孟祥河,戴建波,曹 艷,陳劍兵,夏其樂(lè),吳衛(wèi)成
亞臨界水提法提高甘薯皮可溶性膳食纖維得率
孟祥河1,戴建波1,曹 艷2,陳劍兵2,夏其樂(lè)2,吳衛(wèi)成2※
(1. 浙江工業(yè)大學(xué)海洋學(xué)院,杭州 310014;2. 浙江省農(nóng)業(yè)科學(xué)院食品科學(xué)研究所,杭州 310021)
為了提高甘薯加工副產(chǎn)物的利用率,以浙薯13品種甘薯皮為原料,采用亞臨界水提取甘薯皮可溶性膳食纖維。在單因素試驗(yàn)的基礎(chǔ)上選取料液比、提取溫度、提取時(shí)間3個(gè)因素,應(yīng)用正交試驗(yàn)對(duì)甘薯皮可溶性膳食纖維提取工藝條件進(jìn)行優(yōu)化,考察可溶性膳食纖維的物化性質(zhì),并以葡萄糖吸附能力、羥基自由基清除能力、DPPH自由基清除能力為指標(biāo),評(píng)價(jià)甘薯皮可溶性膳食纖維功能特性。結(jié)果表明,亞臨界水提取甘薯皮可溶性膳食纖維得率為10.43%,比無(wú)輔助熱水、超聲和微波輔助提取法分別提高769.17%、27.04%和34.75%。亞臨界水提取法中可溶性膳食纖維占總膳食纖維的比例最高(42.26%),比無(wú)輔助熱水、超聲和微波提取條件下分別提高665.58%、14.43%和19.24%。亞臨界水法提取所得可溶性膳食纖維的葡萄糖吸附能力(4.79 mmol/g)、羥基自由基清除能力(54.28%)和DPPH自由基清除能力(69.28%)均高于無(wú)輔助熱水、超聲和微波輔助提取法所得可溶性膳食纖維,總膳食纖維的吸水膨脹性(7.89 mL/g)、持油性(4.74 g/g)和峰值黏度(27.18 mPa/s)顯著高于其他方法所提取的總膳食纖維。
纖維;廢棄物;提取;甘薯皮;亞臨界水提?。晃锘匦?;功能特性
甘薯是浙江省山區(qū)重要的旱糧作物,對(duì)保障農(nóng)業(yè)增效,提高山區(qū)農(nóng)民收入,有著重要的作用。近年來(lái),甘薯除被加工成傳統(tǒng)的粉絲和甘薯淀粉產(chǎn)品外,經(jīng)油炸或蒸煮曬干制成的休閑食品甘薯干越來(lái)越受歡迎[1]。薯干加工過(guò)程中產(chǎn)生大量的甘薯皮,占總加工原料的20%~30%,雖然可作為動(dòng)物飼料,但由于蛋白含量低、易酸敗等缺點(diǎn),利用率較低,仍有大部分被廢棄[2]。因此,甘薯皮難以有效利用制約了甘薯全產(chǎn)業(yè)鏈的可持續(xù)發(fā)展[3]。
膳食纖維(dietary fiber,DF)是指具有抵抗人體小腸消化吸收,在人體大腸中能部分或全部發(fā)酵的可食植物性成分、碳水化合物及其類(lèi)似物總和,包括多糖、低聚糖、木質(zhì)素和相關(guān)的植物物質(zhì)(蠟質(zhì)、木栓脂等)[4]。膳食纖維具有可發(fā)酵性、持水持油性、促進(jìn)腸胃蠕動(dòng)、降低血液膽固醇等特點(diǎn),被稱(chēng)為第七大營(yíng)養(yǎng)素[5]。甘薯皮中含有豐富的纖維素、黃酮類(lèi)化合物和多酚類(lèi)化合物等成分[6],因此,可被用作提取膳食纖維的優(yōu)質(zhì)原料。膳食纖維的提取方法主要包括化學(xué)法、物理法和酶法?;瘜W(xué)方法產(chǎn)生廢水多、易有化學(xué)殘留的安全隱患;酶法水解不完全、且成本高;隨著工業(yè)化生產(chǎn)技術(shù)的發(fā)展,新型物理提取手段已經(jīng)越來(lái)越多的投入到工業(yè)化生產(chǎn)中[7]。孫健等[3]利用超聲輔助酶法提取甘薯渣膳食纖維,(SDF,soluble dietary fiber)/(TDF,total dietary fiber)值為34.44%。何國(guó)菊等[8]利用堿洗結(jié)合微波輔助提取馬鈴薯渣中的SDF,得率約為47.6%。超聲和微波均是在常壓下利用空化機(jī)械振動(dòng)原理、水分局部迅速升溫升壓原理,加快細(xì)胞破碎,提高可溶物質(zhì)溶出率,提高可溶性膳食纖維含量,且在甘薯膳食纖維提取中已有應(yīng)用[9]。亞臨界水提取法采用高溫高壓方式,將水加熱至100~374 ℃(臨界溫度)的亞臨界狀態(tài),水極性降低,使其對(duì)中低極性的化合物的溶解力增加,同時(shí)降低水的表面張力和黏度,高壓則增加水對(duì)細(xì)胞的穿透性,加速胞內(nèi)物質(zhì)的溶出速度,具有高萃取效率、時(shí)間短、無(wú)殘留的優(yōu)點(diǎn)。亞臨界水作為新興提取方法已經(jīng)較多的應(yīng)用在提取中藥精油、多酚、黃酮類(lèi)物質(zhì)[10],而在可溶性膳食纖維提取中應(yīng)用近幾年越來(lái)越多。張百勝等[11]采用亞臨界水提取小麥麩皮SDF得率達(dá)到45.34%,較傳統(tǒng)堿提取法提高2.96倍。刁春仁等[12]利用亞臨界水提取藕渣中的SDF,得率較熱水浸提法提高70.0%。Liu等[13]使用磷酸鹽輔助亞臨界水提取法從大豆皮中提取的SDF表現(xiàn)出更好的溶解性、黏度、體內(nèi)降膽固醇活性。Klinchongkon等[14]利用亞臨界水提取百香果果皮多糖得率達(dá)到21.0%,且所得多糖聚合度高(DP>7)。因此,亞臨界水提取法是一種高效的SDF制備方法。
本研究利用亞臨界水提取甘薯皮中的可溶性膳食纖維,并與常用的物理提取方法超聲波和微波輔助提取方法對(duì)比,確定亞臨界水提取甘薯皮可溶性膳食纖維的最優(yōu)方法,并研究所得膳食纖維的物化和功能特性,對(duì)于提高甘薯皮利用率、解決污染、促進(jìn)甘薯產(chǎn)業(yè)綠色、可持續(xù)發(fā)展具有重要意義[15]。
