錢麗玲,陳蔣慶,吳曉燕,荊瑞瑞,孫潔,2
生物工程與大健康
孫潔 博士,浙江大學(xué)醫(yī)學(xué)院研究員,博士生導(dǎo)師。目前研究方向?yàn)镃AR-T細(xì)胞殺傷、增殖及耗竭的分子機(jī)制;開(kāi)發(fā)新型生物傳感器與智能分子機(jī)器;優(yōu)化及探索新的細(xì)胞癌癥免疫療法。成果以第一作者或通訊作者發(fā)表在、、等國(guó)際專業(yè)期刊。
細(xì)胞治療的典范:嵌合抗原受體T細(xì)胞療法
錢麗玲1,陳蔣慶1,吳曉燕1,荊瑞瑞1,孫潔1,2
1 浙江大學(xué)醫(yī)學(xué)院附屬第一醫(yī)院骨髓移植中心 浙江大學(xué)醫(yī)學(xué)院細(xì)胞生物學(xué)系,浙江 杭州 310058 2 浙江大學(xué)血液學(xué)研究所 浙江省干細(xì)胞與免疫治療工程實(shí)驗(yàn)室,浙江 杭州 310058
嵌合抗原受體T (CAR-T) 細(xì)胞療法是一種利用合成受體特異性靶向抗原的過(guò)繼性細(xì)胞療法(ACT),目前在血液腫瘤的治療中有極大的臨床應(yīng)用價(jià)值。雖然美國(guó)食品藥品監(jiān)督管理局 (FDA) 已經(jīng)批準(zhǔn)兩款CAR-T藥物上市,但CAR-T療法在治療過(guò)程中仍然存在一些副作用,如細(xì)胞因子釋放綜合征 (CRS)、神經(jīng)毒性、B細(xì)胞功能缺失等。同時(shí),CAR-T療法在實(shí)體瘤治療中的效果甚微,主要原因是缺乏特異性靶點(diǎn)以及腫瘤微環(huán)境對(duì)CAR-T細(xì)胞功能的抑制等。文中將從CAR的結(jié)構(gòu)設(shè)計(jì)、臨床應(yīng)用、合成生物學(xué)對(duì)新型CAR的優(yōu)化來(lái)闡述應(yīng)用CAR-T細(xì)胞療法治療腫瘤所面臨的挑戰(zhàn)及廣闊前景。
細(xì)胞治療,免疫治療,嵌合抗原受體T細(xì)胞,合成生物學(xué)
20世紀(jì)80年代以前,藥物的研發(fā)主要依賴于天然化合物和小分子藥物的合成,開(kāi)發(fā)了許多有效的小分子藥物用于疾病治療。隨著單克隆抗體技術(shù)和蛋白質(zhì)工程技術(shù)的發(fā)展,生物大分子藥物如天然蛋白質(zhì)或具有特定功能的重組蛋白藥物應(yīng)運(yùn)而生,但仍然存在新的困難和挑戰(zhàn),由于疾病的復(fù)雜性和多樣性,且存在個(gè)體差異和組織特異性,因此很難找到組織特異和個(gè)體特異的靶點(diǎn)。近年來(lái),興起了第3種治療方法——將細(xì)胞作為藥物的細(xì)胞治療,該方法在疾病尤其是癌癥的治療方面具有劃時(shí)代的意義[1]。
細(xì)胞治療是指將自體、同源異體或異種細(xì)胞經(jīng)體外工程化改造和擴(kuò)大培養(yǎng)后,輸注患者體內(nèi)治療疾病的療法。該治療方法與傳統(tǒng)的小分子藥物和蛋白藥物相比最大的特點(diǎn)是利用活細(xì)胞作為藥物來(lái)治療疾病,具有復(fù)雜性和可調(diào)節(jié)性等特 征[1],具體來(lái)說(shuō),將細(xì)胞作為藥物具有以下優(yōu)點(diǎn):1) 選擇性高,細(xì)胞藥物能感知復(fù)雜的人體內(nèi)環(huán)境,只在特定的環(huán)境中激活,以發(fā)揮相應(yīng)功能,這意味著可以更大程度上限制藥物的副作用;2)局部濃度高,人體代謝、藥物效應(yīng)動(dòng)力學(xué)(Pharmacodynamics,PD) 和藥物代謝動(dòng)力學(xué)(Pharmacokinetics,PK) 決定了分子藥物靶向性較低,它不只在病變組織或細(xì)胞內(nèi)分布,而且分布于整個(gè)機(jī)體組織,這通常會(huì)造成嚴(yán)重的脫靶效應(yīng),而細(xì)胞藥物的優(yōu)勢(shì)在于可主動(dòng)遷移到靶組織或靶細(xì)胞內(nèi)發(fā)揮作用;3) 更加個(gè)性化,由于個(gè)體差異,目前很難控制每個(gè)患者小分子藥物的使用劑量,但在細(xì)胞治療中,可應(yīng)用合成生物學(xué)設(shè)計(jì)基因開(kāi)關(guān)控制藥物的合成或釋放,也可以根據(jù)臨床需要設(shè)計(jì)不同細(xì)胞藥物以治療更多疾病[1]。但細(xì)胞藥物的開(kāi)發(fā)和合成生物學(xué)的應(yīng)用還需更多基礎(chǔ)研究的支撐,以解決細(xì)胞藥物在臨床上治療疾病種類少、副作用嚴(yán)重、費(fèi)用昂貴等問(wèn)題。
