩欧美国产| 日日夜夜操网爽| 久久伊人香网站| 欧美色欧美亚洲另类二区| 日韩av在线大香蕉| 男人舔女人下体高潮全视频| 亚洲最大成人中文| 精品卡一卡二卡四卡免费| 精品日产1卡2卡| 亚洲人成电影免费在线| 午夜亚洲福利在线播放| 两个人免费观看高清视频| 国产野战对白在线观看| 亚洲 欧美 日韩 在线 免费| 久久久久免费精品人妻一区二区 | 一本大道久久a久久精品| 中文字幕久久专区| 亚洲国产高清在线一区二区三 | 十八禁网站免费在线| 亚洲,欧美精品.| 他把我摸到了高潮在线观看| 一a级毛片在线观看| 丁香欧美五月| 一级毛片精品| 美女扒开内裤让男人捅视频| 免费看日本二区| 法律面前人人平等表现在哪些方面| 午夜福利成人在线免费观看| 亚洲一区高清亚洲精品| 在线看三级毛片| 日韩一卡2卡3卡4卡2021年| 夜夜夜夜夜久久久久| 国产色视频综合| 一级作爱视频免费观看| 在线看三级毛片| 欧美中文日本在线观看视频| 少妇的丰满在线观看| 国产视频内射| 天堂影院成人在线观看| 一级毛片高清免费大全| 黄色毛片三级朝国网站| 久久久久久久久中文| 老司机深夜福利视频在线观看| 真人做人爱边吃奶动态| 亚洲欧洲精品一区二区精品久久久| 美女扒开内裤让男人捅视频| 欧美成人免费av一区二区三区| 国产精品永久免费网站| 中文在线观看免费www的网站 | 久久国产精品人妻蜜桃| 九色国产91popny在线| 黄片播放在线免费| 伦理电影免费视频| 成人18禁高潮啪啪吃奶动态图| 亚洲第一电影网av| 脱女人内裤的视频| 真人做人爱边吃奶动态| 亚洲一区二区三区不卡视频| 岛国在线观看网站| 精品少妇一区二区三区视频日本电影| 午夜两性在线视频| 在线观看免费视频日本深夜| 久久精品91蜜桃| 99久久久亚洲精品蜜臀av| 亚洲成人免费电影在线观看| 搡老熟女国产l中国老女人| 精品不卡国产一区二区三区| 此物有八面人人有两片| 欧美一区二区精品小视频在线| 12—13女人毛片做爰片一| 亚洲专区中文字幕在线| 婷婷精品国产亚洲av在线| 精品国产美女av久久久久小说| 久久久水蜜桃国产精品网| 日韩三级视频一区二区三区| 色综合站精品国产| 国产欧美日韩精品亚洲av| 19禁男女啪啪无遮挡网站| 亚洲成av片中文字幕在线观看| av中文乱码字幕在线| 欧美日本亚洲视频在线播放| 一级a爱片免费观看的视频| 男人舔女人下体高潮全视频| 久热这里只有精品99| 免费av毛片视频| 午夜免费观看网址| 久久久水蜜桃国产精品网| 日韩三级视频一区二区三区| 国产三级黄色录像| 亚洲,欧美精品.| 亚洲精品国产精品久久久不卡| av有码第一页| 色综合站精品国产| 免费人成视频x8x8入口观看| 欧美中文日本在线观看视频| 亚洲国产中文字幕在线视频| 中文在线观看免费www的网站 | 日韩有码中文字幕| 久久久久久亚洲精品国产蜜桃av| 亚洲一区高清亚洲精品| 精品午夜福利视频在线观看一区| 老司机福利观看| 伦理电影免费视频| 精品久久久久久久久久免费视频| 久久国产亚洲av麻豆专区| 国产精品乱码一区二三区的特点| 国产黄片美女视频| 变态另类成人亚洲欧美熟女| 欧美av亚洲av综合av国产av| 精品乱码久久久久久99久播| 国产一区二区在线av高清观看| 成人免费观看视频高清| 香蕉丝袜av| 欧美在线一区亚洲| 十八禁人妻一区二区| 高清毛片免费观看视频网站| 