費(fèi)良軍,康守旋,聶衛(wèi)波,鐘 韻,姜瑞瑞,陳 琳
基于Green-Ampt的膜孔灌三維入滲模型建立與驗(yàn)證
費(fèi)良軍,康守旋,聶衛(wèi)波,鐘 韻,姜瑞瑞,陳 琳
(西安理工大學(xué)西北旱區(qū)生態(tài)水利工程國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,西安 710048)
在膜孔灌入滲方面研究中的入滲模型缺少明確的物理意義,針對(duì)這一問題,該文以一維Green-Ampt公式為基礎(chǔ)進(jìn)行探討。對(duì)公式中概化濕潤(rùn)鋒為平面的假設(shè)條件進(jìn)行深化討論,結(jié)合膜孔灌三維入滲特點(diǎn),建立了包含膜孔直徑、表征導(dǎo)水率和濕潤(rùn)鋒面水吸力的膜孔灌入滲模型,利用室內(nèi)入滲試驗(yàn)和以不同土壤質(zhì)地(典型砂壤土、典型壤土和典型粉壤土)的Hydrus-2D軟件數(shù)值模擬結(jié)果對(duì)其進(jìn)行驗(yàn)證。結(jié)果表明:試驗(yàn)觀測(cè)和數(shù)值模擬得到的單位面積累積入滲量隨時(shí)間的變化規(guī)律與模型計(jì)算得出的結(jié)果一致,二者均方根誤差和平均絕對(duì)誤差接近于0,偏差百分比小于10%,數(shù)值相差不大;由模型計(jì)算得出的概化濕潤(rùn)鋒由試驗(yàn)及模擬結(jié)果在入滲前期相差很小,在入滲后期差別逐漸變大;另外,相較于水平方向,垂直方向的概化濕潤(rùn)鋒計(jì)算結(jié)果更加接近試驗(yàn)觀測(cè)值和數(shù)值模擬值。建立的模型可為準(zhǔn)確計(jì)算膜孔灌累積入滲量、預(yù)測(cè)濕潤(rùn)鋒形狀提供依據(jù)。
數(shù)值分析;入滲;土壤;膜孔灌;Green-Ampt模型;濕潤(rùn)鋒
Green-Ampt公式是由Green和Ampt結(jié)合毛管理論,提出的土壤水分一維入滲公式[1],通常用來研究均質(zhì)、干燥且表層有薄層積水的土壤水分入滲問題。該公式在基于一些基本假定的前提下推導(dǎo)而得到,其中物理量具有明確的物理意義,并具有參數(shù)少和求解簡(jiǎn)單等特點(diǎn),因而在國(guó)內(nèi)外得到了廣泛的使用[2-5]。國(guó)內(nèi)外學(xué)者對(duì)Green-Ampt公式中參數(shù)的確定進(jìn)行了大量的研究工作,Bouwer[6]對(duì)公式中導(dǎo)水率的取值進(jìn)行了研究,并提出公式中導(dǎo)水率取0.5倍的飽和導(dǎo)水率;張光輝等[7]以van-Genuchten導(dǎo)水模型為基礎(chǔ),利用模型中土壤物理參數(shù)推導(dǎo)出Green-Ampt公式中土壤水吸力的計(jì)算公式。針對(duì)不同的土壤入滲條件,一些學(xué)者對(duì)Green-Ampt公式進(jìn)行了改進(jìn):馬娟娟等[8]在研究變水頭入滲時(shí),在Green-Ampt公式中引入了濕潤(rùn)區(qū)平均含水率的概念,建立了有物理含義的3種入滲模型;王全九等[9]在研究層狀土和渾水入滲時(shí)分別得出了2種不同形式的Green-Ampt公式,并結(jié)合2種入滲的特點(diǎn)對(duì)公式中的參數(shù)進(jìn)行了討論。隨著灌水技術(shù)的發(fā)展,越來越多的灌溉方式被開發(fā)并日趨成熟,如膜孔灌灌水技術(shù)。膜孔灌入滲為三維入滲,而傳統(tǒng)的Green-Ampt公式為一維入滲公式,基于Green-Ampt公式并結(jié)合膜孔灌入滲特性推導(dǎo)得到入滲模型對(duì)生產(chǎn)實(shí)踐具有重要的意義。