細(xì)胞治療根據(jù)細(xì)胞類型可分為干細(xì)胞治療、免疫細(xì)胞治療和其他細(xì)胞治療。輸血是最早的細(xì)胞治療,現(xiàn)已經(jīng)發(fā)展到輸注特定血液成分進(jìn)行治療,這使得在提高血液利用率的同時(shí)減少副作用,目前研究較多的是干細(xì)胞治療和免疫細(xì)胞治療。干細(xì)胞治療是指把健康的干細(xì)胞輸注到患者體內(nèi),從而修復(fù)或替換受損細(xì)胞或組織以治療疾病的方法。目前國(guó)內(nèi)外臨床試驗(yàn)應(yīng)用較廣泛的是利用間充質(zhì)干細(xì)胞治療神經(jīng)性疾病、糖尿病、慢性心臟疾病、腎臟病、肝臟疾病、艾滋病和癌癥等疾病[2-6]。免疫細(xì)胞治療的過(guò)程主要包括從患者或供體血液中提取免疫細(xì)胞,在體外進(jìn)行工程化改造和擴(kuò)增培養(yǎng)后,重新輸注入病人體內(nèi)或者直接注射到病灶處。目前用于臨床試驗(yàn)的免疫細(xì)胞療法主要有CAR-T、TCR-T和NK細(xì)胞療法等[7-9]。文中主要介紹CAR-T療法的發(fā)展、應(yīng)用和前景。
早在20世紀(jì)80年代,得益于過(guò)繼性T細(xì)胞治療(Adoptive T-cell therapy,ACT) 的發(fā)展,臨床上已開(kāi)始利用輸注自體或異體供體淋巴細(xì)胞治療一些腫瘤,如轉(zhuǎn)移性黑色素瘤、復(fù)發(fā)性白血 病[10-11]等。但這種基于自然T細(xì)胞的ACT治療存在以下不足:首先,供體T細(xì)胞可能攻擊受體導(dǎo)致移植物抗宿主反應(yīng)(Graft-versus-host disease,GVHD);同時(shí),受體可能排斥輸注的T細(xì)胞,限制它們的持久性和療效;而且從體內(nèi)分離的自然T細(xì)胞數(shù)目少,靶向特異性低,抗腫瘤效率低。這些早期ACT的臨床結(jié)果表明,該療法需要增強(qiáng)靶向腫瘤的特異性并提高體外擴(kuò)增T細(xì)胞的數(shù)量,同時(shí)減少免疫排斥反應(yīng)[12-14]。T細(xì)胞工程的出現(xiàn)改變了傳統(tǒng)ACT的局限性,產(chǎn)生了特異性靶向腫瘤的TCR-T、CAR-T細(xì)胞[15],其中通過(guò)在T細(xì)胞表達(dá)嵌合抗原受體(Chimeric antigen receptor,CAR) 而擺脫HLA限制性的治療方法即CAR-T療法,該方法已經(jīng)在血液瘤的治療中取得顯著的效果。本文首先簡(jiǎn)述了CAR的結(jié)構(gòu)設(shè)計(jì)以及CAR-T療法在血液瘤和實(shí)體瘤中的應(yīng)用現(xiàn)狀,然后總結(jié)了合成生物學(xué)為CAR-T細(xì)胞設(shè)計(jì)提供的新思路,最后展望CAR-T療法在腫瘤尤其是在實(shí)體瘤治療過(guò)程中的巨大應(yīng)用潛能。
臨床試驗(yàn)已證實(shí)CAR-T細(xì)胞療法在治療B細(xì)胞系血液腫瘤的療效顯著,其中包括非霍奇金淋巴瘤(Non-Hodgkinlymphoma, NHL)、慢性淋巴細(xì)胞白血病(Chronic lymphocytic leukemia,CLL)、急性淋巴細(xì)胞白血病(Acute lymphoblastic leukemia,ALL),但CAR-T細(xì)胞在實(shí)體瘤治療中仍存在一定挑戰(zhàn)。
圖1 第一、二和三代CAR的結(jié)構(gòu)設(shè)計(jì)
2.2.1 CAR-T細(xì)胞在血液腫瘤中的應(yīng)用
目前,CAR-T療法在治療ALL[22-24]中的療效最好,應(yīng)用也最廣泛,其中靶向CD19的CAR在治療成人和兒童ALL中都取得顯著的療效[25-26],文獻(xiàn)報(bào)道,CD19 CAR-T治療復(fù)發(fā)/難治性ALL的完全緩解率可高達(dá)90%[27]。目前FDA批準(zhǔn)的CD19 CAR-T細(xì)胞藥物分別以CD28或4-1BB為共刺激結(jié)構(gòu)域[28-29]的這兩種CAR-T細(xì)胞各有優(yōu)點(diǎn),共刺激結(jié)構(gòu)域?yàn)镃D28的CAR-T細(xì)胞在反應(yīng)初期增殖更快,能介導(dǎo)更強(qiáng)的腫瘤殺傷能力,但同時(shí)副作用也更強(qiáng),且在免疫反應(yīng)后期的持久性較差;而基于4-1BB的CAR-T細(xì)胞雖然在反應(yīng)初期增殖能力相比CD28 CAR較差,但持續(xù)性更好,在免疫反應(yīng)后期也能維持較高細(xì)胞數(shù)量[30-32]。另外,值得注意的是,CD19 CAR-T細(xì)胞在治療過(guò)程中也存在一些副作用,比如細(xì)胞因子釋放綜合征(Cytokine release syndrome,CRS),神經(jīng)毒性,B細(xì)胞功能缺失,同時(shí)還存在腫瘤復(fù)發(fā)等問(wèn)題[21,33-35]。