成人手机av| 国产熟女午夜一区二区三区| 国内精品久久久久久久电影| 两人在一起打扑克的视频| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久久久人妻精品电影| 欧美日韩乱码在线| 午夜福利一区二区在线看| 成人欧美大片| 窝窝影院91人妻| 制服人妻中文乱码| 亚洲男人的天堂狠狠| 婷婷丁香在线五月| 人妻久久中文字幕网| 50天的宝宝边吃奶边哭怎么回事| 一级a爱视频在线免费观看| www日本在线高清视频| 国产精品免费视频内射| 自线自在国产av| 亚洲第一青青草原| 十八禁人妻一区二区| 欧美大码av| 欧美精品亚洲一区二区| 亚洲国产精品999在线| 深夜精品福利| 欧美日韩乱码在线| 免费在线观看亚洲国产| 久久午夜综合久久蜜桃| 免费在线观看影片大全网站| 亚洲,欧美精品.| 麻豆成人午夜福利视频| 国产在线精品亚洲第一网站| 国产一区二区三区视频了| 欧美黄色片欧美黄色片| 国产精华一区二区三区| 日本三级黄在线观看| 搞女人的毛片| 婷婷精品国产亚洲av在线| 午夜福利18| 国产一区二区三区在线臀色熟女| 在线观看免费日韩欧美大片| 欧美日韩亚洲国产一区二区在线观看| 一级毛片精品| 国产99白浆流出| 亚洲精品久久成人aⅴ小说| 51午夜福利影视在线观看| 97超级碰碰碰精品色视频在线观看| 国产1区2区3区精品| 亚洲一区二区三区色噜噜| 99精品欧美一区二区三区四区| 这个男人来自地球电影免费观看| 国产久久久一区二区三区| 又黄又爽又免费观看的视频| 91成人精品电影| 99在线人妻在线中文字幕| 一夜夜www| 国产国语露脸激情在线看| 欧美大码av| 国产精品亚洲美女久久久| 日韩欧美 国产精品| 亚洲国产精品999在线| 久久精品影院6| 国产午夜精品久久久久久| 久久久久国内视频| 久久久久久亚洲精品国产蜜桃av| xxx96com| 国产伦在线观看视频一区| 精品国产超薄肉色丝袜足j| 人人妻,人人澡人人爽秒播| 亚洲国产看品久久| 国产三级黄色录像| 久久久久国内视频| 国产日本99.免费观看| 久久青草综合色| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲精品久久久久久毛片| 欧美av亚洲av综合av国产av| 免费女性裸体啪啪无遮挡网站| 中出人妻视频一区二区| 亚洲最大成人中文| 一a级毛片在线观看| 99国产精品一区二区蜜桃av| 99热这里只有精品一区 | 亚洲国产精品合色在线| 午夜福利欧美成人| 免费搜索国产男女视频| 狂野欧美激情性xxxx| 又黄又粗又硬又大视频| 91字幕亚洲| 国产成年人精品一区二区| 精品久久久久久久末码| 成人18禁在线播放| 不卡av一区二区三区| 免费看a级黄色片| 天天添夜夜摸| 亚洲第一欧美日韩一区二区三区| 精品不卡国产一区二区三区| 国产三级黄色录像| 亚洲第一欧美日韩一区二区三区| 又黄又爽又免费观看的视频| 91成人精品电影| 俄罗斯特黄特色一大片| 亚洲男人的天堂狠狠| 老司机在亚洲福利影院| 男女下面进入的视频免费午夜 | 精品熟女少妇八av免费久了| 精品欧美一区二区三区在线| 99精品在免费线老司机午夜| 亚洲精品在线美女| 精品乱码久久久久久99久播| 男人的好看免费观看在线视频 | 免费观看精品视频网站| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久精品电影 | 少妇熟女aⅴ在线视频| 国产在线观看jvid| 欧美成人性av电影在线观看| 女人被狂操c到高潮| 国产伦在线观看视频一区| 午夜福利18| 黄频高清免费视频| 日韩一卡2卡3卡4卡2021年| 久久精品国产综合久久久| 国产三级在线视频| or卡值多少钱| 两人在一起打扑克的视频| 国产成人精品久久二区二区91| 欧美日韩一级在线毛片| 成人欧美大片| 亚洲av成人不卡在线观看播放网| 大型av网站在线播放| 成年人黄色毛片网站| 午夜福利成人在线免费观看| 亚洲精品在线美女| av在线播放免费不卡| 一进一出好大好爽视频| 免费在线观看亚洲国产| 亚洲欧美日韩高清在线视频| 亚洲国产欧美网| 欧美黑人精品巨大| 十八禁网站免费在线| 一边摸一边抽搐一进一小说| 国内精品久久久久久久电影| 亚洲精品国产一区二区精华液| 精品国产亚洲在线| 日韩 欧美 亚洲 中文字幕| 欧美成人一区二区免费高清观看 | 中文字幕人成人乱码亚洲影| 亚洲一码二码三码区别大吗| 美女扒开内裤让男人捅视频| 亚洲午夜精品一区,二区,三区| 日韩欧美国产一区二区入口| videosex国产| 免费在线观看亚洲国产| 国产亚洲精品综合一区在线观看 | 久久精品人妻少妇| 国产亚洲欧美在线一区二区| 久久香蕉激情| 啦啦啦观看免费观看视频高清| 亚洲专区中文字幕在线| 香蕉丝袜av| 亚洲第一电影网av| 亚洲精品在线观看二区| 最近最新免费中文字幕在线| 波多野结衣巨乳人妻| 91在线观看av| 听说在线观看完整版免费高清| 国产亚洲av嫩草精品影院| 国产av一区在线观看免费| 欧美日韩精品网址| 欧美激情极品国产一区二区三区| 成人免费观看视频高清| 中文字幕精品亚洲无线码一区 | 日日爽夜夜爽网站| 国产成人欧美| 国产三级黄色录像| 人成视频在线观看免费观看| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品影院| 久久久久久久久久黄片| 最近最新免费中文字幕在线| 正在播放国产对白刺激| 999久久久精品免费观看国产| 免费无遮挡裸体视频| 久久精品夜夜夜夜夜久久蜜豆 | 97人妻精品一区二区三区麻豆 | 欧美黄色淫秽网站| 久久精品亚洲精品国产色婷小说| 久久人人精品亚洲av| 免费女性裸体啪啪无遮挡网站| 亚洲欧美精品综合久久99| 国产精品98久久久久久宅男小说| 十八禁网站免费在线| 18禁美女被吸乳视频| 亚洲男人的天堂狠狠| 国产亚洲精品综合一区在线观看 | 一本大道久久a久久精品| 啦啦啦免费观看视频1| 丝袜人妻中文字幕| 精品国内亚洲2022精品成人| 免费看a级黄色片| 岛国视频午夜一区免费看| 成人手机av| 国产成人啪精品午夜网站| 777久久人妻少妇嫩草av网站| 1024香蕉在线观看| 最近在线观看免费完整版| 国产亚洲精品综合一区在线观看 | 18禁观看日本| 欧美激情高清一区二区三区| 国产激情久久老熟女| 12—13女人毛片做爰片一| 国产精品爽爽va在线观看网站 | 亚洲一区二区三区不卡视频| 啦啦啦免费观看视频1| 18美女黄网站色大片免费观看| 最新美女视频免费是黄的| 韩国精品一区二区三区| 午夜亚洲福利在线播放| 午夜福利成人在线免费观看| 欧美成人午夜精品| 波多野结衣高清作品| 免费在线观看亚洲国产| 成人精品一区二区免费| 大型黄色视频在线免费观看| 久久久久久国产a免费观看| 三级毛片av免费| av电影中文网址| 搡老岳熟女国产| 日本 欧美在线| 成人18禁高潮啪啪吃奶动态图| 精品国产亚洲在线| 女生性感内裤真人,穿戴方法视频| 午夜老司机福利片| 欧美乱色亚洲激情| 91麻豆精品激情在线观看国产| 在线观看午夜福利视频| 国产精品一区二区免费欧美| 嫩草影视91久久| а√天堂www在线а√下载| 亚洲av电影不卡..