• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The category of upper bounded bifinite posets

    2019-12-26 09:51:30LiJiboChenYanchangZhangHaixia

    Li Jibo,Chen Yanchang,Zhang Haixia

    (1.School of Mathematics and Statistics,Anyang Normal University,Anyang 455000,China;2.College of Mathematics and Information Science,He′nan Normal University,Xinxiang 453007,China)

    Abstract:In this paper,some results about D-precontinuous or D-prealgebraic posets and D△-continuous functions are summarized and supplemented.The category BFBP,in which objects are upper bounded bifinite posets and arrows are D△-continuous functions between them,is shown to be cartesian closed.

    Keywords: D-precontinuous posets,D-prealgebraic posets,D△-continuous functions,Cartesian closed categories

    1 Introduction

    The study of cartesian closed categories has received considerable attention in the study of domain theory.Related issues were dealt with in reference[1-8].Because the category DOM of domains and Scott continuous maps is not cartesian closed,many researchers looked for full subcategories of DOM,and in particular for maximal ones.References[2-3]successfully identified all maximal cartesian closed full subcategories of DOM.Among the maximal ones is the category of FS-domains.Later,the category of bifinite domains is considered in reference[9].

    Classically,domain theory is based on the investigation ofdcpos in which every directed set has a least upper bound.However,there are important ordered structures which fail to be dcpos and more and more occasions to study posets which are not directed complete.To get rid of the restriction to directed sets,in references[10-11]generalized the concept of FS-domains and bifinite domains to the FS-posets and B-posets,respectively.Some elementary results about FS-posets,B-posets and relevant categories have been obtained in reference[10].In reference[12],the authors introduced the concept of finitely separated and upper bounded posets and proved that the category FSBP is cartesian closed in which objects are finitely separated and upper bounded posets,and arrows areD△-continuous functions between them.To make the study deeper,in this paper,some results aboutD-precontinuous orD-prealgebraic posets andD△-continuous functions are summarized and supplemented.The category BFBP is shown to be cartesian closed,in which objects are upper bounded bifinite posets and arrows areD△-continuous functions(or,Scott continuous functions by Proposition 2.1)between them.

    2 Preliminaries

    LetPbe a poset andYa subset ofP.We denote the set{x∈P|?y∈Y,x≤y}by↓Y,and the set↑Yis defined dually.IfY=↓Y,thenYis called a downset or lower set;the dual is an upset or upper set.In particular,the set↓x=↓{x}(resp.,↑x=↑{x})is called the principal ideal(resp.,principal dual ideal)generated by the elementx.The cut operator△onPis defined by△Y=∩{↓x|x∈P,Y?↓x}for everyY?P.

    For a posetP,letAPdenote the collection of all lower subsets ofPandDPthe collection of all directed subsets ofP.The cut operator△gives rise to a standard completionD△PofP:D△P={Y∈AP|D∈DPandD?Yimply△D?Y}.Note that△X∈D△Pfor everyX?P.TheD-below ideal generated by an elementy∈Pis the set?Dy=∩{D∈DP∩AP|y∈△D}.Forx,y∈P,we writex?Dyifx∈?Dy,that is,D∈DPandy∈△Dimplyx∈↓D.Obviously,theD-below relation is an auxiliary relation in the sense of[1].An elementx∈Psatisfyingx?Dxis calledD-compact.The subset of allD-compact elements is denoted byKDP.A posetPis calledD-precontinuous if?Dy∈DPandy=∨?Dyfor eachy∈P.If↓y∩KDP∈DPandy= ∨(↓y∩KDP)for everyy∈P,thenPis said to beD-prealgebraic.It is clear that everyD-prealgebraic poset isD-precontinuous.

    Lemma 2.1A posetPisD-precontinuous provid∨ed that,for everyy,one can find a directed setDof elementsd?Dysuch thaty=D.

    ProofLetu?Dy,v?Dy.Thenu≤duandv≤dvfor somedu,dv∈D.Pickd∈Dsuch thatdu≤danddv≤d.Thenu≤d,v≤dandd?Dy.Thus?Dyis directed.Sincey= ∨Dand any upper bound of?Dyis an upper bound ofD,we know thaty=∨?Dy.The remaining part of the statement is easy.

    Let us note that aD-precontinuous(resp.,D-prealgebraic)dcpo is just a domain(resp.,algebraic domain),but aD-precontinuous(resp.,D-prealgebraic)poset is not the same thing as a continuous(resp.,algebraic)poset in the sense of[1],for example,the Euclidean plane R2under the usual order is a continuous poset,but it is not aD-precontinuous poset and the poset Z2under the usual order is an algebraic poset,but it is not aD-prealgebraic poset.