已有研究表明導(dǎo)致CRS的主要原因是單核細(xì)胞釋放的IL-1和IL-6[36],目前臨床上主要采用耗竭單核細(xì)胞或使用IL-6拮抗劑(托珠單抗,Tocilizumab) 來(lái)降低CRS,也有文獻(xiàn)研究表明改良CAR的跨膜區(qū)和鉸鏈區(qū)結(jié)構(gòu)域可減少細(xì)胞因子釋放[36-40];CAR-T療法造成的神經(jīng)毒性可能是由于巨噬細(xì)胞攻擊腦膜導(dǎo)致腦組織損傷,臨床上常用IL-1抑制劑阿那白滯素(Anakinr,別名Kineret) 來(lái)控制神經(jīng)毒性[36,41];由于正常B細(xì)胞表面也表達(dá)CD19,故CD19 CAR-T細(xì)胞在殺傷腫瘤細(xì)胞的同時(shí)也會(huì)攻擊自身正常的B細(xì)胞,即“on-target,off-tumor”效應(yīng),造成B細(xì)胞功能缺失,目前可通過(guò)定期向患者體內(nèi)輸注免疫球蛋白以彌補(bǔ)B細(xì)胞的功能缺失[42]。盡管針對(duì)CD19抗原的CAR-T療法療效突出,但仍有部分患者易復(fù)發(fā),因此需要尋找新的腫瘤靶點(diǎn)進(jìn)行輔助治療。CD22在大多數(shù)急性淋巴細(xì)胞白血病患者B細(xì)胞較高表達(dá),因此目前臨床上會(huì)對(duì)一些CD19 CAR-T治療后CD19陰性的患者,開(kāi)展針對(duì)CD22抗原的CAR-T治療的臨床試驗(yàn),最新的結(jié)果表明在接受CD22 CAR-T細(xì)胞輔助治療后,73%的患者獲得了完全緩解(Complete remission,CR)[43]。此外,串聯(lián)CD19/CD22 CAR-T目前也已用于臨床試驗(yàn)[44],它可同時(shí)識(shí)別CD19和CD22抗原從而減少抗原逃逸引起的復(fù)發(fā)。
同時(shí),靶向BCMA抗原的CAR-T的初步臨床研究結(jié)果令人鼓舞。BCMA全稱為B細(xì)胞成熟抗原(B cell maturation antigen),呈相對(duì)特異地高表達(dá)于骨髓瘤細(xì)胞表面,因此可作為多發(fā)性骨髓瘤免疫治療的理想靶點(diǎn)。臨床上靶向BCMA 的LCAR-B38M療法對(duì)復(fù)發(fā)/難治性多發(fā)性骨髓瘤晚期患者的療效較理想,總緩解率為88%,其中68%患者完全緩解(CR),但安全性上仍存在以細(xì)胞因子釋放綜合征(CRS) 為主的副作用[45]。
2.2.2 CAR-T療法在治療實(shí)體瘤中的應(yīng)用
CAR-T療法不僅在治療血液腫瘤方面取得了突破,在治療實(shí)體瘤方面也有一定進(jìn)展。目前,在實(shí)體瘤應(yīng)用方面,CAR-T療法靶向的腫瘤抗原大多是高表達(dá)的分化抗原,例如癌胚抗原(Carcinoembryonic antigen,CEA)、前列腺特異性膜抗原(Prostate specific membrane antigen, PSMA)、雙唾液酸神經(jīng)節(jié)苷脂(Disialoganglioside, GD2)、糖鏈抗原-125 (Carbohydrate antigen-125, CA-125)、人類表皮生長(zhǎng)因子受體2 (Human epidermal growth factor receptor-2,Her-2) 和間皮細(xì)胞抗原(Mesothelin) 等。雖然過(guò)表達(dá)的抗原種類多樣,但由于其表達(dá)特異性低,CAR-T細(xì)胞對(duì)低水平表達(dá)抗原的正常細(xì)胞也高度敏感,因此治療中存在on-target/off-tumor的副作用[21]。例如,使用高劑量的Her-2 CAR-T細(xì)胞已導(dǎo)致致命的副作用,其中部分原因是由于該抗原也在健康正常肺上皮和心血管細(xì)胞低表達(dá)[46]。因此,一個(gè)首選的實(shí)體腫瘤抗原靶點(diǎn)就要求其表達(dá)僅限于腫瘤細(xì)胞,或只發(fā)生在非常低水平的非重要正常組織。目前表皮生長(zhǎng)因子受體Ⅲ型突變體(Epidermal growth factor receptor variant type Ⅲ,EGFRvⅢ)、糖鏈抗原15-3 (Carbohydrate antigen 15-3,CA 15-3)和硫酸軟骨素蛋白聚糖4 (Chondroitin sulfate proteoglycan-4,CSPG-4) 分別被認(rèn)為是治療惡性膠質(zhì)瘤、胰腺癌、黑色素瘤較理想的CAR靶點(diǎn)[21]。此外,實(shí)體瘤的腫瘤微環(huán)境(Tumor microenvironment,TME) 也會(huì)對(duì)CAR-T細(xì)胞的功能產(chǎn)生抑制作用。首先,腫瘤細(xì)胞的無(wú)氧糖酵解途徑使其所處的TME呈現(xiàn)出缺氧、酸性、低營(yíng)養(yǎng)成分的特點(diǎn)而不利于T細(xì)胞存活[47-49]。