在线观看| 成人国产综合亚洲| 一进一出好大好爽视频| 大香蕉久久成人网| 黄色毛片三级朝国网站| 国产精品久久久久久亚洲av鲁大| 国内毛片毛片毛片毛片毛片| 成熟少妇高潮喷水视频| av免费在线观看网站| 亚洲第一青青草原| 在线观看免费午夜福利视频| 一级毛片高清免费大全| 人人妻人人澡欧美一区二区| а√天堂www在线а√下载| 色尼玛亚洲综合影院| 国产一区二区三区视频了| 琪琪午夜伦伦电影理论片6080| 夜夜夜夜夜久久久久| 亚洲色图av天堂| 亚洲久久久国产精品| 日本一区二区免费在线视频| 国产成+人综合+亚洲专区| 男人舔女人下体高潮全视频| 国产色视频综合| 真人做人爱边吃奶动态| 一级a爱片免费观看的视频| 午夜福利视频1000在线观看| 久久精品国产综合久久久| 久久久国产欧美日韩av| а√天堂www在线а√下载| 一级毛片女人18水好多| 搡老岳熟女国产| 国产熟女午夜一区二区三区| 不卡av一区二区三区| 亚洲久久久国产精品| 色av中文字幕| 国产一区二区三区视频了| 少妇裸体淫交视频免费看高清 | 国产亚洲欧美在线一区二区| 成年女人毛片免费观看观看9| 一二三四在线观看免费中文在| 亚洲第一青青草原| 日韩一卡2卡3卡4卡2021年| 国产亚洲av高清不卡| 成人亚洲精品一区在线观看| 国产精品 欧美亚洲| 韩国精品一区二区三区| 中亚洲国语对白在线视频| 亚洲第一电影网av| 日本 欧美在线| 非洲黑人性xxxx精品又粗又长| 亚洲av五月六月丁香网| 香蕉国产在线看| 国产亚洲精品综合一区在线观看 | 97碰自拍视频| 视频在线观看一区二区三区| 9191精品国产免费久久| 亚洲激情在线av| 欧美丝袜亚洲另类 | 天天躁夜夜躁狠狠躁躁| 精品免费久久久久久久清纯| 我的亚洲天堂| 美女午夜性视频免费| 国产av又大| 日韩国内少妇激情av| 精品乱码久久久久久99久播| 在线看三级毛片| 麻豆成人av在线观看| 精品久久久久久久毛片微露脸| 黄片播放在线免费| 国产精品香港三级国产av潘金莲| xxxwww97欧美| 一级a爱视频在线免费观看| 国产亚洲欧美在线一区二区| www.精华液| 人人妻,人人澡人人爽秒播| 麻豆av在线久日| 韩国av一区二区三区四区| 宅男免费午夜| 首页视频小说图片口味搜索| 动漫黄色视频在线观看| 色播亚洲综合网| 一区二区三区国产精品乱码| 精华霜和精华液先用哪个| 99精品久久久久人妻精品| 国产精品乱码一区二三区的特点| 99热只有精品国产| 精品欧美一区二区三区在线| 老汉色∧v一级毛片| 亚洲av熟女| 日日爽夜夜爽网站| 国产高清激情床上av| 午夜老司机福利片| 午夜两性在线视频| 国产伦人伦偷精品视频| 99精品在免费线老司机午夜| 国产精品香港三级国产av潘金莲| 日韩有码中文字幕| 亚洲午夜精品一区,二区,三区| av有码第一页| 国产人伦9x9x在线观看| www日本黄色视频网| 