    Turn to certain classes of functions between two posets.Letfbe a function between posetsPandQ.The functionfis calledD△-continuous iff?1(Y)∈D△Pfor allY∈D△Q,and weaklyD△-continuous if at leastf?1(↓x)∈D△Pfor allx∈Q.

    Proposition 2.1[12-13]For a functionfbetween posetsPandQ,consider the following conditions:

    (1)fisD△-continuous;

    (2)fis weaklyD△-continuous;

    (3)f(△D)?△f(D)for eachD∈DP;

    (4)f(∨D)= ∨f(D)for everyD∈DPwhich has a join inP.

    The implications(1)?(2)?(3)?(4)are true,and(3)?(4)holds ifPisD-prealgebraic.

    Proposition 2.2LetSbe aD-precontinuous poset andp:S→SaD△-continuous projection.Then the imagep(S)with the order induced fromSis aD-precontinuous poset,too.Forx,y∈p(S),

    ProofLety∈p(S)be given.AsSisD-precontinuous,the setis directed and∨.SincepisD△-continuous,we know from Proposition 2.1 that it preserves directed joins,whenceis directed and.Asy∈p(S),we havep(y)=y.In accordance with Lemma 2.1,for theD-precontinuity ofp(S),it suffices to prove thatp(u)wheneveru.For this,letube an element ofSsuch thatu.Consider any directed subsetD?p(S)such thaty∈△D.Asu,we can find ad∈Dsuch thatu≤d.Thenp(u)≤p(d)=dby the monotonicity and idempotency ofp.This shows thatp(u).For the second part of the claim,letx,y∈p(S)such thatx.Asby the above,there is au∈Swithusuch thatx≤p(u).The converse has already been shown in the first part of the proof.

    Proposition 2.3LetPbe a poset andS=δ(P)the image of aD△-continuous kernel operatorδ:P→P.Then an elementx∈SisD-compact inSi ffxisD-compact inP,that isKD(S)=S∩KD(P).

    ProofAs in the proof of Proposition 2.2,we see that for an elementx∈S,xisD-compact inSwhen it isD-compact inP.For the converse,letx∈SbeD-compact inS.Consider any directed subsetD?Psuch thatx∈△D.Under the hypothesis thatδ:P→Pis aD△-continuous kernel operator,we getδ(D)is a directed subset ofSandx=δ(x)∈δ(△D)?△δ(D).AsxisD-compact inS,there exists ad∈Dsuch thatx≤k(d).Sinceδis a kernel operator,we havex≤d.This shows thatxisD-compact inP.

    Henceforth,we restrict our considerations to upper bounded posets,which guarantees that in directed productsR×S,the cut operator satisfies△(Y1×Y2)=△Y1×△Y2forY1?RandY2?S.Generally speaking,this equation is false,as is shown in the Euclidean plane R2.

    LetS,Tbe posets and denote theD△-continuous function space by[S→T]Dor simply by[S→T].Forf,g∈[S→T],we definef≤gi fff(x)≤g(x)for eachx∈S.Then[S→T]is a poset.

    Lemma 2.2[12]GivenD△-continuous mapsδ∈[R→R]andε∈[S→S]on upper bounded posets.Then the mapδ×ε:R×S→R×S,(r,s)7→(δ(r),ε(s))is againD△-continuous.

    Proposition 2.4[12]LetR,Sbe upper bounded posets,then the evaluation mape:[R→S]×R→S,(f,r)7→f(r)isD△-continuous.

    Proposition 2.5[12]LetRbe an arbitrary poset andS,Tbe upper bounded posets,then the composition mapc:[S→T]×[R→S]→[R→T],(f,g)7→f?gisD△-continuous.

    Proposition 2.6[12]LetR,S,Tbe upper bounded posets,and defineE,Fby

    Then the bijectionsEandFinduce mutually inverse isomorphisms between the upper bounded posets[(R×S)→T]and[R→[S→T]].

    3 The category upper bounded bifinite posets

    Recall that for a posetS,a△-approximate identity is a directed setD?[S→S]satisfying ∨D=idS,the identity onS.AD△-continuous functionδ:S→Sis finitely separating if there exists a finite setFδ?Ssuch that for eachx∈S,there is ay∈Fδwithδ(x)≤y≤x.A posetSis finitely separated if there is a△-approximate identity forSconsisting of finitely separating functions.

    Lemma 3.1[12]LetPbe a poset.Ifδ∈[P→P]is finitely separating,thenδ(x)?Dxfor allx∈P.

    Definition 3.1AD-prealgebraic finitely separated poset is called a bifinite poset.A bifinite upper bounded poset will be called a BFB-poset.

    Proposition 3.1For an upper bounded posetP,the following properties are equivalent.

    (1)Pis a bifinite poset;

    (2)Pis aD-prealgebraic poset and has a△-approximate identity consisting of functions with finite range;

    (3)Phas a△-approximate identity consisting of kernel operators with finite range.

