• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The calculation of mechanical energy loss for incompressible steady pipe flow of homogeneous fluid*

    2013-06-01 12:29:59LIUShihe劉士和XUEJiao薛嬌FANMin范敏
    水動力學研究與進展 B輯 2013年6期

    LIU Shi-he (劉士和), XUE Jiao (薛嬌), FAN Min (范敏)

    State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

    The calculation of mechanical energy loss for incompressible steady pipe flow of homogeneous fluid*

    LIU Shi-he (劉士和), XUE Jiao (薛嬌), FAN Min (范敏)

    State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

    (Received June 4, 2013, Revised October 25, 2013)

    The calculation of the mechanical energy loss is one of the fundamental problems in the field of Hydraulics and Engineering Fluid Mechanics. However, for a non-uniform flow the relation between the mechanical energy loss in a volume of fluid and the kinematical and dynamical characteristics of the flow field is not clearly established. In this paper a new mechanical energy equation for the incompressible steady non-uniform pipe flow of homogeneous fluid is derived, which includes the variation of the mean turbulent kinetic energy, and the formula for the calculation of the mechanical energy transformation loss for the non-uniform flow between two cross sections is obtained based on this equation. This formula can be simplified to the Darcy-Weisbach formula for the uniform flow as widely used in Hydraulics. Furthermore, the contributions of the mechanical energy loss relative to the time averaged velocity gradient and the dissipation of the turbulent kinetic energy in the turbulent uniform pipe flow are discussed, and the contributions of the mechanical energy loss in the viscous sublayer, the buffer layer and the region above the buffer layer for the turbulent uniform flow are also analyzed.

    mechanical energy loss, energy equation, pipe flow

    Introduction

    The mechanical energy is the sum of the potential energy and the kinetic energy. The calculation of the mechanical energy loss between two sections along the main flow direction is an important problem in practical engineering, as well as an important research topic in Engineering Fluid Mechanics and Hydraulics.

    In the field of Hydraulics, the mechanical energy loss is usually called the resistance loss, which is divided into the friction loss and the local loss, and the resistance coefficient is mainly determined by experiments. For example, Reynolds carried out experiments to study the differences of the resistance coefficients in laminar and turbulent pipe flows, Nikuradse conducted experiments for flows in artificially roughened pipes and obtained the variation of the resistance loss against the Reynolds number and the relative roughness of the pipe wall. Many studies of the resistance loss were based on these two fundamental studies[1-5].

    In the field of Fluid Mechanics, many studies focused on the mechanisms of turbulent flow[6-9], flow stability[10]and the related spatial or temporal distributions of the flow quantities. With regards to pipe flows, Samanta et al.[11]carried out the experimental investigation of the laminar turbulent intermittency in pipe flows, Liu et al.[12]studied the velocity distributions in the transition region of pipes with Particle Image Velocimetry (PIV), Van Doorne and Westerweel[13]investigated the flow characteristics of laminar, transitional and turbulent pipe flows by using Stereoscopic Particle Image Velocimetry (SPIV), Gen? et al[14]studied the Reynolds stresses in a swirling turbulent pipe flow with Laser-Doppler Anemometer (LDA), Wagner et al.[15], Wu and Moin[16]studied the turbulent pipe flow by Direct Numerical Simulation (DNS).

    However, the relation between the mechanical energy loss in the volume between two cross sections and the kinematical and dynamical characteristics of the flow field was not addressed for a non-uniform flow in previous studies. This paper derives a new mechanical energy equation for incompressible steady non-uniform pipe flows of homogeneous fluid, including the variation of the mean turbulent kinetic energy,and the theoretical results for uniform flows are used for comparison. Furthermore, the contributions of the mechanical energy loss are analyzed relative to the time averaged velocity gradient and the dissipation of the turbulent kinetic energy in a uniform flow, in different regions, especially in the radial direction.

    1. Formulation of the mechanical energy equation

    Considering the flow of homogeneous incompressible fluid in the gravitational field, the second order tensor of the surface force[6]ijTcan be expressed as

    whereρis the fluid density,fiis the mass force per unit volume anduiis the velocity components. Decompose the surface force tensor asTij=-pδij+τij, wherepis the pressure,τij=2μsijis the viscous stress andsijis the rate of deformation. For an incompressible steady flow of homogeneous fluid in the gravitational field (letx3be the vertical coordinate), we have

    In Eq.(2),gx3+p/ρ+ujuj/2 is the mechanical energy, therefore this equation is the differential form of the mechanical energy equation for an incompressible steady flow of homogeneous fluid in the gravitational field, the integral form of the corresponding mechanical energy equation for a steady pipe flow in laminar and turbulent states (corresponding to the statistical quantities in ensemble average) will be discussed afterwards based on this equation.