1.1.1 原料和試劑
甘薯皮(浙薯13品種甘薯削皮,皮厚約2~3 mm,清洗干凈,50 ℃烘干至含水率5%以下,粉碎,過(guò)100目篩,備用)、耐高溫-淀粉酶(麥克林)、淀粉葡萄糖苷酶(麥克林)、胰蛋白酶(麥克林)、95%乙醇、氫氧化鈉、鹽酸、1,1-二苯基-2-三硝基苯肼(DPPH·)、無(wú)水乙醇、硫酸亞鐵、水楊酸、過(guò)氧化氫、抗壞血酸、葡糖糖、去離子水,以上試劑均為分析純。偶聯(lián)酶法葡萄糖含量試劑盒(購(gòu)自蘇州科銘生物技術(shù)有限公司)。
1.1.2 主要儀器
LDZF-30KB-Ⅱ型立式壓力蒸汽滅菌鍋(工作溫度140 ℃,耐壓0.30 MPa,工作原理:在排凈空氣后利用高溫產(chǎn)生的水蒸氣使釜內(nèi)達(dá)到高溫、無(wú)氧、低壓的提取環(huán)境),上海申安醫(yī)療器械廠(chǎng);FW200粉碎機(jī),江蘇省金壇市友聯(lián)儀器研究所;LXJ-IIB離心機(jī),上海安亭科學(xué)儀器廠(chǎng);DHG-9146A型電熱恒溫鼓風(fēng)干燥箱,上海精宏實(shí)驗(yàn)設(shè)備有限公司;SCIENTZ-10N冷凍干燥機(jī),寧波新芝生物科技股份有限公司;WF-4000微波快速反應(yīng)系統(tǒng),上海屹堯分析儀器有限公司;KQ-500DB型數(shù)控超聲波清洗器,昆山市超聲儀器有限公司;Rheo3000流變儀,RheoTec Messtechnik GmbH;UV-1800紫外分光光度計(jì),SHIMADZU島津。
1.2.1 甘薯皮膳食纖維提取
將一定比例的蒸餾水加入甘薯皮粉中并充分?jǐn)嚢柚粱旌暇鶆颍貌煌锢矸椒ㄌ崛?。提取結(jié)束后冷卻至室溫,將pH值調(diào)節(jié)至6.0后,加入甘薯皮粉干質(zhì)量2%的耐高溫-淀粉酶、置于95 ℃的水浴鍋中加熱30 min,然后冷卻至室溫并調(diào)節(jié)pH值至4.5;再加入甘薯皮粉干質(zhì)量1%的淀粉葡萄糖苷酶、置于60 ℃的水浴鍋中加熱30 min,取出冷卻至室溫并調(diào)節(jié)pH值至7.0;加入甘薯皮粉干質(zhì)量0.1%的胰蛋白酶、于60 ℃水浴加熱30 min,取出后冷卻至室溫,加入4倍體積95%乙醇靜置24 h。去除上清液,將沉淀置于離心機(jī)中4 000 r/min離心20 min,將離心沉淀物取出冷凍干燥72 h,粉碎備用[16]。
1.2.2 膳食纖維含量的測(cè)定
參考Mccleary等[4]的酶質(zhì)量法測(cè)定、利用公式(1)和(2)計(jì)算總膳食纖維(TDF)和可溶性膳食纖維(SDF)的含量和得率。
TDF得率(%)=TDF干質(zhì)量×100/樣品總干質(zhì)量 (1)
SDF得率(%)=SDF干質(zhì)量×100/樣品總干質(zhì)量 (2)
將單因素試驗(yàn)設(shè)計(jì)為:設(shè)定提取時(shí)間15 min,溫度120 ℃,考察料液比1:10、1:20、1:30和1:40條件下SDF的提取率;設(shè)定料液比1:20,時(shí)間30 min,考察提取溫度110、120、130和140 ℃對(duì)SDF提取率的影響;設(shè)定料液比1:20,溫度120 ℃,考察提取時(shí)間15、30、45、和60 min對(duì)SDF得率的影響[17]。
根據(jù)單因素試驗(yàn)結(jié)果,以SDF提取率為指標(biāo),將料液比、提取時(shí)間、提取溫度做L9(33)正交試驗(yàn)(表1),對(duì)試驗(yàn)結(jié)果進(jìn)行極差分析,確定最佳提取工藝條件。
表1 L9(33)正交試驗(yàn)因素水平表
用于比較的無(wú)輔助熱水提取、微波輔助提取和超聲輔助提取按照同樣方法在單因素試驗(yàn)基礎(chǔ)上利用正交設(shè)計(jì)優(yōu)化得到最佳提取條件[16]。
1.5.1 膳食纖維的持水性測(cè)定
根據(jù)Zhu等[18]的方法,稱(chēng)取1.0 g樣品()到50 mL離心管中,加入20 mL蒸餾水震蕩均勻,于室溫下溶脹12 h至溶液飽和,此時(shí)SDF并未完全溶解但已充分溶脹,4 000 r/min離心20 min,除去上清飽和液,并用吸水紙除去管壁上殘留的水,記錄樣品濕質(zhì)量(1),利用公式(3)計(jì)算持水力。
持水力(g/g)=1/(3)
1.5.2 膳食纖維的吸水膨脹性測(cè)定
根據(jù)Zhu等[18]的方法,稱(chēng)取1.0 g樣品()于25 mL量筒中,讀取初始體積(1),加入足量蒸餾水后振蕩均勻,室溫下溶脹24 h,記錄量筒內(nèi)終體積(2),利用公式(4)計(jì)算膨脹力。
膨脹力(mL/g)=(2?1)/(4)
1.5.3 膳食纖維的持油性測(cè)定
根據(jù)Gouw等[19]的方法,稱(chēng)取1.0 g樣品()到50 mL離心管中,加入40 mL植物油震蕩搖勻,于室溫下漩渦震蕩3 h,4 000 r/min離心20 min,除去上清液,并用吸油紙除去管壁上的殘留液體,記錄濕質(zhì)量(1),利用公式(5)計(jì)算持油力。
持油力(g/g)=1/(5)
1.5.4 膳食纖維的流變學(xué)特性測(cè)定
根據(jù)Feng等[20]的方法適當(dāng)修改,稱(chēng)取1.0 g樣品于容器中,準(zhǔn)確加入10 mL蒸餾水,室溫溶脹24 h,配置成10%的多糖溶液。使用旋轉(zhuǎn)斜坡測(cè)量塊模式,時(shí)間120 s,速度1~1 000 r/min,采集60個(gè)數(shù)據(jù)點(diǎn)。