    ProofThe implication(2)?(1)is immediate.For the implication(3)?(2),it suffices to show that(3)implies thatPisD-prealgebraic.For this,letDbe a directed set ofD△-continuous kernel operators with finite range such that∨D=idP.Then the setS={δ(x)|δ∈D}is directed.The greatest element ofPis denoted by 1P.Next,we will show that the join of the setSexists and isx.It is very clear thatxis an upper bound ofS.Suppose thatuis an arbitrary upper bound ofS.Define a maph:P→Pas follows:

    Thenhis well defined.It is clear thathisD△-continuous andδ≤hfor everyδ∈D.Thus∨D≤hin[P→P].As∨D=idP,we havex=(∨D)(x)≤h(x)=u.This shows thatx= ∨S.As the imageim δ={δ(x)|x∈P}ofδ∈Dis finite,all of its elements areD-compact in the finite posetim δ.From Proposition 2.3,it follows that all the elements ofim δareD-compact inP.Thus,everyx∈Pis the join of a directed set ofD-compact elements and we have shown thatPisD-prealgebraic.

    Now establish that(1)implies(3).LetDbe a△-approximate identity onPsuch that eachδ∈Dis finitely separating.For eachδ∈D,setGδ={k∈P|δ(k)=k}.Note that it must be the case thatGδ?Fδ,which is the finite separating set,and hence,Gδis finite.Moreover,all elements ofGδareD-compact by Lemma 3.1.

    We claim that for eachx∈P,there exists a largest member ofGδin↓x.In fact,we can pick a minimal elementzof↓x∩Fδsince↓x∩Fδis a nonempty finite set under the hypothesis thatδis finitely separating.Then there exists a member ofFδbetweenδ(z)andδ(δ(z)),and this must bezby minimality ofz.It follows thatz=δ(z).Thus↓x∩Gδ?.

    Letk1,k2∈↓x∩Gδ.Thenki=δ(ki)≤δ(x)fori=1,2.There existsy∈Fδsuch thatδ(x)≤y≤x,and thuski≤y≤xfori=1,2.Pick a minimal elementk∈↓x∩Fδsuch thatki≤kfori=1,2.Thenki=δ(δ(ki))≤δ(δ(k))≤δ(k)fori=1,2.Asδis finitely separating,there must be an element ofFδbetweenδ(δ(k))andδ(k),and this element must be equal tokby minimality ofk.It follows thatδ(k)=k.Thus the finite set↓x∩Gδis directed,and hence,it must have a largest element.

    Forδ∈D,defining a functionkδbykδ(x)is the largest compact elementk≤xsuch thatδ(k)=k.The preceding paragraphs guarantee the existence of such a function.One verifies easily thatkδis aD△-continuous kernel operator with finite range.Also the family{kδ|δ∈D}is directed,since asδbecomes larger,the setGδof fixed-points grows.Next,we will show that the join of the family{kδ|δ∈D}exists and it is equal to idP,that is{kδ|δ∈D}is a△-approximate identity.For this,letx∈P.In casex∈KD(P),sinceDis a△-approximate identity,there existsη∈Dsuch thatδ(x)=xfor anyδ≥η,and hence,x=∨{kδ(x)|δ∈D}.In casex/∈KD(P).AsPisD-prealgebraic,we obtainx= ∨(↓x∩KD(P)).From Proposition 2.1,it follows thatkδ(x)= ∨kδ(↓x∩KD(P)).Note that

    Define a functionf:P→Pbyf(x)= ∨{kδ(x)|δ∈D}.ThenfisD△-continuous and hence,∨{kδ|δ∈D}=f=idP.

    Proposition 3.2IfRandSare BFB-posets,thenR×Sand[R→S]are also BFB-posets.

    ProofIt is obvious thatR×Sand[R→S]are upper bounded posets.LetDandEbe△-approximate identity forRandS,respectively,consisting of kernel operators with finite range(see Proposition 3.1(3)).By Lemma 2.2,δ×εisD△-continuous for anyδ∈D,ε∈E.ThenD×E={δ×ε|δ∈D,ε∈E}clearly is a△-approximate identity forR×Sconsisting of functions with finite range andR×SisD-prealgebraic,thusR×Sis a BFB-poset by Proposition 3.1.Next we will show that[R→S]is a BFB-poset.For this,letδ∈Dandε∈E.Define a self-map

    and denoteD⊙E={δ·ε|δ∈D,ε∈E}.Forδ1·ε1andδ2·ε2inD⊙E,there existδ3∈Dandε3∈Esuch thatδ1≤δ3,δ2≤δ3,ε1≤ε3andε2≤ε3.By monotonicity of the involved functions,it follows thatδi·εi≤δ3·ε3fori=1,2.Therefore,D⊙Eis a directed set.