    1.1Laminar flow

    Consider a control volumeVas shown in Fig.1, where the entire surface is expressed asA, including two cross-sections1A,2Aat the upstream and the downstream with distanceLand the pipe wall, and the flows in this volume are gradually varied. Integrating Eq.(2) overV, and using the Gaussian Theorem to transform the volume integral into the surface integral for the left hand side and the first term on the right hand side, then

    wherejnis the component of the unit normal vector of the surfaceA. For a simple laminar shear flow, the potential energygx3+p/ρ(which is called the piezometric head in Hydraulics) on eitherA1orA2are constant since the flows across these sections are the gradually varied flows[6]. Noting that the velocity on the pipe wall is zero we have

    whereAis the cross-sectional area andUis the mean velocity at a section, andzis substituted forx3for the vertical coordinate to conform with the symbols used in Hydraulics and Engineering Fluid Mechanics. The indexes 1 and 2 are used to represent the corresponding quantities at cross sectionsA1andA2. Define the kinetic energy correction coefficientsα1andα2such that

    and usewhto represent the mechanical energy transformation (the second and third terms on the right hand side of Eq.(5)) and the loss (the first terms on the right hand side of Eq.(5)) per unit weight in unit time, i.e.,

    the total mechanical energy equation Eq.(3) for a laminar flow then becomes

    It can be seen from Eq.(6) that a part of the mechanical energy is consumed owing to the viscous effect when the fluid flows from the cross section1Ato 2A.

    Fig.1 Sketch of pipe flow

    If the shape and the size of the cross sections1Aand2Aare identical, andijτ,iuhave the same distributions on them, we have

    i.e., there would be no mechanical energy transformation while the fluid flows from cross section1AtoA2. In this case the mechanical energy loss becomes

    Furthermore, if the flow included between the cross sections1Aand2Ais uniform, the mechanical energy loss can be simplified as

    1.2Turbulent flow

    Apply the Reynolds decomposition to Eq.(2), and then take the ensemble average. For a steady turbulent flow in the sense of ensemble averaged quantities we have

    therefore, Eq.(8) can be obtained by taking ensemble average

    Integrating Eq.(8) over the control volumeV, and using the Gauss Theorem to transform the volume integral into the surface integral for the left hand side and the second term on the right hand side, we have

    For a non-circular turbulent pipe flow, the hydrostatic assumption (the hydrodynamic pressure is equal to the hydrostatic pressure at the cross section of gradually varied flow) would not be hold, strictly speaking, owing to the non-homogeneity of the Reynolds stresses and the secondary flow at the cross section. Usingspto represent the hydrostatic pressure such thatgx3+ps/ρ=C, and usingρF1andρF2to represent the deviations between the hydrodynamic pressuresp1andp2and the hydrostatic pressuresps1and 2spat the cross-sections 1Aand 2A, by using the method of Green function[6], we have

    Similar to the discussions in Section 1.1, define themean kinetic energy correction coefficients1α,2αand the mean turbulent energy correction coefficients 1βand2βat the cross-sections1Aand2Asuch that

    and usewhto represent the transformation(the second term on the right hand side of Eq.(12)) and loss (the first terms on the right hand side of Eq.(12)) of the mechanical energy. Equation (9) can be simplified by using the no-slip condition on the pipe wall such that

    Equation (11) is the integral form of the mechanical energy equation for the incompressible steady nonuniform pipe flow of homogeneous fluid, which includes the variation of the mean turbulent kinetic energy from1Ato2A. In Eq.(11)

    Furthermore, if the flow between the cross sections1Aand2Ais uniform (for example, the flow in a long and straight pipe), the mechanical energy loss can be further simplified as

    2. Mechanical energy loss for steady uniform laminar flow in a circular pipe

    For the steady uniform laminar flow in a circular pipe the longitudinal velocityzuonly changes in the radial directionrsuch that[6]

    wheredis the diameter of the circular pipe andCis a constant related to the mean pressure gradient in thelongitudinal direction. Substituting Eq.(15) into Eq.(7b) the following equation can be obtained finally after some simplifications

    Equation (16) is the same as the Darcy-Weisbach formula for the resistance loss of a steady uniform laminar flow in a circular pipe in Hydraulics, and the resistance coefficientλ=64/Red, whereRed=U1d/νis the Reynolds number.