其次腫瘤細(xì)胞表面表達(dá)PD-L1、MHCⅡ、Gal9等配體與T細(xì)胞上的PD1、LAG-3、TIM-3等受體結(jié)合,激活T細(xì)胞上的抑制性信號(hào)通路抑制T細(xì)胞功能[50]。腫瘤微環(huán)境中的腫瘤細(xì)胞和腫瘤相關(guān)細(xì)胞如腫瘤相關(guān)成纖維細(xì)胞(Cancer-associated fibroblast,CAF)、調(diào)節(jié)性T細(xì)胞(Regulatory T cell,Treg) 等則會(huì)分泌抑制性的細(xì)胞因子,如血管內(nèi)皮生長(zhǎng)因子(Vascular endothelial growth factor,VEGF)、轉(zhuǎn)化生長(zhǎng)因子β (TGF-β),或者通過(guò)產(chǎn)生活性氧(ROS)、前列腺素E2 (PGE2) 和乳酸等抑制T細(xì)胞的免疫應(yīng)答[51-53]。因此,CAR-T療法在實(shí)體瘤中的應(yīng)用還需要克服TME的抑制信號(hào),增強(qiáng)CAR-T細(xì)胞的腫瘤識(shí)別能力、浸潤(rùn)能力和持久性并避免脫靶效應(yīng)[21]。目前已有一些應(yīng)對(duì)策略,可能會(huì)對(duì)CAR-T細(xì)胞在復(fù)雜的腫瘤微環(huán)境中發(fā)揮作用提供幫助,比如局部給藥,或使用分泌IL-12的“武裝CAR”、NK細(xì)胞受體CAR等[54-60]。
為了克服免疫抑制(包括阻斷檢查點(diǎn)、抑制調(diào)節(jié)性T細(xì)胞和其他髓系細(xì)胞),降低on-target/ off-tumor毒性,提高CAR-T細(xì)胞的抗腫瘤療效,目前正在探索促進(jìn)CAR-T細(xì)胞的浸潤(rùn)、增強(qiáng)CAR-T細(xì)胞的功能持久性的多種方法,其中CAR的設(shè)計(jì)與合成生物學(xué)技術(shù)的結(jié)合為設(shè)計(jì)安全 性更高、功能更強(qiáng)的CAR-T細(xì)胞提供了更多可能性。
2.3.1 控制CAR-T細(xì)胞的毒性和活性
目前臨床上使用的CAR-T療法所帶來(lái)的器官毒性、脫靶毒性等問(wèn)題亟待解決,已有報(bào)道表明嚴(yán)重CRS和腦水腫可引起治療相關(guān)死亡。合成生物學(xué)的發(fā)展為更好地調(diào)控人體內(nèi)的CAR-T細(xì)胞提供了新的思路。其中一種策略是通過(guò)小分子藥物來(lái)控制CAR-T細(xì)胞自凋亡或抗原抗體結(jié)合來(lái)降低CAR-T細(xì)胞治療過(guò)程中的毒性反應(yīng)。其具體設(shè)計(jì)有以下幾種方法:其一,在CAR-T細(xì)胞內(nèi)加入相應(yīng)的信號(hào)蛋白作為分子開(kāi)關(guān),實(shí)現(xiàn)對(duì)T細(xì)胞可逆調(diào)控[61]或“自殺”基因如單純皰疹病毒胸苷激酶(HSV-TK) 基因,一旦CAR-T細(xì)胞在患者體內(nèi)發(fā)生不良反應(yīng),通過(guò)施加藥物介導(dǎo)T細(xì)胞的自殺基因激活誘導(dǎo)CAR-T細(xì)胞凋亡[62-63]。其二,利用小分子藥物,如AP1903二聚化誘導(dǎo)型Caspase 9 (iCasp9) 激活T細(xì)胞的自殺開(kāi)關(guān),誘導(dǎo)其發(fā)生凋亡終止CAR-T細(xì)胞發(fā)揮作用。其三,某些小分子藥物能夠通過(guò)介導(dǎo)腫瘤抗原和CAR之間的結(jié)合來(lái)調(diào)節(jié)CAR-T細(xì)胞識(shí)別腫瘤抗原的能力。最后,將CAR的scFv與信號(hào)轉(zhuǎn)導(dǎo)結(jié)構(gòu)域分隔開(kāi),兩者之間依靠小分子二聚化的可逆結(jié)合得以更靈活地調(diào)控CAR-T細(xì)胞的功能[64-65]。
2.3.2 增強(qiáng)CAR-T細(xì)胞腫瘤識(shí)別的特異性
利用合成生物學(xué)制備多靶點(diǎn)CAR或Boolean logic-gated CAR,用于識(shí)別一種或兩種腫瘤抗原的方式來(lái)增強(qiáng)工程化的CAR-T細(xì)胞識(shí)別腫瘤抗原的能力,比如合成Notch (synNotch) 受體、嵌合共刺激受體(CCR)、抑制性嵌合抗原受體(iCAR) 等。其中SynNotch受體是一種精確識(shí)別腫瘤抗原的設(shè)計(jì),該策略利用Notch受體獨(dú)特的信號(hào)傳導(dǎo)機(jī)制,即抗原A特異性的synNotch在結(jié)合了腫瘤抗原A之后,轉(zhuǎn)錄因子被切割激活,進(jìn)而轉(zhuǎn)運(yùn)到細(xì)胞核引起了抗原B特異性的CAR的表達(dá),最終與腫瘤表面的抗原B結(jié)合,T細(xì)胞被激活[66-68](圖2A)。