    Iterated application of Proposition 2.5 and related simpler continuity arguments show that the compositeg 7→δ·εisD△-continuous.For eachg∈[R→S],r∈R,we infer

    that is,∨D⊙E=1[S→T].Thus,the familyD⊙Eis a△–approximate identity for[S→T].Asδandεare idempotent,the same follows forδ·εand consequently this is a kernel operator.Its range is finite,as it can be viewed to be the set of all monotone maps from the finite posetim δinto the finite posetim ε.Thus,D⊙Eis a△-approximate identity on[R→S]consisting of kernel operators with finite range,which implies that[R→S]is a BFB-poset.

    Proposition 3.3LetR,S,Tbe BFB-posets,and defineE,Fby

    Then the bijectionsEandFinduce mutually inverse isomorphisms between the BFB-posets[(R×S)→T]and[R→[S→T]].

    ProofThis follows immediately from Proposition 2.6 and Proposition 3.2.

    Now we are ready to study the category BFBP of all BFB-posets andD△-continuous maps between them.Given a BFB-posetS,the preceding results give rise to two functors from the category BFBP to the category SET of sets:

    The product functor?×S:BFBP→SET sends each objectRof BFBP toR×Sand each morphismf:R→R′tof×idS.

    The exponent functor[S→?]:BFBP→SET sends each objectTof BFBP to[S→T]and each morphismf:T→T′tof??:[S→T]→[S→T′].

    Proposition 3.3 indicates that for three objectsR,S,Tin BFBP,the contravariant hom-functorshom(?×S,T)andhom(?,[S→T])from BFBPopto SET are naturally isomorphic,and the hom-functorshom(R×S,?)andhom(R,[S→?])from BFBP to SET are naturally isomorphic,too(refer to reference[13]for background on homfunctors).In all,the following isomorphismEis natural inRandT:

    In fact,leth:R′→Randk:T→T′.Then for anyf:R×S→T,an easy direct computation yieldsE(f?h×idS)=E(f)?handE(k?f)=[S→?](k)?E(f).For the first equality,givenr′∈R′,s∈S,we have:

    For the second equality,givenr∈R,s∈S,we have:

    Summarizing the previous facts,we arrive at

    Theorem 3.1The category BFBP is cartesian closed.

    ProofIn the category BFBP,any singleton poset is a terminal object.Each pair of objectsRandShas a productR×Swith the obvious projectionsp1∈[R×S→R]andp2∈[R×S→S].

    LetR,S,Tbe three objects in the category BFBP.There is an object[R→S]and an arrowe∈[[S→T]×S→T]with the property that for any arrowf:[R×S→T],there is a unique arrowE(f)∈[R→[S→T]]such that the composite

    is justfby Proposition 2.4 and Proposition 3.3.Thus the category BFBP is cartesian closed.