    3. Mechanical energy loss for uniform turbulent flow in a circular pipe

    For the uniform turbulent flow in a circular pipe the longitudinal velocityzualso only changes in the radial direction, using the condition of the axial symmetry Eq.(14b) can be rewritten as It can be seen from Eq.(17) that the mechanical energy loss has two parts, both from the fluid viscosity for the uniform turbulent flow in a circular pipe, the former is related to the time averaged velocity gradient and the latter is related to the dissipation of the turbulent kinetic energy. For the uniform turbulent flow in a circular pipe, the total dissipation of the turbulent energy is equal to the total generation of the turbulent energy at section1A, i.e.,

    Therefore Eq.(17) can be simplified considering that

    for the uniform turbulent flow in a circular pipe such that whereu*is the shear velocity. Defining the coefficient for the mechanical energy loss asλ=8(u*/U1)2, Eq.(19) can be simplified further as

    Equation (20) is the same as the Darcy-Weisbach formula for the resistance loss for the steady uniform turbulent flow in a circular pipe in Hydraulics.

    Now we discuss the compositions of the mechanical energy loss based on Eq.(17). From Eq.(20) and Eq.(17)λcan be expressed as

    Using 1λand2λto represent the contributions to the coefficients of the mechanical energy loss relative to the time averaged velocity gradient and the dissipation of the turbulent kinetic energy, respectively, we have

    Fig.2 Comparison of theoretical velocity distribution with experimental data

    Fig.3 Variation of1/λλand2/λλwithdRe

    Fig.4 Contributions of viscous sublayer, buffer layer and the region above buffer layer to the mechanical energy loss

    In the radial direction, the uniform turbulent flow in a circular pipe can be divided into a viscous sublayer (r∈(0.5d-5ν/u*~0.5d)), a buffer layer (r∈(0.5d-30ν/u*~0.5d-5ν/u*)), and the region above the buffer layer which contains the logarithmic region[6,17]. The contributions of the above three regions to the mechanical energy loss are calculated based on the time averaged velocity distributions relative to the Van Driest model and the Spalding formula, as shown in Fig.4. It can be seen that: (1) whendReis less than 2.5×104, the contributions of the above three regions to the mechanical energy loss are in the following order: buffer layer>viscous sublayer>the region above the buffer layer. (2) whendReis larger than 2.5×104and less than 1.3×105, the contributions of the above three regions to the mechanical energy loss are in the following order: buffer layer>the region above the buffer layer>viscous sublayer. (3) whendReis larger than 1.3×105, the contributions of the above three regions to the mechanical energy loss are in the following order: the region above the buffer layer>buffer layer>viscous sublayer.

    4. Conclusions

    (1) A new energy equation for incompressible steady non-uniform pipe flow of homogeneous fluid is derived, which includes the variation of the mean turbulent kinetic energy, and the formula for the calculation of the transformation and loss of the mechanical energy for the non-uniform flow between two cross sections is obtained based on this equation. This formula can be simplified to the Darcy-Weisbach formula widely used in Hydraulics for uniform flows.

    (2) The mechanical energy loss of a turbulent flow is resulted from the fluid viscosity in a circular pipe and can be divided into two parts for a uniform flow, the first is related to the time averaged velocity gradient, and the other is related to the dissipation of the turbulent kinetic energy. The former decreases with the increase of the Reynolds number, and the latter increases with the increase of the Reynolds number. When the Reynolds number is larger than 3×104, the contribution from the term related to the dissipation of the turbulent kinetic energy is dominant.

    (3) In the radial direction, the uniform turbulent flow in a circular pipe can be divided into the viscous sublayer, the buffer layer and the region above the buffer layer. With the increase of the Reynolds number, the contributions of the mechanical energy loss in the buffer layer and the viscous sublayer decrease, while the contribution from the region above the buffer layer increases. When the Reynolds number is larger than 1.3×105, the contribution of the mechanical energy loss in the region above the buffer layer becomes dominant.

    [1] MCKEON B. J., ZAGAROLA M. V. and SMITS A. J. A new friction factor relationship for fully developed pipe flow[J].Journal of Fluid Mechanics,2005, 538: 429-443.

    [2] SHOCKLING M. A., ALLEN J. J. and SMITS A. J.Roughness effects in turbulent pipe flow[J].Journal of Fluid Mechanics,2006, 564: 267-285.

    [3] FADARE D. A., OFIDHE U. I. Artificial neural network model for prediction of friction factor in pipe flow[J].Journal of Applied Sciences Research,2009, 5(6): 662-670.

    [4] YANG S. Q., HAN Y. and DHARMASIRI N. Flow resistance over fixed roughness elements[J].Journal of Hydraulic Research,2011, 49(2): 257-262.

    [5] YOON J. I., SUNG J. and LEE M. H. Velocity profiles and friction coefficients in circular open channels[J].Journal of Hydraulic Research,2012, 50(3): 304-311.