此外,synNotch受體系統(tǒng)還具有整合多個(gè)細(xì)胞外信號(hào)的潛能[69]。CCR是將用于T細(xì)胞活化的一代CAR和用于共刺激的CCR組合到一起,只有當(dāng)兩種抗原同時(shí)存在于腫瘤細(xì)胞表面時(shí),CAR-T細(xì)胞才能激活并介導(dǎo)腫瘤殺傷(圖2B)。這樣的設(shè)計(jì)增強(qiáng)了CAR-T細(xì)胞識(shí)別腫瘤細(xì)胞抗原的特異性,減輕副作用[70]。SynNotch受體和CCR的識(shí)別邏輯都是“AND gate”。另一種策略則是將識(shí)別不同腫瘤抗原的scFv串聯(lián)在一起,只要腫瘤細(xì)胞表達(dá)其中一個(gè)抗原[71],就能活化T細(xì)胞介導(dǎo)腫瘤殺傷(圖2C),即“OR gate”?;贑TLA-4和PD-1的iCAR通過(guò)識(shí)別正常細(xì)胞表面的抗原來(lái)發(fā)揮作用[72],是一種“AND OR NOT gate”,CAR-T細(xì)胞一旦識(shí)別在正常細(xì)胞表面的抗原,就會(huì)傳遞抑制信號(hào)抑制T細(xì)胞的活化,因此可有效預(yù)防CAR-T細(xì)胞對(duì)正常細(xì)胞的不良反應(yīng)(圖2D)。SUPRA (Split,universal and programmable) CARs則整合了以上3種腫瘤識(shí)別邏輯[71,73-75],這是一種通用型的CAR,該策略是將CAR分成兩個(gè)部分Zip CAR (不含scFv) 和Zip Fv (不含信號(hào)轉(zhuǎn)導(dǎo)結(jié)構(gòu)域),二者能通過(guò)匹配的亮氨酸拉鏈結(jié)合以形成完整的CAR,且可通過(guò)使用不同組合的抗原靶向部分控制對(duì)腫瘤抗原的識(shí)別能力[74],SUPRA CAR的開(kāi)發(fā)表明多個(gè)高級(jí)邏輯識(shí)別抗原功能可在單個(gè)集成系統(tǒng)中實(shí)現(xiàn)(圖2E)。
圖2 運(yùn)用合成生物學(xué)設(shè)計(jì)的新型CARs
目前,對(duì)這些CAR的研究還處在初級(jí)階段,在向臨床研究轉(zhuǎn)化的過(guò)程中,還存在許多困難和挑戰(zhàn)等待研究者去克服。
腫瘤免疫治療于2013年被雜志評(píng)為十大科技突破之首,其中CAR-T作為具有抗原靶向性且有一定持久性的“活細(xì)胞藥物”,可重編程T 細(xì)胞的效應(yīng)和分化等功能,在接觸抗原后增殖并發(fā)揮抗腫瘤作用,尤其是CAR-T療法在B細(xì)胞血液瘤中取得了突破,給復(fù)發(fā)/難治性白血病及淋巴瘤患者帶來(lái)了希望[26-27]。但腫瘤微環(huán)境的免疫抑制[76]、抗原表達(dá)缺失或下調(diào)以及CAR-T細(xì)胞持久性不足等導(dǎo)致仍有患者復(fù)發(fā)。此外,初步臨床結(jié)果表明CAR-T療法在對(duì)標(biāo)準(zhǔn)治療有耐藥性的多發(fā)性骨髓瘤治療中取得重大進(jìn)展[45]。雖然CAR-T在實(shí)體瘤治療上仍缺乏重大突破,但綜合目前CAR-T治療在臨床以及以下各個(gè)相關(guān)領(lǐng)域的進(jìn)展,不可否認(rèn)的是CAR-T療法具有廣闊前景:1) 隨著基因編輯技術(shù)和合成生物學(xué)的發(fā)展,CAR結(jié)構(gòu)的設(shè)計(jì)更具靈活性和多元化。2) 已有研究表明敲除T細(xì)胞受體的同時(shí)將CAR插入T細(xì)胞受體位點(diǎn)可延遲T細(xì)胞耗竭從而增強(qiáng)抗癌作用,這為未來(lái)CAR-T設(shè)計(jì)提供重要思路[44]。3) 選擇最優(yōu)的T細(xì)胞亞群,如調(diào)整CD4/CD8 T細(xì)胞比率和初始T細(xì)胞/效應(yīng)T細(xì)胞比率用于CAR治療,將進(jìn)一步提高CAR治療的療效和安全性[21]。4) 此外,初步臨床結(jié)果表明CAR-T治療與PD-1/PD-L1抑制劑聯(lián)用,或兩個(gè)不同靶點(diǎn)的CAR-T聯(lián)用在淋巴瘤治療上有較好成效[21,77-78]。5) 為了使CAR-T細(xì)胞治療成為更普遍的治療手段,已經(jīng)出現(xiàn)了“通用型”CAR-T細(xì)胞,并在機(jī)體表現(xiàn)出很強(qiáng)免疫抑制的B-ALL患兒中取得了成功[79]。開(kāi)發(fā)出具有更優(yōu)性能的“通用型”CAR-T細(xì)胞,重點(diǎn)是避免機(jī)體和T細(xì)胞的相互排斥,因此通過(guò)使用基因編輯技術(shù)沉默基因、Ⅰ類基因的同種異體T細(xì)胞,不僅能有效消除可能造成的GVHD[76],經(jīng)過(guò)改造后,在患者急需治療時(shí)能提供大量可用的現(xiàn)成CAR-T細(xì)胞,這對(duì)臨床治療具有重要意義。6) 對(duì)腫瘤發(fā)病、復(fù)發(fā)機(jī)制以及對(duì)T細(xì)胞和CAR-T細(xì)胞功能機(jī)制的知識(shí)體系的擴(kuò)展和更新也為CAR-T治療提供深厚的理論基礎(chǔ)。隨著CAR-T基礎(chǔ)研究與臨床實(shí)踐的不斷深入,CAR-T細(xì)胞必將在腫瘤生物細(xì)胞免疫治療中發(fā)揮越來(lái)越重要的作用。