    成人美女网站在线观看视频| 脱女人内裤的视频| 亚洲第一电影网av| 国内精品久久久久久久电影| 午夜福利视频1000在线观看| 亚洲av熟女| 久久6这里有精品| 18美女黄网站色大片免费观看| 国模一区二区三区四区视频| 亚洲av免费高清在线观看| 一级作爱视频免费观看| 又爽又黄无遮挡网站| 欧美高清性xxxxhd video| 午夜久久久久精精品| 亚洲三级黄色毛片| 免费黄网站久久成人精品 | 国产人妻一区二区三区在| 老司机午夜十八禁免费视频| 麻豆av噜噜一区二区三区| av黄色大香蕉| 免费在线观看日本一区| 两性午夜刺激爽爽歪歪视频在线观看| 国产乱人视频| 精品久久久久久久久av| 欧美色视频一区免费| 观看免费一级毛片| 色哟哟哟哟哟哟| 黄色女人牲交| 国产亚洲av嫩草精品影院| 精品99又大又爽又粗少妇毛片 | 成人国产一区最新在线观看| 乱人视频在线观看| 少妇人妻精品综合一区二区 | www.色视频.com| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久视频播放| 国产综合懂色| 伦理电影大哥的女人| www日本黄色视频网| 搡老妇女老女人老熟妇| 欧洲精品卡2卡3卡4卡5卡区| 午夜两性在线视频| 国产黄a三级三级三级人| 一本一本综合久久| 亚洲中文日韩欧美视频| 人人妻,人人澡人人爽秒播| 国产精品三级大全| 99热这里只有是精品在线观看 | 欧美zozozo另类| 老司机午夜福利在线观看视频| 好看av亚洲va欧美ⅴa在| 伦理电影大哥的女人| 老司机深夜福利视频在线观看| 嫩草影院入口| 嫩草影院新地址| 国产精品久久久久久人妻精品电影| 国产黄色小视频在线观看| 嫩草影院入口| 熟女人妻精品中文字幕| 成熟少妇高潮喷水视频| 高潮久久久久久久久久久不卡| 久久久久久久久久成人| 女同久久另类99精品国产91| 婷婷精品国产亚洲av在线| 日韩欧美一区二区三区在线观看| 九九热线精品视视频播放| 日本 欧美在线| 美女 人体艺术 gogo| 久久伊人香网站| 午夜日韩欧美国产| 麻豆成人av在线观看| 亚洲av成人不卡在线观看播放网| 3wmmmm亚洲av在线观看| 国产一区二区激情短视频| 欧美黑人巨大hd| aaaaa片日本免费| 国内久久婷婷六月综合欲色啪| 欧美高清成人免费视频www| 女同久久另类99精品国产91| 无遮挡黄片免费观看| 天堂动漫精品| 岛国在线免费视频观看| 久99久视频精品免费| 最近最新中文字幕大全电影3| 国产成人av教育| 很黄的视频免费| 亚洲欧美激情综合另类| 国产在视频线在精品| 人人妻人人看人人澡| 免费看光身美女| 日本黄大片高清| 国产午夜精品久久久久久一区二区三区 | 亚洲最大成人手机在线| 在线免费观看不下载黄p国产 | 久久人妻av系列| 熟妇人妻久久中文字幕3abv| 日韩人妻高清精品专区| 少妇的逼好多水| 午夜老司机福利剧场| 成年免费大片在线观看| 久久精品国产99精品国产亚洲性色| 成人美女网站在线观看视频| 人妻制服诱惑在线中文字幕| 此物有八面人人有两片| 又粗又爽又猛毛片免费看| 亚洲熟妇熟女久久| 欧美xxxx黑人xx丫x性爽| 国产精品久久电影中文字幕| 亚洲av成人精品一区久久| 日韩国内少妇激情av| 精品人妻1区二区| 国产野战对白在线观看| 99在线人妻在线中文字幕| 丝袜美腿在线中文| 久久99热6这里只有精品| 如何舔出高潮| 色尼玛亚洲综合影院| 一个人看视频在线观看www免费| 999久久久精品免费观看国产| 亚洲专区国产一区二区| 亚洲精品日韩av片在线观看| 亚洲av免费在线观看| 亚洲av第一区精品v没综合| 国产精品嫩草影院av在线观看 | 久久午夜亚洲精品久久| 亚洲精品456在线播放app | 欧美激情国产日韩精品一区| 国产精品综合久久久久久久免费| 高清日韩中文字幕在线| 欧美日韩乱码在线| 可以在线观看的亚洲视频| 国产又黄又爽又无遮挡在线| 亚洲最大成人中文| av天堂在线播放| 亚洲,欧美精品.