日韩有码中文字幕| 又紧又爽又黄一区二区| 91av网站免费观看| 99国产精品99久久久久| 国产欧美日韩一区二区三| 两人在一起打扑克的视频| 国产高清视频在线播放一区| 嫁个100分男人电影在线观看| 女性被躁到高潮视频| 嫩草影院精品99| 亚洲 欧美一区二区三区| 在线免费观看的www视频| √禁漫天堂资源中文www| 久久久国产欧美日韩av| 无人区码免费观看不卡| 欧美日韩黄片免| 日韩高清综合在线| 在线观看66精品国产| 18禁美女被吸乳视频| 成人精品一区二区免费| 国产精品一区二区三区四区久久 | 我的亚洲天堂| 久久精品aⅴ一区二区三区四区| 97超级碰碰碰精品色视频在线观看| 12—13女人毛片做爰片一| 在线观看午夜福利视频| 欧美激情久久久久久爽电影| 国产精品精品国产色婷婷| 日日摸夜夜添夜夜添小说| 亚洲男人天堂网一区| 欧美国产日韩亚洲一区| 波多野结衣av一区二区av| 国产视频内射| 国产男靠女视频免费网站| aaaaa片日本免费| www.自偷自拍.com| 好男人在线观看高清免费视频 | 99久久无色码亚洲精品果冻| 少妇熟女aⅴ在线视频| 极品教师在线免费播放| 91在线观看av| 国产一区二区三区在线臀色熟女| 国产精品野战在线观看| 老汉色av国产亚洲站长工具| 久久热在线av| 日本精品一区二区三区蜜桃| 成人18禁在线播放| 色在线成人网| 可以在线观看的亚洲视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲性夜色夜夜综合| 亚洲精品av麻豆狂野| 香蕉av资源在线| 中出人妻视频一区二区| 国产在线观看jvid| 女警被强在线播放| 亚洲熟女毛片儿| 在线观看午夜福利视频| 欧美性长视频在线观看| 90打野战视频偷拍视频| 午夜日韩欧美国产| 日韩三级视频一区二区三区| 日本一本二区三区精品| 一区二区日韩欧美中文字幕| 老司机福利观看| 一级a爱片免费观看的视频| 久久久久国产一级毛片高清牌| 波多野结衣高清无吗| 中文字幕精品亚洲无线码一区 | 美女高潮喷水抽搐中文字幕| 丰满人妻熟妇乱又伦精品不卡| 91麻豆精品激情在线观看国产| 一本精品99久久精品77| 草草在线视频免费看| 黄色丝袜av网址大全| 色综合亚洲欧美另类图片| 精品第一国产精品| 欧美午夜高清在线| 国产又黄又爽又无遮挡在线| 88av欧美| 丁香六月欧美| 琪琪午夜伦伦电影理论片6080| 免费观看精品视频网站| 老汉色av国产亚洲站长工具| 啦啦啦韩国在线观看视频| 免费高清视频大片| 午夜久久久久精精品| 91麻豆精品激情在线观看国产| 丰满人妻熟妇乱又伦精品不卡| 久久精品aⅴ一区二区三区四区| 一卡2卡三卡四卡精品乱码亚洲| 巨乳人妻的诱惑在线观看| 成熟少妇高潮喷水视频| 亚洲片人在线观看| 日本三级黄在线观看| 午夜福利一区二区在线看| 中文字幕最新亚洲高清| 黄片小视频在线播放| 国内精品久久久久精免费| 天堂√8在线中文| 麻豆一二三区av精品| 亚洲狠狠婷婷综合久久图片| 在线观看舔阴道视频| 黄频高清免费视频| 亚洲一区中文字幕在线| 亚洲国产欧美一区二区综合| 黄色成人免费大全| 在线观看午夜福利视频| 中文亚洲av片在线观看爽| 在线观看免费日韩欧美大片| 99久久久亚洲精品蜜臀av| av福利片在线| 午夜福利高清视频| 国产成人av教育| 91成人精品电影|