[1] Fischbach MA, Bluestone JA, Lim WA. Cell-based therapeutics: the next pillar of medicine. Sci Transl Med, 2013, 5(179): 179ps7.
[2] Couri CEB, Voltarelli JC. Stem cell therapy for type 1 diabetes mellitus: a review of recent clinical trials. Diabetol Metab Syndr, 2009, 1: 19.
[3] Eom YW, Shim KY, Baik SK. Mesenchymal stem cell therapy for liver fibrosis. Korean J Intern Med, 2015, 30(5): 580–589.
[4] Nguyen PK, Rhee JW, Wu JC. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol, 2016, 1(7): 831–841.
[5] Shroff G, Dhanda Titus J, Shroff R. A review of the emerging potential therapy for neurological disorders: human embryonic stem cell therapy. Am J Stem Cells, 2017, 6(1): 1–12.
[6] Zhang Z, Fu JL, Xu XS, et al. Safety and immunological responses to human mesenchymal stem cell therapy in difficult-to-treat HIV-1-infected patients. AIDS, 2013, 27(8): 1283–1293.
[7] Ikeda H. T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells. International Immunol, 2016, 28(7): 349–353.
[8] Rezvani K, Rouce R, Liu EL, et al. Engineering natural killer cells for cancer immunotherapy. Mol Ther, 2017, 25(8): 1769–1781.
[9] Roncarolo MG, Battaglia M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol, 2007, 7(8): 585–598.
[10] Mttchison NA, Dube OL. Studies on the immunological response to foreign tumor transplants in the mouse. II. The relation between hemagglutinating antibody and graft resistance in the normal mouse and mice pretreated with tissue preparations. J Exp Med, 1955, 102(2): 179–197.
[11] Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. New Engl J Med, 1988, 319(25): 1676–1680.
[12] Greenberg PD. Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol, 1991, 49: 281–355.
[13] Melief CJM. Tumor eradication by adoptive transfer of cytototic T lymphocytes. Adv Cancer Res, 1992, 58: 143–175.
[14] Old LJ. Tumor immunology: the first century. Curr Opin Immunol, 1992, 4(5): 603–607.