| 一区二区三区免费毛片| 免费看日本二区| 国产在线男女| 我的老师免费观看完整版| 搡女人真爽免费视频火全软件 | 日本黄大片高清| 一个人免费在线观看的高清视频| 亚洲国产精品久久男人天堂| 亚洲国产欧美人成| 非洲黑人性xxxx精品又粗又长| a级一级毛片免费在线观看| 午夜福利在线在线| 日韩欧美精品免费久久 | 天美传媒精品一区二区| 怎么达到女性高潮| avwww免费| 午夜福利视频1000在线观看| 亚洲,欧美,日韩| 国产精品av视频在线免费观看| 久久久久九九精品影院| 国产伦一二天堂av在线观看| 精品午夜福利在线看| 精品无人区乱码1区二区| 欧美高清成人免费视频www| 欧美三级亚洲精品| 亚洲欧美日韩无卡精品| 国产av麻豆久久久久久久| 国产精品98久久久久久宅男小说| 免费看a级黄色片| 亚州av有码| 一边摸一边抽搐一进一小说| 成人鲁丝片一二三区免费| 国产精品久久电影中文字幕| 69av精品久久久久久| 午夜精品在线福利| 久久精品国产99精品国产亚洲性色| 天堂影院成人在线观看| 国产伦一二天堂av在线观看| 国产一区二区在线观看日韩| 成人无遮挡网站| 蜜桃久久精品国产亚洲av| 波多野结衣巨乳人妻| 99久久九九国产精品国产免费| 2021天堂中文幕一二区在线观| 亚洲av.av天堂| 一个人免费在线观看电影| 色视频www国产| 成人永久免费在线观看视频| 亚洲精品亚洲一区二区| 波多野结衣高清作品| 毛片女人毛片| 国产久久久一区二区三区| av天堂中文字幕网| 天天一区二区日本电影三级| av福利片在线观看| 天堂动漫精品| 中文字幕精品亚洲无线码一区| 天堂网av新在线| 亚洲成人久久性| 亚洲内射少妇av| 亚洲欧美清纯卡通| 国产色爽女视频免费观看| 婷婷亚洲欧美| 深夜a级毛片| 国产黄a三级三级三级人| 嫩草影院入口| 亚洲一区高清亚洲精品| 欧美日韩国产亚洲二区| 亚洲 国产 在线| 亚洲熟妇熟女久久| 成人av在线播放网站| 精品一区二区三区av网在线观看| 亚洲人成网站在线播放欧美日韩| 高清日韩中文字幕在线| 最后的刺客免费高清国语| 成人亚洲精品av一区二区| 伊人久久精品亚洲午夜| 欧美日本亚洲视频在线播放| 久久久久久国产a免费观看| 99精品久久久久人妻精品| 中文字幕久久专区| 12—13女人毛片做爰片一| 欧美黑人欧美精品刺激| 欧美zozozo另类| 精品日产1卡2卡| 国产精品人妻久久久久久| av天堂在线播放| 欧美一区二区亚洲| 老女人水多毛片| 亚洲美女黄片视频| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品合色在线| 国产精品爽爽va在线观看网站| 午夜久久久久精精品| 村上凉子中文字幕在线| 亚洲av免费高清在线观看| 日韩国内少妇激情av| 九色成人免费人妻av| 亚洲精品乱码久久久v下载方式| 欧美+亚洲+日韩+国产| 日韩欧美精品免费久久 | 床上黄色一级片| 成人亚洲精品av一区二区| 网址你懂的国产日韩在线| 91久久精品电影网| 在线观看66精品国产| 午夜免费男女啪啪视频观看 | 一个人免费在线观看电影| 国产美女午夜福利| 成人精品一区二区免费| 神马国产精品三级电影在线观看| av在线天堂中文字幕| 蜜桃亚洲精品一区二区三区| 亚洲无线观看免费| 色在线成人网| 性色av乱码一区二区三区2| 国产精品伦人一区二区| 在线国产一区二区在线| 午夜福利18| 在线观看美女被高潮喷水网站 | 一个人看的www免费观看视频| 丰满的人妻完整版| 给我免费播放毛片高清在线观看| 成人一区二区视频在线观看| 3wmmmm亚洲av在线观看| 中文字幕精品亚洲无线码一区| 一区二区三区激情视频| 一区二区三区免费毛片| 精品福利观看| 最近中文字幕高清免费大全6 | 国产白丝娇喘喷水9色精品| 中文字幕熟女人妻在线| 国产在线男女| 国产一区二区在线av高清观看| 亚洲第一电影网av| 一a级毛片在线观看| 在线免费观看不下载黄p国产 | 九九久久精品国产亚洲av麻豆| 狠狠狠狠99中文字幕| 国产aⅴ精品一区二区三区波| 2021天堂中文幕一二区在线观| 麻豆成人午夜福利视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品成人综合色| 看黄色毛片网站| 欧美黑人欧美精品刺激| 十八禁国产超污无遮挡网站| 精品一区二区免费观看| 精品99又大又爽又粗少妇毛片 | 国产黄色小视频在线观看| 麻豆一二三区av精品| 久久中文看片网| 欧美另类亚洲清纯唯美| 美女免费视频网站| 极品教师在线视频| 无遮挡黄片免费观看| 18禁黄网站禁片午夜丰满| 亚洲成人免费电影在线观看| 一区二区三区免费毛片| 三级男女做爰猛烈吃奶摸视频| 午夜亚洲福利在线播放| 成人永久免费在线观看视频| 深爱激情五月婷婷| 日日摸夜夜添夜夜添av毛片 | 在线免费观看不下载黄p国产 | 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 国内揄拍国产精品人妻在线| 亚洲欧美精品综合久久99| 亚洲精品亚洲一区二区| 99在线视频只有这里精品首页| 国产老妇女一区| 