    [6] ZHANG Zhao-shun, CUI Gui-xiang.Fluid mechanics[M]. Second Edition, Beijing, China: Tsinghua University Press, 2006(in Chinese).

    [7] MCKEON B. J., LI J. and JIANG W. et al. Further observations on the mean velocity distribution in fully developed pipe flow[J].Journal of Fluid Mechanics,2004, 501: 135-147.

    [8] SAKAKIBARA J., MACHIDA N. Measurement of turbulent flow upstream and downstream of a circular pipe bend[J].Physics of Fluids,2012, 24(4): 041702.

    [9] HULTMARK M., BAILEY S. C. C. and SMITS A. J. Scaling of near-wall turbulence in pipe flow[J].Journal of Fluid Mechanics,2010, 649: 103-113.

    [10] WANG Xin-jun, LUO Ji-sheng and ZHOU Heng. Mechanism of breakdown process of the laminar-turbulent transition in plane channel flow[J].Science in China, Series G: Physics, Mechanics and Astronomy,2005, 35(1): 71-78(in Chinese).

    [11] SAMANTA D., De LOZAR A. and HOF B. Experimental investigation of laminar turbulent intermittency in pipe flow[J].Journal of Fluid Mechanics,2011, 681: 193-204.

    [12] LIU Yong-hui, DU Guang-sheng and LIU Li-ping et al. Experimental study of velocity distributions in the transition region of pipes[J].Journal of Hydrodynamics,2011, 23(5): 643-648.

    [13] Van DOORNE C. W. H., WESTERWEEL J. Measurement of laminar, transitional and turbulent pipe flow using stereoscopic-PIV[J].Experiments in Fluids,2007, 42(2): 259-279.

    [14] GEN? B. Z., ERTUN? ?. and JOVANOVI? J. et al. LDA measurements of Reynolds stresses in a swirling turbulent pipe flow[C].Proceedings of 12th EUROMECH European Turbulence Conference.Marburg, Germany, 2009, 132: 617-620.

    [15] WAGNER C., HUTTL T. J. and FRIEDRICH R. Low Reynolds number effects derived from direct numerical simulations of turbulent pipe flow[J].Computers and Fluids.2001, 30(5): 581-590.

    [16] WU X., MOIN P. A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow[J].Journal of Fluid Mechanics,2008, 608: 81-112.

    [17] LIU Shi-he, LIU Jiang and LUO Qiu-shi et al.Engineering turbulence[M]. Beijing, China: Science Press, 2011(in Chinese).