[15] Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature, 2017, 545(7655): 423–431.
[16] Thistlethwaite FC, Gilham DE, Guest RD, et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother, 2017, 66(11): 1425–1436.
[17] Ghobadi A. Chimeric antigen receptor T cell therapy for non-Hodgkin lymphoma. Curr Res Transl Med, 2018, 66(2): 43–49.
[18] Carpenito C, Milone MC, Hassan R, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA, 2009, 106(9): 3360–3365.
[19] Wang JJ, Jensen M, Lin YK, et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther, 2007, 18(8): 712–725.
[20] Pulè MA, Straathof KC, Dotti G, et al. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther, 2005, 12(5): 933–941.
[21] Sadelain M. Chimeric antigen receptors: a paradigm shift in immunotherapy. Annu Rev Canc Biol, 2017, 1: 447–466.
[22] Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med, 2013, 5(177): 177ra38.
[23] Davila ML, Riviere I, Wang XY, et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med, 2014, 6(224): 224ra25.
[24] Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet, 2015, 385(9967): 517–528.
[25] Gardner RA, Finney O, Annesley C, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood, 2017, 129(25): 3322–3331.
[26] Sadelain M. CAR therapy: the CD19 paradigm. J Clin Invest, 2015, 125(9): 3392–3400.
[27] Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. New Engl J Med, 2014, 371(16): 1507–1517.
[28] Forsberg MH, Das A, Saha K, et al. The potential of CAR T therapy for relapsed or refractory pediatric and young adult B-cell ALL. Ther Clin Risk Manag, 2018, 14: 1573–1584.
[29] Hombach AA, Holzinger A, Abken H. The weal and woe of costimulation in the adoptive therapy of cancer with chimeric antigen receptor (CAR)-redirected T cells. Curr Mol Med, 2013, 13(7): 1079–1088.
[30] Salter AI, Ivey RG, Kennedy JJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal, 2018, 11(544): eaat6753.
[31] Maloney DG. Anti-CD19 CAR T cell therapy for lymphoma-off to the races!. Nat Rev Clin Oncol, 2019, 16(5): 279–280.
[32] Kawalekar OU, Posey AD Jr, Fraietta J, et al. Distinct signaling by chimeric antigen receptors (CARs) containing CD28 signaling domain versus 4–1BB in primary human T cells. Blood, 2013, 122(21): 2902.
[33] Bonifant CL, Jackson HJ, Brentjens RJ, et al. Toxicity and management in CAR T-cell therapy. Mol Ther-Oncolytics, 2016, 3: 16011.
[34] Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med, 2015, 7(303): 303ra139.
[35] Maude SL, Barrett D, Teachey DT, et al. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J, 2014, 20(2): 119–122.
[36] Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med, 2018, 24(6): 739–748.
[37] Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. New Engl J Med, 2018, 378(5): 439–448.
[38] Turtle CJ, Hanafi LA, Berger C, et al. CD19 CAR-T cells of defined CD4+: CD8+composition in adult B cell ALL patients. J Clin Invest, 2016, 126(6): 2123–2138.
[39] Park JH, Riviere I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. New Engl J Med, 2018, 378(5): 449–459.
[40] Ying ZT, Huang XF, Xiang XY, et al. A safe and potent anti-CD19 CAR T cell therapy. Nat Med, 2019, 25(6): 947–953.
[41] Fox E, Jayaprakash N, Pham TH, et al. The serum and cerebrospinal fluid pharmacokinetics of anakinra after intravenous administration to non-human primates. J Neuroimmunol, 2010, 223(1/2): 138–140.
[42] Tasian SK, Gardner RA. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Ther Adv Hematol, 2015, 6(5): 228–241.
[43] Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med, 2018, 24(1): 20–28.
[44] Schneider D, Xiong Y, Wu DR, et al. A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. J Immunother Cancer, 2017, 5: 42.
[45] Zhao WH, Liu J, Wang BY, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol, 2018, 11: 141.
[46] Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther, 2010, 18(4): 843–851.
[47] Hirata E, Sahai E. Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harb Perspect Med, 2017, 7(7): a026781.
[48] Newick K, O’brien S, Moon E, et al. CAR T cell therapy for solid tumors. Annu Rev Med, 2017, 68: 139–152.
[49] Renner K, Singer K, Koehl GE, et al. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol, 2017, 8: 248.
[50] Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol, 2015, 15(8): 486–499.
[51] Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol, 2019, 10: 128.
[52] Morrot A, Da Fonseca LM, Salustiano EJ, et al. Metabolic symbiosis and immunomodulation: how tumor cell-derived lactate may disturb innate and adaptive immune responses. Front Oncol, 2018, 8: 81.
[53] Ohta A. A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol, 2016, 7: 109.
[54] Mardiana S, Solomon BJ, Darcy PK, et al. Supercharging adoptive T cell therapy to overcome solid tumor-induced immunosuppression. Sci Transl Med, 2019, 11(495): eaaw2293.