1.5.5 膳食纖維的葡萄糖吸附能力測(cè)定
參考梅新[21]的方法并略做修改。將甘薯皮膳食纖維中的小分子糖除去后,取1.0 g樣品,加入100 mL葡萄糖溶液(100 mmol/L),室溫溶脹12 h,4 000 r/min離心20 min,上清液中葡萄糖含量用偶聯(lián)酶法葡萄糖含量試劑盒測(cè)定。
1.6.1 膳食纖維的羥基自由基(?OH)清除能力測(cè)定
參考Liu等[22]的方法略作修改,取1 mL配置好的濃度為10 mg/mL的樣品溶液,加入濃度為9 mmol/L的水楊酸-乙醇溶液1 mL、濃度為9 mmol/L硫酸亞鐵溶液1 mL和蒸餾水6 mL,充分混合搖勻后,加入8.8 mmol/L雙氧水溶液1 mL,于37 ℃水浴鍋中反應(yīng)40 min,在510 nm處測(cè)定吸光度,以蒸餾水為空白,利用公式(6)計(jì)算自由基清除率。
清除率(%)=[?(1?0)]×100/(6)
式中為空白對(duì)照吸光度值;1為樣品吸光度值;0為蒸餾水替代雙氧水吸光值。
1.6.2 膳食纖維的DPPH自由基清除能力測(cè)定
采用Zhu等[23]的方法測(cè)定。
每組試驗(yàn)數(shù)據(jù)做3次平行并表示為平均值±標(biāo)準(zhǔn)偏差,利用SPSS 20.0進(jìn)行顯著性分析,Origin 2017軟件繪圖。
SDF得率隨著提取溫度的升高呈先增加后下降的趨勢(shì),當(dāng)溫度為120 ℃時(shí),達(dá)到最高9.35%,當(dāng)溫度繼續(xù)增加時(shí),SDF得率下降(圖1a)。由圖1b可知,提取時(shí)間為30 min時(shí)SDF得率為最大值9.63%,繼續(xù)延長(zhǎng)時(shí)間到45 min時(shí)SDF得率略有下降,當(dāng)提取時(shí)間繼續(xù)增加,下降速率增大,60 min時(shí)SDF提取率為最低值。如圖C所示,隨著料液比的逐漸增大,SDF得率也不同程度的增大,料液比從1:10到1:20時(shí)SDF得率的增長(zhǎng)率最高,料液比為1:20時(shí)SDF的提取率為8.7%,料液比為1:40時(shí)SDF的提取率為9.55%,然而料液比從1:30到1:40的增長(zhǎng)率卻最低,且大大增加了后續(xù)處理難度。通過(guò)比較不同提取條件對(duì)甘薯皮中SDF提取率的影響,發(fā)現(xiàn)隨著提取溫度和時(shí)間的延長(zhǎng),SDF得率并沒(méi)有增長(zhǎng)反而降低,可能是過(guò)高的溫度和過(guò)長(zhǎng)的時(shí)間使溶出的大分子多糖部分分解,因此,提取溫度不宜過(guò)高、時(shí)間不宜過(guò)長(zhǎng)[24]。
從表2的極差分析結(jié)果可以看出,各因素對(duì)亞臨界水提取法提取SDF得率的影響順序?yàn)榱弦罕?時(shí)間>溫度。根據(jù)均值結(jié)果選出最優(yōu)提取方案為222,即料液比1:30、溫度120 ℃、時(shí)間30 min[25]。由于該方案不在所列方案中,因此在該條件下進(jìn)行3次平行驗(yàn)證試驗(yàn),SDF得率為10.43%,總膳食纖維得率為24.68%(占原料)。正交優(yōu)化結(jié)果表明,料液比是影響SDF提取率的最重要因素,當(dāng)提取溶劑太少時(shí),甘薯皮中的淀粉不能充分溶解糊化,致使提取體系黏度過(guò)高,影響了可溶性多糖的溶出[26],隨著提取溶劑繼續(xù)增加,SDF提取率卻不再繼續(xù)增加,反而增加了后續(xù)步驟的處理成本,因此溶劑添加量不宜過(guò)大。曹媛媛[27]利用機(jī)械篩分法從甘薯渣中獲得SDF,得率為2.66%,本研究利用亞臨界水提取法比其提高2.92倍。
注:a中固定料液比1:20,提取時(shí)間30 min;b中固定料液比1:20,提取溫度120 ℃;c中固定提取時(shí)間15 min,提取溫度120 ℃。
表2 亞臨界水提取法正交設(shè)計(jì)和極差分析
按照同樣的方法,對(duì)無(wú)輔助熱水、超聲輔助提取和微波輔助提取條件進(jìn)行正交試驗(yàn)分析,結(jié)果表明無(wú)輔助熱水提取最優(yōu)條件為料液比1:25、60 ℃、3 h,超聲輔助提取最優(yōu)條件為料液比1:30、70 ℃、提取功率400 W、30 min,微波輔助提取最優(yōu)條件為料液比1:30、100 ℃、提取功率500 W、6 min。按照各自最優(yōu)條件提取,超聲輔助提取SDF得率為8.21%,微波輔助提取SDF得率為7.74%,而亞臨界水提取法分別比這2種方法提高27.04%和34.75%,比無(wú)輔助熱水提取法高出7.69倍,且亞臨界水提取法中SDF/TDF值最高,比超聲和微波提取法分別提高14.43%和19.24%,比無(wú)輔助熱水提取高出6.66倍(表3)。此外,除亞臨界水提取法外,其他方法對(duì)TDF的得率均無(wú)顯著影響。
表3 亞臨界水與超聲、微波輔助提取條件下SDF得率比較
注:不同字母a、b、c表示差異顯著(<0.05),相同字母則表示差異不顯著(>0.05),下同。
Note: Different letters a, b and c indicate significant differences (<0.05), and the same letters indicate that the difference is not significant (>0.05), the same below.