    10.1016/S1001-6058(13)60440-0

    * Biography: LIU Shi-he (1962-), Male, Ph. D., Professor

    内射极品少妇av片p| 男人和女人高潮做爰伦理| 一级二级三级毛片免费看| 国产av不卡久久| 国产精品精品国产色婷婷| 成人漫画全彩无遮挡| 男人爽女人下面视频在线观看| 又爽又黄无遮挡网站| 欧美97在线视频| 搡老乐熟女国产| 亚洲欧洲国产日韩| av一本久久久久| 日韩欧美精品免费久久| 国产日韩欧美亚洲二区| 岛国毛片在线播放| 日本午夜av视频| 色哟哟·www| 好男人视频免费观看在线| 最近2019中文字幕mv第一页| 国产亚洲av片在线观看秒播厂| 久久久久国产网址| 91aial.com中文字幕在线观看| 黑人高潮一二区| 美女内射精品一级片tv| 国产在线一区二区三区精| 免费看光身美女| 汤姆久久久久久久影院中文字幕| 日韩伦理黄色片| 丰满乱子伦码专区| 国产中年淑女户外野战色| 男人添女人高潮全过程视频| 成年女人看的毛片在线观看| 高清日韩中文字幕在线| 六月丁香七月| 高清毛片免费看| 亚洲无线观看免费| 哪个播放器可以免费观看大片| 亚洲精品成人久久久久久| 91久久精品电影网| 街头女战士在线观看网站| 神马国产精品三级电影在线观看| 亚洲精品成人久久久久久| 国产一区二区在线观看日韩| 又粗又硬又长又爽又黄的视频| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩视频精品一区| 国产精品无大码| 少妇人妻 视频| 亚洲美女视频黄频| 国产成人91sexporn| 啦啦啦在线观看免费高清www| 亚洲一区二区三区欧美精品 | 一二三四中文在线观看免费高清| 国产精品精品国产色婷婷| av卡一久久| 国产人妻一区二区三区在| 午夜精品国产一区二区电影 | 男女边吃奶边做爰视频| 久久精品夜色国产| 熟女av电影| 欧美精品人与动牲交sv欧美| 精品久久久久久久久av| 国产中年淑女户外野战色| 一级毛片aaaaaa免费看小| 亚洲av日韩在线播放| 国产精品久久久久久精品电影| 天天躁日日操中文字幕| 涩涩av久久男人的天堂| 国产午夜福利久久久久久| 日韩大片免费观看网站| av国产久精品久网站免费入址| 欧美成人一区二区免费高清观看| 日本一二三区视频观看| 内地一区二区视频在线| 免费观看av网站的网址| 一边亲一边摸免费视频| 麻豆成人午夜福利视频| 久久久精品免费免费高清| 国产成人精品久久久久久| 99久久中文字幕三级久久日本| 亚洲高清免费不卡视频| 亚洲人成网站在线播| 国产探花极品一区二区| 精品国产三级普通话版| 一本久久精品| 99热这里只有是精品在线观看| 国产一区有黄有色的免费视频| 人妻制服诱惑在线中文字幕| 亚洲久久久久久中文字幕| 国产综合懂色| 制服丝袜香蕉在线| 欧美一级a爱片免费观看看| 国产欧美亚洲国产| 岛国毛片在线播放| 日韩av在线免费看完整版不卡| 哪个播放器可以免费观看大片| 美女主播在线视频| 欧美日韩在线观看h| 我的女老师完整版在线观看| 国产一区二区亚洲精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 中文乱码字字幕精品一区二区三区| 久久人人爽人人片av| 国产日韩欧美亚洲二区| 可以在线观看毛片的网站| www.av在线官网国产| 三级国产精品欧美在线观看| 亚洲精品成人久久久久久| 一边亲一边摸免费视频| a级毛片免费高清观看在线播放| av国产精品久久久久影院| 日韩成人av中文字幕在线观看| 婷婷色综合www| 最近2019中文字幕mv第一页| 欧美成人午夜免费资源| 久热久热在线精品观看| 老师上课跳d突然被开到最大视频| 免费大片18禁| 全区人妻精品视频| 亚洲成人av在线免费| 色综合色国产| 九九在线视频观看精品| 男人舔奶头视频| 草草在线视频免费看| 一级片'在线观看视频| 嫩草影院精品99| 婷婷色综合www| 99热6这里只有精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲性久久影院| 国产免费一级a男人的天堂| 国内揄拍国产精品人妻在线| 亚洲精品国产成人久久av| 日本一二三区视频观看| 欧美日韩亚洲高清精品| 国产 一区 欧美 日韩| 国产伦在线观看视频一区| 看非洲黑人一级黄片| 嫩草影院入口| 男女无遮挡免费网站观看| 日日摸夜夜添夜夜添av毛片| 欧美区成人在线视频| 