国产精品久久久久久人妻精品电影| 欧美+日韩+精品| 国产三级黄色录像| 国产伦精品一区二区三区四那| 亚洲av免费在线观看| 精品人妻一区二区三区麻豆 | 又黄又爽又免费观看的视频| 欧美成人性av电影在线观看| 老司机深夜福利视频在线观看| 麻豆国产97在线/欧美| 国产在线精品亚洲第一网站| 国产成年人精品一区二区| 国产久久久一区二区三区| 中文字幕av成人在线电影| 午夜免费激情av| 又黄又爽又免费观看的视频| or卡值多少钱| 免费av观看视频| 久久久久久久午夜电影| 脱女人内裤的视频| 美女高潮喷水抽搐中文字幕| 国产大屁股一区二区在线视频| 两个人的视频大全免费| 99在线视频只有这里精品首页| 亚洲国产高清在线一区二区三| 精品久久久久久久末码| 在线观看66精品国产| 啪啪无遮挡十八禁网站| 国产白丝娇喘喷水9色精品| av视频在线观看入口| 亚洲一区二区三区不卡视频| 男女之事视频高清在线观看| 亚洲最大成人中文| 亚洲aⅴ乱码一区二区在线播放| 日韩国内少妇激情av| 一级毛片久久久久久久久女| 两性午夜刺激爽爽歪歪视频在线观看| 一区二区三区四区激情视频 | 一区二区三区免费毛片| 国产精品亚洲一级av第二区| 午夜福利视频1000在线观看| 色哟哟哟哟哟哟| 欧美成狂野欧美在线观看| 一区二区三区激情视频| 1024手机看黄色片| ponron亚洲| 国产人妻一区二区三区在| 亚洲成人久久性| 精品一区二区三区视频在线| 亚洲专区中文字幕在线| 日本撒尿小便嘘嘘汇集6| 久久欧美精品欧美久久欧美| 亚洲成a人片在线一区二区| 午夜免费成人在线视频| 麻豆av噜噜一区二区三区| 最好的美女福利视频网| 久久久国产成人精品二区| 日本五十路高清| 老司机午夜十八禁免费视频| 亚洲欧美日韩无卡精品| 校园春色视频在线观看| 国产蜜桃级精品一区二区三区| 色尼玛亚洲综合影院| 国产精品久久久久久精品电影| 校园春色视频在线观看| 一进一出好大好爽视频| 亚洲av成人精品一区久久| 五月玫瑰六月丁香| 亚洲av中文字字幕乱码综合| 精品久久久久久久久av| 波多野结衣巨乳人妻| 一个人免费在线观看的高清视频| 欧美乱色亚洲激情| 两个人视频免费观看高清| 黄色一级大片看看| 午夜老司机福利剧场| 午夜两性在线视频| 99精品久久久久人妻精品| 日本免费一区二区三区高清不卡| 亚洲人成伊人成综合网2020| 91av网一区二区| 精品日产1卡2卡| 亚洲片人在线观看| 精品久久久久久久久久久久久| 国产精品免费一区二区三区在线| 人妻丰满熟妇av一区二区三区| 少妇的逼好多水| 波多野结衣巨乳人妻| 亚洲性夜色夜夜综合| 特级一级黄色大片| 嫩草影院入口| 身体一侧抽搐| 国产麻豆成人av免费视频| 亚洲精品亚洲一区二区| 欧美中文日本在线观看视频| 久久这里只有精品中国| 国产又黄又爽又无遮挡在线| 波多野结衣高清作品| av黄色大香蕉| 亚洲成人精品中文字幕电影| 狂野欧美白嫩少妇大欣赏| 亚洲av二区三区四区| 最近视频中文字幕2019在线8| 色视频www国产| 国内精品美女久久久久久| 岛国在线免费视频观看| 亚洲欧美日韩高清在线视频| 男人舔女人下体高潮全视频| 欧美xxxx性猛交bbbb| 小说图片视频综合网站| 亚洲av电影在线进入| 十八禁国产超污无遮挡网站| 精品久久久久久久久亚洲 | 国产69精品久久久久777片| 日本黄色视频三级网站网址| 国产高清有码在线观看视频| 国产成人a区在线观看| 亚洲欧美日韩无卡精品| 久久午夜亚洲精品久久| 成人永久免费在线观看视频| 哪里可以看免费的av片| 桃色一区二区三区在线观看| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 老女人水多毛片| 国产不卡一卡二| 99热这里只有是精品在线观看 | 真人一进一出gif抽搐免费| 国产精品一区二区性色av| 无人区码免费观看不卡| 精华霜和精华液先用哪个| 亚洲国产精品久久男人天堂| www.999成人在线观看| 日日摸夜夜添夜夜添小说| 噜噜噜噜噜久久久久久91| 久久久久久久久久成人| 亚洲精品久久国产高清桃花| 日韩欧美 国产精品| 午夜精品久久久久久毛片777| 成人特级黄色片久久久久久久| а√天堂www在线а√下载| 亚洲色图av天堂| 亚洲欧美清纯卡通| 午夜福利高清视频| 久久精品国产99精品国产亚洲性色| 精品国产三级普通话版| 人妻丰满熟妇av一区二区三区| or卡值多少钱| 国产白丝娇喘喷水9色精品| 美女cb高潮喷水在线观看| 在线观看av片永久免费下载| 