2.4.1 亞臨界水提取法對(duì)膳食纖維持水性的影響
持水力是指膳食纖維在外力作用下,保持水分的能力,人體攝入的膳食纖維由于持水作用,在腸道內(nèi)形成高黏度的凝膠,延長(zhǎng)胃排空,產(chǎn)生飽腹感,有非常好的減肥作用[28]。如圖2a所示,不同物理提取法所得膳食纖維中,亞臨界水提取的SDF持水性為4.83 g/g,顯著優(yōu)于超聲輔助和無(wú)輔助熱水提取法(<0.05),與微波輔助提取法沒(méi)有顯著差異。不同提取方法所得TDF持水性存在顯著差異,微波法最高、其次為亞臨界水提取法。研究表明,擠壓蒸煮提高TDF中SDF含量的同時(shí)也提高了TDF的水合能力,因?yàn)閿D壓蒸煮處理能夠有效增加TDF化學(xué)結(jié)構(gòu)中親水基團(tuán)的外露[29]。在梅新[21]的研究中,冀薯98號(hào)的膳食纖維持水力為3.54 g/g,亞臨界水提取的TDF持水性比其提高85.59%。
2.4.2 亞臨界水提取法對(duì)膳食纖維吸水膨脹性影響
吸水膨脹性是指膳食纖維通過(guò)氫鍵和偶極子來(lái)吸收水分,使體積膨脹的能力。由圖2b可知,不同提取方法所得SDF的吸水膨脹性均無(wú)顯著性差異(>0.05);而不同方法提取的TDF吸水膨脹性顯著差異,以亞臨界水提取法最好,達(dá)到7.89 mL/g,相比超聲和微波提取法分別提高99.24%和21.76%,比無(wú)輔助熱水提高約48.31倍。
2.4.3 亞臨界水提取法對(duì)膳食纖維持油性的影響
膳食纖維中的親脂基團(tuán)的數(shù)量決定了膳食纖維持油能力,持油性越高,則膳食纖維吸收食物中油脂的能力越高,也代表膳食纖維降低血液中膽固醇的能力越高,這對(duì)維持人體腸道健康有非常積極的作用[30]。由圖2c可知,亞臨界水提取法所得SDF的持油性并沒(méi)有顯著提高,且與超聲和微波輔助提取法所得SDF的持油性相差不大。而亞臨界水提取法所得TDF的持油性提升最為顯著(4.74 g/g),比無(wú)輔助熱水提取法、超聲輔助提取法和微波輔助提取法所得TDF的持油性提高約1.5倍。
2.4.4 亞臨界水提取法對(duì)膳食纖維流變學(xué)特性的影響
膳食纖維的流變學(xué)特性在食品加工應(yīng)用領(lǐng)域具有非常重要的意義。從圖2d中可知,SDF的峰值黏度均高于TDF的峰值黏度,而不同提取方法所得SDF之間沒(méi)有顯著差異,根據(jù)已有的研究報(bào)道,SDF的黏度通常與其來(lái)源和濃度密切相關(guān)[26]。亞臨界水、超聲和微波3種提取法所得的TDF的峰值黏度較無(wú)輔助熱水提取均有顯著提高(<0.05),且亞臨界水提?。?7.18 mPa/s)>超聲提?。?4.54 mPa/s)>微波提取(22.83 mPa/s)>無(wú)輔助熱水提?。?4.61 mPa/s)。
2.4.5 亞臨界水提取法對(duì)膳食纖維葡萄糖吸附能力影響
膳食纖維的體外葡萄糖吸附能力是考察膳食纖維功能特性的一項(xiàng)重要指標(biāo)。圖2e結(jié)果顯示,SDF的葡萄糖吸收能力顯著高于TDF,且亞臨界水提取法所得SDF的葡萄糖吸收能力最強(qiáng),達(dá)到4.79 mmol/g,比無(wú)輔助熱水、超聲和微波提取法分別提高25.72%、13.78%和54.02%。亞臨界水、超聲輔助和微波輔助3種物理提取法所得TDF的葡萄糖吸收能力無(wú)顯著性差異,但均顯著高于無(wú)輔助熱水提取法。黃六容等[31]通過(guò)超聲改性大蒜秸稈不溶性膳食纖維將其葡萄糖吸附能力提升至4.72 mmol/g。阮傳英等[32]發(fā)現(xiàn),大豆豆渣中的SDF比不溶性組分表現(xiàn)出更強(qiáng)的葡萄糖吸附能力和NO2-吸附能力,同時(shí)SDF的濃度越高黏度也越高,與本文結(jié)果一致。在Yan等[33]研究中,通過(guò)新型噴砂工藝提高了麥麩膳食纖維中SDF含量,同時(shí)葡萄糖吸附能力也顯著提高,因?yàn)镾DF能夠有效降低葡萄糖的擴(kuò)散速率,形成的網(wǎng)狀結(jié)構(gòu)也能夠?qū)⑿》肿游镔|(zhì)截留,因此推斷葡萄糖吸附能力可能與SDF的比例有關(guān)。
2.5.1 亞臨界水提取法對(duì)膳食纖維羥基自由基(?OH)清除能力影響