日本黄大片高清| 精品人妻视频免费看| 国产真实伦视频高清在线观看| 日韩精品有码人妻一区| 亚洲成人中文字幕在线播放| 国产国拍精品亚洲av在线观看| 国产精品女同一区二区软件| 精品久久久精品久久久| 99热6这里只有精品| 天堂网av新在线| 看十八女毛片水多多多| 国产黄色免费在线视频| 久久久久精品久久久久真实原创| 男女边吃奶边做爰视频| 亚洲av免费高清在线观看| 久久这里有精品视频免费| 日韩人妻高清精品专区| 久久99热这里只频精品6学生| 高清毛片免费看| 日本-黄色视频高清免费观看| 男女边吃奶边做爰视频| 女人被狂操c到高潮| 国产男女超爽视频在线观看| 亚州av有码| 欧美xxxx性猛交bbbb| 人人妻人人爽人人添夜夜欢视频 | 国产爽快片一区二区三区| 久久精品国产亚洲av涩爱| 亚洲天堂av无毛| 亚洲精品国产成人久久av| 婷婷色av中文字幕| 色网站视频免费| 亚洲一级一片aⅴ在线观看| 久久久久精品性色| 亚洲国产精品999| 成人国产麻豆网| 亚洲最大成人手机在线| 人妻一区二区av| 日韩中字成人| 黄色视频在线播放观看不卡| 亚洲在久久综合| 日日撸夜夜添| 久久99热6这里只有精品| 国产一区二区三区综合在线观看 | 婷婷色综合www| 波多野结衣巨乳人妻| av免费观看日本| 亚洲综合精品二区| 日韩成人伦理影院| 国产欧美另类精品又又久久亚洲欧美| 少妇 在线观看| 国产毛片a区久久久久| 精品午夜福利在线看| 韩国av在线不卡| 老司机影院毛片| 国产男女内射视频| 欧美成人午夜免费资源| 亚洲欧美精品专区久久| av女优亚洲男人天堂| 成人高潮视频无遮挡免费网站| 免费电影在线观看免费观看| 国产精品久久久久久久久免| 国产高潮美女av| 国产av国产精品国产| 国产久久久一区二区三区| 国产伦精品一区二区三区视频9| 一区二区三区免费毛片| 日日摸夜夜添夜夜添av毛片| 国产亚洲91精品色在线| 亚洲图色成人| 国产真实伦视频高清在线观看| 一区二区三区乱码不卡18| 在线观看一区二区三区激情| 国产午夜精品久久久久久一区二区三区| 亚洲国产精品成人综合色| 欧美97在线视频| 日日啪夜夜撸| 国产亚洲精品久久久com| 内射极品少妇av片p| 亚洲av免费在线观看| 国产精品一二三区在线看| 亚洲av二区三区四区| 麻豆国产97在线/欧美| 亚洲精品中文字幕在线视频 | 国产色婷婷99| 精品国产三级普通话版| 久久精品久久久久久久性| 九草在线视频观看| 亚洲精品国产色婷婷电影| 特大巨黑吊av在线直播| 亚洲av中文av极速乱| 嫩草影院入口| 欧美激情国产日韩精品一区| 亚洲精品色激情综合| 欧美丝袜亚洲另类| 寂寞人妻少妇视频99o| 亚洲精品久久午夜乱码| 国产色婷婷99| 国产成人免费观看mmmm| 人妻系列 视频| 精品国产露脸久久av麻豆| 男女边吃奶边做爰视频| 男女那种视频在线观看| 日韩伦理黄色片| 成年人午夜在线观看视频| 十八禁网站网址无遮挡 | 久久久久久伊人网av| 久久人人爽人人片av| 国产av码专区亚洲av| 麻豆国产97在线/欧美| 熟妇人妻不卡中文字幕| 2022亚洲国产成人精品| 久久久久九九精品影院| 国产黄片美女视频| 午夜免费鲁丝| 另类亚洲欧美激情| 久久久久久伊人网av| 韩国高清视频一区二区三区| 高清午夜精品一区二区三区| 超碰av人人做人人爽久久| 亚洲在线观看片| av国产免费在线观看| 精品一区二区三区视频在线| 一级毛片黄色毛片免费观看视频| 欧美性感艳星| 国产午夜精品一二区理论片| 少妇被粗大猛烈的视频| 热re99久久精品国产66热6| 精品国产一区二区三区久久久樱花 | 成人毛片a级毛片在线播放| 91精品伊人久久大香线蕉| 又黄又爽又刺激的免费视频.| 亚洲欧美日韩无卡精品| 少妇人妻精品综合一区二区| 纵有疾风起免费观看全集完整版| 男插女下体视频免费在线播放| 高清视频免费观看一区二区| 男女边吃奶边做爰视频| 精品视频人人做人人爽| 国产永久视频网站| 高清av免费在线| 18禁在线无遮挡免费观看视频| 国产中年淑女户外野战色| 一级毛片aaaaaa免费看小| 久久久久久久久久人人人人人人| 免费高清在线观看视频在线观看| 男女边吃奶边做爰视频| 国产美女午夜福利| 中国美白少妇内射xxxbb| 精华霜和精华液先用哪个| 一个人观看的视频www高清免费观看| 久久久久久久久久久丰满| 身体一侧抽搐| 精品一区在线观看国产| 国产 精品1| 亚洲人成网站在线观看播放| 国产精品无大码| 毛片一级片免费看久久久久| 亚洲天堂国产精品一区在线| 