[55] Hinrichs CS, Restifo NP. Reassessing target antigens for adoptive T-cell therapy. Nat Biotechnol, 2013, 31(11): 999–1008.
[56] Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med, 2016, 22(1): 26–36.
[57] Morello A, Sadelain M, Adusumilli PS. Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov, 2016, 6(2): 133–146.
[58] Moon EK, Carpenito C, Sun J, et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res, 2011, 17(14): 4719–4730.
[59] Chmielewski M, Kopecky C, Hombach AA, et al. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res, 2011, 71(17): 5697–5706.
[60] Spear P, Barber A, Rynda-Apple A, et al. NKG2D CAR T-cell therapy inhibits the growth of NKG2D ligand heterogeneous tumors. Immunol Cell Biol, 2013, 91(6): 435–440.
[61] Wei P, Wong WW, Park JS, et al. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature, 2012, 488(7411): 384–388.
[62] Bonini C, Ferrari G, Verzeletti S, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science, 1997, 276(5319): 1719–1724.
[63] Tiberghien P, Reynolds CW, Keller J, et al. Ganciclovir treatment of herpes simplex thymidine kinase-transduced primary T lymphocytes: an approach for specificdonor T-cell depletion after bone marrow transplantation? Blood, 1994, 84(4): 1333–1341.
[64] Sun J, Sadelain M. The quest for spatio-temporal control of CAR T cells. Cell Res, 2015, 25(12): 1281–1282.
[65] Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science, 2015, 350(6258): aab4077.
[66] Gordon WR, Zimmerman B, He L, et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of notch. Dev Cell, 2015, 33(6): 729–736.
[67] Morsut L, Roybal KT, Xiong X, et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell, 2016, 164(4): 780–791.
[68] Roybal KT, Rupp LJ, Morsut L, et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell, 2016, 164(4): 770–779.
[69] Themeli M, Sadelain M. Combinatorial antigen targeting: ideal T-cell sensing and anti-tumor response. Trends Mol Med, 2016, 22(4): 271–273.
[70] Kloss CC, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol, 2013, 31(1): 71–75.
[71] Wu MR, Jusiak B, Lu TK. Engineering advanced cancer therapies with synthetic biology. Nat Rev Cancer, 2019, 19(4): 187–195.
[72] Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med, 2013, 5(215): 215ra172.
[73] Chen YY. Increasing T cell versatility with SUPRA CARs. Cell, 2018, 173(6): 1316–1317.
[74] Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell, 2018, 173(6): 1426–1438.
[75] Chopane A, Gupta S, Ajit A, et al. Design and analysis of plastic gears in rack and pinion steering system for formula supra car. Mater Today-Proc, 2018, 5(2): 5154–5164.
[76] Scarfò I, Maus MV. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J Immunother Cancer, 2017, 5(1): 28.
[77] Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382): 1350–1355.
[78] Otahál P, Pr?ková D, Král V, et al. Lenalidomide enhances antitumor functions of chimeric antigen receptor modified T cells. Oncoimmunology, 2016, 5(4): e1115940.
[79] June CH, Sadelain M. Chimeric antigen receptor therapy. New Engl J Med, 2018, 379(1): 64–73.
Cell therapy’s poster child: Chimeric antigen receptor T cell therapy
Liling Qian1, Jiangqing Chen1, Xiaoyan Wu1, Ruirui Jing1, and Jie Sun1,2
1 Bone Marrow Transplantation Center of the First Affiliated Hospital, and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China 2 Institute of Hematology, Zhejiang University& Laboratory of Stem Cell and Immunotherapy Engineering, Hangzhou 310058, Zhejiang, China
Chimeric antigen receptor T (CAR-T) cell therapy, which adoptively transfers engineered T cells expressing synthetic receptors to target specific antigens, has achieved great clinical success in treating hematological malignancies. Though FDA has approved two CAR-T products, CAR-T therapy can cause some side effects, such as cytokine release syndrome (CRS), neurotoxicity and B cell aplasia. Meanwhile, lacking tumor specific antigen and the suppressive tumor environment limit the efficacy of CAR-T therapy in solid tumor. This review focuses on the structural components, clinical applications and synthetic biology approaches on CAR-T cell design, and summarizes the challenges and perspectives of CAR-T therapy as a revolutionary cancer immunotherapy.
cell therapy, immunotherapy, chimeric antigen receptor T cell, synthetic biology
July 1, 2019;
September 4, 2019
s:Jie Sun. Tel: +86-571-88208509; Fax: +86-571-88208094; E-mail: sunj4@zju.edu.cn
2019-10-10
http://kns.cnki.net/kcms/detail/11.1998.Q.20191010.0940.003.html
錢麗玲, 陳蔣慶, 吳曉燕, 等. 細(xì)胞治療的典范:嵌合抗原受體T細(xì)胞療法. 生物工程學(xué)報(bào), 2019, 35(12): 2339–2349.
Qian LL, Chen JQ, Wu XY, et al. Cell therapy’s poster child: Chimeric antigen receptor T cell therapy. Chin J Biotech, 2019, 35(12): 2339–2349.
(本文責(zé)編 陳宏宇)