羥自由基是活性最強(qiáng)的氧自由基,它可與活細(xì)胞中的任何分子發(fā)生反應(yīng)而造成損傷,而且反應(yīng)速度極快,被破壞的分子遍及糖類(lèi)、氨基酸、磷脂、核苷和有機(jī)酸等[34]。如圖3所示,SDF的羥基自由基清除能力高于TDF的羥基自由基清除能力,亞臨界水提取SDF的羥基自由基清除率比無(wú)輔助熱水、超聲和微波提取法分別提高1.99、0.14和1.73倍,所得TDF的羥基自由基清除率同樣顯著高于其他方法的TDF,分別提高3.70、0.39和2.85倍。周小理等[35]發(fā)現(xiàn)經(jīng)膨化改性的水溶性苦蕎麩皮膳食纖維的羥自由基清除能力為58.81%。亞臨界水提取會(huì)改變膳食纖維的網(wǎng)狀結(jié)構(gòu),從而使包裹在膳食纖維內(nèi)部或基質(zhì)中的多酚類(lèi)物質(zhì)釋放出來(lái),從而具有抗氧化活性[36]。趙麗等[37]的研究結(jié)果表明,通過(guò)超聲、微波等處理方式提取得到鮮食豆莢SDF的羥基自由基清除能力優(yōu)于不溶性膳食纖維。從圖3中可看出,亞臨界水提取所得SDF的羥基自由基清除能力大約是TDF的2倍,顯著高于其他方法所得的SDF,可能是亞臨界水提取所得的膳食纖維中的糖醛酸分子含有大量活躍羥基,能夠與羥自由基結(jié)合從而清除自由基[38]。
注:A為無(wú)輔助熱水提取法;B為超聲輔助提取法;C為亞臨界水提取法;D為微波輔助提取法,*代表總膳食纖維組,下同。
圖3 亞臨界水與其它提取法對(duì)甘薯皮膳食纖維羥基自由基清除率的影響
2.5.2 亞臨界水提取法對(duì)膳食纖維DPPH自由基清除能力影響
從圖4可知,隨著溶液濃度的升高,SDF和TDF對(duì)DPPH自由基的清除能力都呈現(xiàn)出先增大后趨于平緩的趨勢(shì),當(dāng)濃度為14 mg/mL時(shí),亞臨界水提取的SDF對(duì)DPPH自由基的清除能力最高(72.46%),顯著高于超聲輔助和無(wú)輔助熱水提取所得SDF(<0.05);亞臨界水提取所得TDF的DPPH自由基清除能力比無(wú)輔助熱水提取法顯著提高47.38%,比超聲和微波輔助提取方法所得TDF的DPPH自由基清除能力分別提高9.0%和30.55%。石秀梅等[39]對(duì)比了檸檬皮渣、臍橙皮渣和小麥麩皮的抗氧化能力,發(fā)現(xiàn)檸檬皮渣的DPPH自由基清除能力最高,為56.32%。Wiboonsirikul等[40]用亞臨界水從豆渣中提取多糖,發(fā)現(xiàn)多糖的DPPH自由基清除能力其中所含的酚類(lèi)物質(zhì)和可溶性多糖含量有關(guān),且當(dāng)溫度高于240 ℃后,DPPH自由基清除能力下降。圖4中SDF和TDF的DPPH自由基清除能力與濃度呈正相關(guān),且亞臨界水提取的SDF在DPPH自由基清除能力上顯著高于其他方法,TDF也顯著高于無(wú)輔助熱水處理。普遍認(rèn)為抗氧化劑清除DPPH自由基是由于它們的供氫能力,而分子量較大且具有較小分支的多糖結(jié)構(gòu)具有較強(qiáng)的供氫能力[41]。
注:不同字母α、β和γ表示差異顯著(P<0.05),相同字母則表示差異不顯著(P>0.05)。
通過(guò)比較亞臨界水和常用的超聲和微波輔助提取條件下甘薯皮SDF的提取率,確定亞臨界水提取為甘薯皮SDF的最適提取方法,即料液比1:30、溫度120 ℃、時(shí)間30 min,SDF得率為10.43%,其中料液比是影響SDF得率的主要因素。
亞臨界水提取法中SDF的葡萄糖吸附能力(4.79 mmol/g)、羥基自由基清除能力(54.28%)和DPPH自由基清除能力(69.28%)均高于無(wú)輔助熱水、超聲和微波輔助提取法的SDF;TDF的吸水膨脹性(7.89 mL/g)、持油性(4.74 g/g)和峰值黏度(27.18 mPa/s)顯著高于其他方法所提取的TDF,同時(shí)亞臨界水提取法SDF/TDF值(42.26%)也最高。
亞臨界水法提取法無(wú)污染、效率高,具有一定的應(yīng)用推廣前景。此外,不同提取方法所得甘薯皮SDF和TDF的特性差異較大,可能與其中多糖物質(zhì)的種類(lèi)差異有關(guān),后期可通過(guò)分析不同提取條件下甘薯皮粉微結(jié)構(gòu)變化、SDF分子量和結(jié)構(gòu)特征差異,探究甘薯皮SDF功能特性與其微觀(guān)結(jié)構(gòu)特征的相關(guān)性,為進(jìn)一步提高甘薯皮利用率和附加值提供參考。
[1] 李雁,熊明洲,尹叢林,等. 紅薯渣不溶性膳食纖維超高壓改性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(19):270-278.