成年女人看的毛片在线观看| a级毛片免费高清观看在线播放| 免费看av在线观看网站| 欧美最新免费一区二区三区| 日日摸夜夜添夜夜爱| 91精品一卡2卡3卡4卡| 国产真实伦视频高清在线观看| 精品久久久久久久末码| 别揉我奶头 嗯啊视频| 久久久久久久久久人人人人人人| 久久久亚洲精品成人影院| 国产精品一及| 麻豆乱淫一区二区| 色网站视频免费| 777米奇影视久久| 成年人午夜在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 国产综合懂色| 三级国产精品欧美在线观看| 国产视频首页在线观看| 人妻系列 视频| 不卡视频在线观看欧美| 亚洲成人中文字幕在线播放| 黄色怎么调成土黄色| 成年av动漫网址| 欧美xxⅹ黑人| 国产成年人精品一区二区| 最近2019中文字幕mv第一页| 亚洲在久久综合| 国产精品一及| 最近2019中文字幕mv第一页| 搞女人的毛片| 高清日韩中文字幕在线| 97精品久久久久久久久久精品| 欧美+日韩+精品| 日韩制服骚丝袜av| 国产淫片久久久久久久久| 国产毛片在线视频| 九九久久精品国产亚洲av麻豆| 好男人在线观看高清免费视频| 国产精品不卡视频一区二区| 亚洲天堂av无毛| 亚洲欧美日韩另类电影网站 | 边亲边吃奶的免费视频| 欧美成人一区二区免费高清观看| av天堂中文字幕网| av国产久精品久网站免费入址| 国产伦在线观看视频一区| 综合色av麻豆| 日韩在线高清观看一区二区三区| 嫩草影院精品99| 狂野欧美激情性bbbbbb| 亚洲第一区二区三区不卡| 最后的刺客免费高清国语| 网址你懂的国产日韩在线| 91在线精品国自产拍蜜月| 亚洲丝袜综合中文字幕| 久久精品国产自在天天线| 亚洲av电影在线观看一区二区三区 | 成年女人看的毛片在线观看| 一级毛片电影观看| 麻豆成人午夜福利视频| 成人亚洲精品av一区二区| 人体艺术视频欧美日本| 日日撸夜夜添| 大香蕉97超碰在线| 成人综合一区亚洲| 亚洲精品,欧美精品| 成人无遮挡网站| 少妇的逼水好多| 久久久久精品久久久久真实原创| 国产在视频线精品| 亚洲av中文字字幕乱码综合| 成人国产麻豆网| 国产黄色视频一区二区在线观看| 一个人看视频在线观看www免费| 国产精品成人在线| av在线天堂中文字幕| 亚洲国产精品国产精品| 国产黄色免费在线视频| 一区二区三区四区激情视频| 男女无遮挡免费网站观看| 久久精品久久久久久噜噜老黄| 在线免费观看不下载黄p国产| 欧美精品一区二区大全| 国产精品久久久久久精品电影小说 | 国产欧美亚洲国产| 777米奇影视久久| 免费少妇av软件| 少妇人妻久久综合中文| 亚洲人与动物交配视频| 久久久久久九九精品二区国产| 亚洲国产色片| 国产精品国产三级专区第一集| 男插女下体视频免费在线播放| 高清午夜精品一区二区三区| 高清欧美精品videossex| 特级一级黄色大片| 久久久国产一区二区| 久久精品国产鲁丝片午夜精品| 亚洲怡红院男人天堂| 成年av动漫网址| 日韩不卡一区二区三区视频在线| 国产乱来视频区| 永久网站在线| 亚洲成人久久爱视频| 男女啪啪激烈高潮av片| 免费黄色在线免费观看| 天天躁夜夜躁狠狠久久av| 国产美女午夜福利| 国产精品无大码| 欧美成人精品欧美一级黄| 亚洲天堂av无毛| 热re99久久精品国产66热6| 亚洲真实伦在线观看| 国产亚洲一区二区精品| 深夜a级毛片| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 国产在线一区二区三区精| 18禁裸乳无遮挡动漫免费视频 | 欧美少妇被猛烈插入视频| 国产免费又黄又爽又色| 黑人高潮一二区| 亚洲人成网站高清观看| 国产国拍精品亚洲av在线观看| 老师上课跳d突然被开到最大视频| xxx大片免费视频| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱久久久久久| av在线老鸭窝| 国国产精品蜜臀av免费| 人人妻人人看人人澡| 美女xxoo啪啪120秒动态图| 午夜福利视频精品| 欧美激情国产日韩精品一区| 69人妻影院| 一个人看的www免费观看视频| 一本久久精品| 成人毛片a级毛片在线播放| 少妇熟女欧美另类| 26uuu在线亚洲综合色| 亚洲精品一区蜜桃| 2018国产大陆天天弄谢| 欧美日本视频| 亚洲国产精品成人综合色| 在线天堂最新版资源| 国产人妻一区二区三区在| 亚洲真实伦在线观看| 特大巨黑吊av在线直播| 一本色道久久久久久精品综合| 美女被艹到高潮喷水动态| 