如何舔出高潮| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 日日干狠狠操夜夜爽| 在线观看免费视频日本深夜| 日韩 亚洲 欧美在线| 亚洲国产精品999在线| 欧美国产日韩亚洲一区| 亚洲精品粉嫩美女一区| 国产精品亚洲美女久久久| 老鸭窝网址在线观看| 色哟哟哟哟哟哟| 中文字幕精品亚洲无线码一区| 精品久久久久久,| 99热这里只有精品一区| 一二三四社区在线视频社区8| 在线播放无遮挡| а√天堂www在线а√下载| 九九在线视频观看精品| x7x7x7水蜜桃| 草草在线视频免费看| 怎么达到女性高潮| 免费观看人在逋| 国产精品亚洲一级av第二区| 在线免费观看不下载黄p国产 | 欧美黑人巨大hd| 麻豆久久精品国产亚洲av| 桃色一区二区三区在线观看| 国产欧美日韩一区二区三| 国产av麻豆久久久久久久| 天美传媒精品一区二区| 精品国产亚洲在线| 最新在线观看一区二区三区| 一进一出好大好爽视频| 18+在线观看网站| 免费搜索国产男女视频| 国产精品综合久久久久久久免费| 99久国产av精品| 亚洲av免费在线观看| 国产亚洲精品av在线| 毛片一级片免费看久久久久 | 3wmmmm亚洲av在线观看| 欧美一级a爱片免费观看看| 国产精品精品国产色婷婷| 亚洲色图av天堂| 亚洲国产色片| 亚洲精品成人久久久久久| 99热这里只有是精品50| 欧美性猛交╳xxx乱大交人| 国产精品1区2区在线观看.| 亚洲人成电影免费在线| 精品久久久久久久久亚洲 | 久久久久久九九精品二区国产| 一级av片app| 亚州av有码| 色5月婷婷丁香| 俺也久久电影网| 婷婷精品国产亚洲av在线| 直男gayav资源| 国产亚洲欧美在线一区二区| 伦理电影大哥的女人| 别揉我奶头~嗯~啊~动态视频| 一级a爱片免费观看的视频| 十八禁国产超污无遮挡网站| 在线观看美女被高潮喷水网站 | 毛片一级片免费看久久久久 | 色噜噜av男人的天堂激情| 啦啦啦观看免费观看视频高清| 免费观看人在逋| 成年女人看的毛片在线观看| 首页视频小说图片口味搜索| 欧美黑人欧美精品刺激| 国产探花极品一区二区| 麻豆国产av国片精品| 亚洲精品日韩av片在线观看| 国内精品久久久久精免费| 男女之事视频高清在线观看| 三级国产精品欧美在线观看| 婷婷丁香在线五月| 国产成人福利小说| 国产乱人伦免费视频| 亚洲人与动物交配视频| 久久久成人免费电影| 99久久99久久久精品蜜桃| 18美女黄网站色大片免费观看| 嫩草影视91久久| 亚洲第一电影网av| 乱人视频在线观看| 亚洲 欧美 日韩 在线 免费| 性欧美人与动物交配| 国产高清视频在线观看网站| 欧美日韩瑟瑟在线播放| 99在线视频只有这里精品首页| 18禁黄网站禁片免费观看直播| 日韩大尺度精品在线看网址| 日日干狠狠操夜夜爽| 精品一区二区三区人妻视频| 午夜福利成人在线免费观看| 久久精品综合一区二区三区| 一级黄色大片毛片| 美女高潮的动态| 天堂动漫精品| 伦理电影大哥的女人| 三级毛片av免费| 男女做爰动态图高潮gif福利片| 午夜日韩欧美国产| 日韩欧美精品免费久久 | 国产综合懂色| 搡老妇女老女人老熟妇| 亚洲成人久久性| 亚洲美女搞黄在线观看 | 九色成人免费人妻av| 老熟妇乱子伦视频在线观看| 国产中年淑女户外野战色| 久久99热这里只有精品18| 亚洲无线观看免费| 精品欧美国产一区二区三| 午夜福利欧美成人| 小蜜桃在线观看免费完整版高清| 18禁裸乳无遮挡免费网站照片| 亚洲自拍偷在线| 欧美最黄视频在线播放免费| 嫩草影院入口| 人人妻,人人澡人人爽秒播| 日本一本二区三区精品| 欧美成人性av电影在线观看| 91字幕亚洲| 99久久成人亚洲精品观看| 亚洲av一区综合| 三级国产精品欧美在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美性猛交╳xxx乱大交人| 身体一侧抽搐| 欧洲精品卡2卡3卡4卡5卡区| av在线天堂中文字幕| 午夜两性在线视频| 国产精品美女特级片免费视频播放器| 婷婷精品国产亚洲av在线| 欧美成人免费av一区二区三区| 日韩欧美精品v在线| 亚洲精品乱码久久久v下载方式| 宅男免费午夜| 欧美潮喷喷水| 嫩草影院精品99| 99久久九九国产精品国产免费| 午夜免费激情av| 日韩欧美国产一区二区入口| 校园春色视频在线观看| 美女高潮喷水抽搐中文字幕| 在线国产一区二区在线| 69av精品久久久久久| 亚洲精品在线美女| 久久99热6这里只有精品| 草草在线视频免费看| 窝窝影院91人妻| 国产伦人伦偷精品视频| 午夜两性在线视频|