Li Yan, Xiong Mingzhou, Yin Conglin, et al. Modification of insoluble dietary fiber from sweet potato residue with ultra high pressure processing technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(19): 270-278. (in Chinese with English abstract)
[2] 張啟堂,陳其恒,曹健生,等. 甘薯粉渣的營(yíng)養(yǎng)成分含量及再利用研究[J]. 農(nóng)業(yè)科學(xué)與技術(shù)(英文版),2015,16(11):2543-2545.
Zhang Qitang, Chen Qiheng, Cao Jiansheng, et al. Study on contents of nutritional ingredients and reutilization of sweet potato starch residue[J]. Agricultural Science & Technology, 2015, 16(11): 2543-2545. (in Chinese with English abstract)
[3] 孫健,鈕福祥,岳瑞雪,等. 超聲波輔助酶法提取甘薯渣膳食纖維的研究[J]. 核農(nóng)學(xué)報(bào),2014,28(7):1261-1266.
Sun Jian, Niu Fuxiang, Yue Ruixue, et al. Extraction of dietary fiber from sweet potato residues by enzymatic hydrolysis method assisted by ultrasonic technology[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(7): 1261-1266. (in Chinese with English abstract)
[4] Mccleary B V, Sloane N, Draga A, et al. Measurement of total dietary fiber using AOAC method 2009.01 (AACC International Approved Method 32-45.01): Evaluation and updates[J]. Cereal Chemistry, 2013, 90(4): 396-414.
[5] 王世清,于麗娜,楊慶利,等. 超濾膜分離純化花生殼中水溶性膳食纖維[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(3):278-282.
Wang Shiqing, Yu Lina, Yang Qingli, et al. Purification of water soluble dietary fiber (SDF) from peanut hull using ultrafiltration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(3): 278-282. (in Chinese with English abstract)
[6] Mei X, Mu T H, Han J J. Composition and physicochemical properties of dietary fiber extracted from residues of 10 varieties of sweet potato by a sieving method[J]. Journal of Agricultural and Food Chemistry, 2010, 58(12): 7305-7310.
[7] 闞茗銘,葉發(fā)銀,趙國(guó)華. 成熟度對(duì)甘藍(lán)膳食纖維單糖組成及抗氧化活性的影響[J]. 食品科學(xué),2017,38(5):70-75.
Kan Mingming, Ye Fayin, Zhao Guohua. Effect of maturity on monosaccharide composition and antioxidant activity of cabbage dietary fiber[J]. Food Science, 2017, 38(5): 70-75. (in Chinese with English abstract)
[8] 何國(guó)菊,常艷菊,龍峰. 超微粉碎結(jié)合微波輔助提取馬鈴薯渣中可溶性膳食纖維[J]. 食品工業(yè),2017(2):159-163.
He Guoju, Chang Yanju, Long Feng. Study on extracting soluble dietary fiber by phytate solution with super comminution and microwave from potato residue[J]. The Food Industry, 2017(2): 159-163 (in Chinese with English abstract)
[9] 丁宏偉. 超聲波結(jié)合微波輔助提取米糠多糖的研究[J]. 核農(nóng)學(xué)報(bào),2013,27(3):329-333.
Ding Hongwei. Research on extracted quantity of rice bran polysaccharide processed by microwave and ultrasonic wave[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3): 329-333. (in Chinese with English abstract)
[10] Ko M J, Cheigh C I, Chung M S. Relationship analysis between flavonoids structure and subcritical water extraction (SWE)[J]. Food Chemistry, 2014, 143(1): 147-155.
[11] 張百勝,陳海霞,張娟梅. 亞臨界水法提取麩皮可溶性膳食纖維工藝優(yōu)化[J]. 食品研究與開(kāi)發(fā),2014(14):50-53.
Zhang Baisheng, Chen Haixia, Zhang Juanmei. Optimization of subcritical water extraction process of soluble dietary fiber from wheat bran[J]. Food Research and Development, 2014(14): 50-53. (in Chinese with English abstract)
[12] 刁春仁,張海暉,李亞群,等. 藕渣中可溶性膳食纖維的亞臨界水萃取[J]. 食品工業(yè),2018,39(8):35-39.
Diao Chunren, Zhang Haihui, Li Yaqun, et al. Extraction of soluble dietary fiber from lotus root dregs by subcritical water[J]. The Food Industry, 2018, 39(8): 35-39. (in Chinese with English abstract)
[13] Liu C, Lin X L, Wan Z, et al. The physicochemical properties, in vitro binding capacities and in vivo hypocholesterolemic activity of soluble dietary fiber extracted from soy hulls[J]. Food & Function, 2016, 7(12): 4830-4840.
[14] Klinchongkon K, Khuwijitjaru P, Wiboonsirikul J, et al. Extraction of oligosaccharides from passion fruit peels by subcritical water treatment[J]. Journal of Food Process Engineering, 2017, 40(1): e12269
[15] 王曉梅,木泰華,孫紅男,等. 3種不同破碎方式提取甘薯膳食纖維的物化功能性質(zhì)比較研究[J]. 食品科技,2013(8):207-212.
Wang Xiaomei, Mu Taihua, Sun Hongnan, et al. Comparative on physico-chemical properties and functional properties of sweet potato dietary fiber extracted by three different crushing processe[J]. Food Science and Technology, 2013(8): 207-212. (in Chinese with English abstract)
[16] Jeddou K B, Chaari F, Maktouf S, et al. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels[J]. Food Chemistry, 2016, 205: 97-105.
[17] 趙力超,于榮,劉欣,等. 大米抗性淀粉制備工藝優(yōu)化及特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):277-285.