18禁在线播放成人免费| 黄色日韩在线| 亚洲国产色片| 亚洲熟女精品中文字幕| 极品少妇高潮喷水抽搐| 国产成人福利小说| 亚洲性久久影院| av卡一久久| 身体一侧抽搐| 国产精品一二三区在线看| 男女下面进入的视频免费午夜| 亚洲国产精品国产精品| 一级片'在线观看视频| 久久这里有精品视频免费| 国国产精品蜜臀av免费| 一个人看视频在线观看www免费| 好男人视频免费观看在线| 插逼视频在线观看| 亚洲国产色片| 日韩欧美精品v在线| 久久人人爽人人片av| 在线观看av片永久免费下载| 国产综合精华液| 亚洲国产欧美在线一区| 秋霞在线观看毛片| 亚洲电影在线观看av| 我要看日韩黄色一级片| 亚洲精品乱码久久久v下载方式| 天堂网av新在线| 深夜a级毛片| 亚洲人与动物交配视频| 国产成人午夜福利电影在线观看| 免费高清在线观看视频在线观看| 一区二区三区乱码不卡18| 91狼人影院| 国产伦在线观看视频一区| 免费电影在线观看免费观看| 极品教师在线视频| 欧美亚洲 丝袜 人妻 在线| 精品一区二区三区视频在线| 在线a可以看的网站| 久久久久久久精品精品| 亚洲性久久影院| 久久综合国产亚洲精品| 亚洲国产精品999| 亚洲最大成人av| 18+在线观看网站| 激情五月婷婷亚洲| 亚洲丝袜综合中文字幕| 国产黄a三级三级三级人| 亚洲三级黄色毛片| 又粗又硬又长又爽又黄的视频| 国产精品麻豆人妻色哟哟久久| 亚洲国产av新网站| 精品亚洲乱码少妇综合久久| 国产精品av视频在线免费观看| 高清毛片免费看| 日韩制服骚丝袜av| 国产大屁股一区二区在线视频| 丰满人妻一区二区三区视频av| 国内少妇人妻偷人精品xxx网站| 美女cb高潮喷水在线观看| 永久网站在线| 日韩亚洲欧美综合| 免费观看在线日韩| 亚洲精品日本国产第一区| 免费看a级黄色片| av黄色大香蕉| 国产精品爽爽va在线观看网站| 成人亚洲精品一区在线观看 | 国产免费一区二区三区四区乱码| 国产精品一区二区性色av| 一级av片app| 日韩三级伦理在线观看| 国产成人一区二区在线| 禁无遮挡网站| 国产真实伦视频高清在线观看| 真实男女啪啪啪动态图| 少妇裸体淫交视频免费看高清| 最近中文字幕2019免费版| 熟女人妻精品中文字幕| 视频区图区小说| 午夜免费观看性视频| 久久97久久精品| 纵有疾风起免费观看全集完整版| 久久久久久久大尺度免费视频| 国产欧美另类精品又又久久亚洲欧美| 特级一级黄色大片| 国产精品嫩草影院av在线观看| 中文欧美无线码| 一级爰片在线观看| 综合色丁香网| 日本-黄色视频高清免费观看| 超碰97精品在线观看| 国产精品人妻久久久影院| 亚洲国产色片| 中文字幕av成人在线电影| 国产久久久一区二区三区| 激情五月婷婷亚洲| 在线a可以看的网站| 三级国产精品片| 丰满人妻一区二区三区视频av| 伦精品一区二区三区| 亚洲欧美清纯卡通| av播播在线观看一区| 久久久久久久亚洲中文字幕| 国产综合精华液| 在线看a的网站| 欧美日韩亚洲高清精品| 亚洲国产欧美人成| 成人亚洲欧美一区二区av| 秋霞在线观看毛片| 国产精品国产三级国产av玫瑰| 日日摸夜夜添夜夜添av毛片| 2021少妇久久久久久久久久久| 亚洲成人中文字幕在线播放| 成年女人在线观看亚洲视频 | 人妻夜夜爽99麻豆av| 久久久久久久国产电影| a级毛片免费高清观看在线播放| 在线a可以看的网站| 色视频www国产| 国产男人的电影天堂91| 白带黄色成豆腐渣| 亚洲欧美日韩另类电影网站 | 噜噜噜噜噜久久久久久91| 大陆偷拍与自拍| 女人被狂操c到高潮| 大片电影免费在线观看免费| 国产黄片美女视频| 亚洲欧美日韩另类电影网站 | 99久久精品国产国产毛片| 免费黄网站久久成人精品| 亚洲精品国产色婷婷电影| 欧美+日韩+精品| 男人爽女人下面视频在线观看| 亚洲自拍偷在线| 精品人妻一区二区三区麻豆| 偷拍熟女少妇极品色| 网址你懂的国产日韩在线| 在现免费观看毛片| 成人毛片60女人毛片免费| 女人被狂操c到高潮| 少妇的逼好多水| 国产白丝娇喘喷水9色精品| 少妇熟女欧美另类| 亚洲国产欧美在线一区| 九草在线视频观看| 男插女下体视频免费在线播放| 欧美日韩精品成人综合77777| 看黄色毛片网站| 亚洲精品国产av成人精品| 欧美日韩视频精品一区| 欧美成人午夜免费资源| 18禁在线播放成人免费| 日韩欧美 国产精品| 久久精品国产亚洲av天美| 一级毛片 在线播放| 久久久久国产网址| 亚洲精品成人av观看孕妇| 中文天堂在线官网| 亚洲精品中文字幕在线视频 |