Zhao Lichao, Yu Rong, Liu Xin, et al. Preparation technology optimization and characteristic analysis of rice resistance starch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 277-285. (in Chinese with English abstract)
[18] Zhu Y, Chu J, Lu Z, et al. Physicochemical and functional properties of dietary fiber from foxtail millet () bran[J]. Journal of Cereal Science, 2018, 79: 456-461.
[19] Gouw V P, Jung J, Zhao Y. Functional properties, bioactive compounds, and in vitro gastrointestinal digestion study of dried fruit pomace powders as functional food ingredients[J]. Food Science and Technology, 2017, 80: 136-144.
[20] Feng Z, Dou W, Alaxi S, et al. Modified soluble dietary fiber from black bean coats with its rheological and bile acid binding properties[J]. Food Hydrocolloids, 2017, 62: 94-101.
[21] 梅新. 甘薯膳食纖維、果膠制備及物化特性研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2010.
Mei Xin. Characterization of Dietary Fiber and Pectin Extraction From Sweet Potato[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese with English abstract)
[22] Liu Y, Zhou Y, Liu M, et al. Extraction optimization, characterization, antioxidant and immunomodulatory activities of a novel polysaccharide from the wild mushroom Paxillus involutus[J]. International Journal of Biological Macromolecules, 2018, 112: 326-332.
[23] Zhu H, Tian L, Zhang L, et al. Preparation, characterization and antioxidant activity of polysaccharide from spentsubstrate[J]. International Journal of Biological Macromolecules, 2018, 112: 976-984.
[24] 崔珊珊,木泰華,孫紅男,等. 超高壓下酶解處理對(duì)甘薯蛋白乳化特性的影響[J]. 核農(nóng)學(xué)報(bào),2016,30(6):1117-1125.
Cui Shanshan, Mu Taihua, Sun Hongnan, et al. Effect of enzymatic treatment under high hydrostatic pressure on the emulsifying properties of sweet potato protein[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(6): 1117-1125. (in Chinese with English abstract)
[25] 陳立宇,張秀成. 試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理[M]. 西安:西北大學(xué)出版社,2014.
[26] Iida Y, Tuziuti T, Yasui K, et al. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization[J]. Innovative Food Science and Emerging Technologies, 2008, 9(2): 140-146.
[27] 曹媛媛. 甘薯膳食纖維的制備及其物化特性的研究[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學(xué),2007.
Cao Yuanyuan. Study on Preparation and Physicochemical Properties of Dietary Fiber of Sweet Potato[D]. Urumqi: Xinjiang Agricultural University, 2007. (in Chinese with English abstract)
[28] Wang H, Hong T, Li N, et al. Soluble dietary fiber improves energy homeostasis in obese mice by remodeling the gut microbiota[J]. Biochemical and biophysical research communications, 2018, 498(1): 146-151.
[29] Zhong L, Fang Z, Wahlqvist M L, et al. Extrusion cooking increases soluble dietary fibre of lupin seed coat[J]. LWT, 2019, 99: 547-554
[30] Yu G, Bei J, Zhao J, et al. Modification of carrot (a. Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure[J]. Food Chemistry, 2018, 257: 333-340.
[31] 黃六容,陳甜,趙勻淑,等. 超聲波改善大蒜秸稈不溶性膳食纖維結(jié)構(gòu)及吸附性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(12):294-299.
Huang Liurong, Chen Tian, Zhao Yunshu, et al. Improvement on structure and adsorption of insoluble dietary fiber from garlic straw induced by ultrasound[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 294-299. (in Chinese with English abstract)
[32] 阮傳英,涂宗財(cái),王輝,等. 豆渣膳食纖維的體外吸附性能[J]. 食品科學(xué),2014,35(15):109-112.
Ruan Chuanying, Tu Zongcai, Wang Hui, et al. In vitro adsorption capacity of dietary fibers from soybean dregs[J]. Food Science, 2014, 35(15): 109-112. (in Chinese with English abstract)
[33] Yan X, Ye R, Chen Y. Blasting extrusion processing: The increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran[J]. Food Chemistry, 2015, 180: 106-115.
[34] 鐘希瓊. 大薯膳食纖維的提取及其對(duì)自由基的清除作用[J]. 食品科學(xué),2010,31(24):139-141.
Zhong Xiqiong. Extraction of dietary fiber from big yam and its scavenging capability on free radicals[J]. Food Science, 2010, 31(24): 139-141. (in Chinese with English abstract)
[35] 周小理,錢(qián)韻芳,周一鳴,等. 不同處理工藝對(duì)苦蕎麩皮膳食纖維體外抗氧化活性的影響[J]. 食品科學(xué),2011,32(8):1-4.
Zhou Xiaoli, Qian Yunfang, Zhou Yiming, et al. Effect of different processing methods on in vitro antioxidant properties of dietary fiber from tartary buckwheat bran[J]. Food Science, 2011, 32(8): 1-4. (in Chinese with English abstract)
[36] 趙明慧,呂春茂,孟憲軍,等. 蘋(píng)果渣水溶性膳食纖維提取及其對(duì)自由基的清除作用[J]. 食品科學(xué),2013,34(22):75-80.
Zhao Minghui, Lü Chunmao, Meng Xianjun, et al. Extraction of soluble dietary fiber from apple pomace and its scavenging capacity against free radicals[J]. Food Science, 2013, 34(22): 75-80. (in Chinese with English abstract)
[37] 趙麗,宋一茉,朱丹實(shí),等. 不同提取方法對(duì)鮮食大豆莢膳食纖維抗氧化特性的影響[J]. 食品工業(yè)科技,2015,36(20):155-158.
Zhao Li, Song Yimo, Zhu Danshi, et al. Effect of different extraction methods on antioxidant properties of dietary fiber from vegetable soybean pods[J]. Science and Technology of Food Industry, 2015, 36(20): 155-158. (in Chinese with English abstract)
[38] 于麗娜,孫杰,劉少芳,等. 花生抗氧化水解產(chǎn)物制備及其抗氧化活性研究[J]. 核農(nóng)學(xué)報(bào),2013,27(2):188-196.
Yu Lina, Sun Jie, Liu Shaofang, et al. Preparation and antioxidant activities of peanut antioxidant hydrolysate[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(2): 188-196. (in Chinese with English abstract)
[39] 石秀梅,雷激,梁愛(ài)華,等. 3種來(lái)源膳食纖維抗氧化特性比較[J]. 食品科技,2013(1):71-75.
Shi Xiumei, Lei Ji, Liang Aihua, et al. Comparison of antioxidant properties among there dietary fibers[J]. Food Science and Technology, 2013(1): 71-75. (in Chinese with English abstract)
[40] Wiboonsirikul J, Mori M, Khuwijitjaru P, et al. Properties of extract from okara by its subcritical water treatment[J]. International Journal of Food Properties, 2013, 16(5): 974-982.
[41] Villa?o D, Fernández-Pachón M S, Moyá M L, et al. Radical scavenging ability of polyphenolic compounds towards DPPH free radical[J]. Talanta, 2007, 71(1): 230-235.
Increasing yield of soluble dietary fiber from sweet potato peel by using subcritical water extraction
Meng Xianghe1, Dai Jianbo1, Cao Yan2, Chen Jianbing2, Xia Qile2, Wu Weicheng2※
(1310014,; 2310021,)
Sweet potato is an important economic crop growing in mountainous area of Zhejiang Province. Sweet potato was processed into traditional vermicelli and starch products, and dried sweet potato becomes more and more popular in recent years. Sweet potato peels is one of the main by-products during dried sweet potato processing, and it accounts for 20%-30% of the total fresh material. Only a small amount of sweet potato peels is used as animal feed because of low protein content, and the majority is dumped in the trash, leading to environmental pollution and waste of resources which restricts the sustainable development of the sweet potato industry chain. Therefore, improving the utilization rate of sweet potato peels is an urgent problem. Dietary fiber is known as the seventh nutrient with the characteristics of fermentability, water and oil retention, promoting gastrointestinal motility and lowering blood cholesterol. On the other hand, subcritical water extraction has the advantages of high efficiency, environmental protection and convenient operation as an emerging physical extraction method. In order to utilize sweet potato peels effectively, soluble dietary fiber (SDF) was extracted from sweet potato (Zheshu 13) peels by subcritical water. Effect of solid-liquid ratio, extraction temperature and extraction time on SDF yield was investigated, and orthogonal application was used to optimize the extraction conditions of SDF from sweet potato peels based on the individual factor experiment. The physicochemical properties of SDF and total dietary fiber (TDF) were evaluated by water holding capacity, swelling capacity, oil holding capacity, peak viscosity and glucose adsorption capacity. The functional properties of sweet potato peels SDF and TDF were evaluated by hydroxyl radical scavenging rate and DPPH radical scavenging activity. Meanwhile, the extraction yield and all the above properties of SDF and TDF extracted by subcritical water were compared with those under other extraction conditions (hot water extraction, ultrasonic-assisted extraction and microwave-assisted extraction). The results showed that the influence of subcritical water extraction factors on SDF yield was in the order of solid-liquid ratio>extraction time>extraction temperature, and SDF yield reached to 10.43% under the optimal extraction condition (the solid-liquid ratio 1:30, 120 ℃, 30 min), which was 769.17%, 27.04% and 34.75% higher than that in the cases of unassisted hot water extraction, ultrasonic-assisted extraction and microwave-assisted extraction respectively. The ratio of SDF in TDF (SDF/TDF) reflects the quality of TDF and it was the highest when subcritical water extraction was adopted (42.26%), which was 665.58%, 14.43% and 19.24% higher than that in the cases of unassisted hot water extraction, ultrasonic-assisted extraction and microwave-assisted extraction. The glucose adsorption capacity (4.79 mmol/g), hydroxyl radical scavenging capacity (54.28%) and DPPH free radical scavenging capacity (69.28%) of SDF extracted by subcritical water were higher than that extracted by unassisted hot water, ultrasonic-assisted extraction and microwave assisted-extraction. The swelling capacity (7.89 mL/g), oil holding (4.74 g/g) and peak viscosity (27.18 mPa/s) of TDF extracted by subcritical water were significantly higher than those under the other extraction conditions. However, there was no significant difference in the swelling capacity and the peak viscosity for SDF extracted by different methods. The results of this study will provide a theoretical basis for effective utilization of byproduct during sweet potato processing, and it will be a reference for further research on subcritical water in the field of dietary fiber extraction.
fiber; residues; extraction; sweet potato peels; subcritical water extraction; physicochemical properties; functional properties
孟祥河,戴建波,曹 艷,陳劍兵,夏其樂(lè),吳衛(wèi)成. 亞臨界水提法提高甘薯皮可溶性膳食纖維得率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(20):303-310.doi:10.11975/j.issn.1002-6819.2019.20.037 http://www.tcsae.org
Meng Xianghe, Dai Jianbo, Cao Yan, Chen Jianbing, Xia Qile, Wu Weicheng. Increasing yield of soluble dietary fiber from sweet potato peel by using subcritical water extraction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 303-310. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.20.037 http://www.tcsae.org
2019-05-11
2019-09-26
浙江省基礎(chǔ)公益研究計(jì)劃項(xiàng)目(LGN18C200030);浙江省農(nóng)業(yè)科學(xué)院地方科技合作項(xiàng)目(LS2017012)
孟祥河,教授,博士,博士生導(dǎo)師,主要從事植物蛋白工程與營(yíng)養(yǎng)功能因子研究。Email:mengxh@zjut.edu.cn
吳衛(wèi)成,副研究員,主要從事農(nóng)副產(chǎn)品綜合利用研究。Email:wu_wc@sina.com
10.11975/j.issn.1002-6819.2019.20.037
TS215
A
1002-6819(2019)-20-0303-08