膜孔灌是指灌溉水流在所覆地膜上流動(dòng),通過專門的作物放苗孔或者膜孔滲入到作物計(jì)劃濕潤(rùn)層的灌水技術(shù)[10]。膜孔灌既是地面灌溉,又屬于局部灌溉,因此其既具有節(jié)能的優(yōu)點(diǎn)、又兼具局部灌溉的節(jié)水效果[11]。目前學(xué)者們對(duì)膜孔灌已有大量的研究[12-14]:費(fèi)良軍等[15]研究了膜孔灌單點(diǎn)源入滲單位面積側(cè)滲量和一維垂直入滲量之間的關(guān)系,建立了包含二者的2個(gè)數(shù)學(xué)模型;馬孝義等[16]利用SWMS-3D軟件模擬不同土質(zhì)、容積密度下膜孔灌單點(diǎn)源入滲,并提出了膜孔灌平均入滲水深的簡(jiǎn)化模型;范嚴(yán)偉等[17]將膜孔灌入滲量分為垂直入滲量和膜孔側(cè)滲量,并引入單位膜孔周長(zhǎng)側(cè)滲量概念;鐘韻等[18]采用多元回歸法分析了土壤容重、初始含水率、壓力水頭等5個(gè)因素對(duì)膜孔灌入滲特性的綜合影響。迄今為止,學(xué)者們對(duì)Green-Ampt公式和膜孔灌分別進(jìn)行了大量的研究,但對(duì)膜孔灌條件下,基于Green-Ampt公式的入滲模型鮮有成果,因此本文就此問題進(jìn)行了探究,以期為完善膜孔灌理論研究提供基礎(chǔ)。
式中為入滲率,cm/min;K為表征導(dǎo)水率,cm/min;z為概化濕潤(rùn)鋒深度,cm;S為濕潤(rùn)鋒面處水吸力,cm;為土壤表層積水深度,cm。
由水量平衡原理知:
式中為累積入滲量,cm;θ為土壤飽和含水率,cm3/cm3;θ為土壤初始含水率,cm3/cm3。
入滲率和累積入滲量存在函數(shù)關(guān)系為
式中為時(shí)間,min。
式(1)-式(3)為Green-Ampt入滲公式,對(duì)于著重研究土壤入滲過程,Green-Ampt入滲公式具有特殊的作用。此公式因其各符號(hào)有著明確的物理量含義以及在使用過程中具有較高的準(zhǔn)確性而受到廣泛的應(yīng)用。
注:zf為概化濕潤(rùn)鋒深度,cm;H為土壤表層積水深度,cm。
1.2.1 膜孔灌入滲
膜孔灌入滲為三維入滲問題,如圖2a所示,膜孔為具有恒定水頭的圓柱形水室,其濕潤(rùn)體過膜孔中心的各個(gè)垂直剖面均相同。如圖3為過膜孔中心的垂直剖面,其形狀接近于1/2橢圓[20-21],因此整個(gè)濕潤(rùn)體形狀為接近于以垂直剖面繞軸旋轉(zhuǎn)后的旋轉(zhuǎn)橢球體。為了研究方便,這里僅取過膜孔中心的垂直剖面研究。圖2b所示垂直剖面中軸取向下為正方向,并設(shè)土層表面為軸起點(diǎn),軸為土壤表層,軸與軸交點(diǎn)點(diǎn)為膜孔中心處。過膜孔中心的各個(gè)垂直剖面均相同,故可將膜孔灌三維入滲簡(jiǎn)化為二維入滲問題:由剖面(過膜孔中心的垂直剖面)上方的膜孔水室對(duì)剖面進(jìn)行入滲的二維入滲問題,該膜孔水室為從?到(為膜孔半徑)、單位寬度的線狀水室,在此將線狀水室看作壓力水頭為(為膜孔水室水頭)的線狀入滲源。
注:d為膜孔半徑,cm;H′為膜孔水室水頭,cm。
注:L為點(diǎn)(x,0)到點(diǎn)(a,b)的滲流路徑,即2點(diǎn)間距離,cm。
1.2.2 膜孔灌Green-Ampt入滲模型
1)基本假設(shè)
在一維Green-Ampt入滲公式中,假設(shè)濕潤(rùn)鋒面為水平濕潤(rùn)鋒,即從有薄層積水的土壤表層各點(diǎn)入滲到水平濕潤(rùn)鋒面與之垂直對(duì)應(yīng)的各點(diǎn)其水分通量相同,且土層分為濕潤(rùn)區(qū)(土壤含水率為飽和含水率)和為濕潤(rùn)區(qū)(土壤含水率為初始含水率)。參考一維Green-Ampt入滲公式假設(shè),膜孔灌Green-Ampt入滲公式假設(shè)線狀入滲源(下文中簡(jiǎn)稱線源)入滲到概化濕潤(rùn)鋒上各點(diǎn)的水分通量均相同;并假設(shè)濕潤(rùn)區(qū)土壤含水率為飽和含水率,未濕潤(rùn)區(qū)含水率為初始含水率。另外,在入滲開始時(shí),膜孔水室處的表層土壤其含水率為飽和含水率。
2)模型推導(dǎo)
式中(a,b)為點(diǎn)(,0)到點(diǎn)(,)的入滲率,cm/min;K為表征導(dǎo)水率,cm/min;z為概化濕潤(rùn)鋒上點(diǎn)(,)深度,cm;S為濕潤(rùn)鋒面處水吸力,cm;為水室水頭,cm;為點(diǎn)(,0)到點(diǎn)(,)的滲流路徑,即2點(diǎn)間距離,cm。
此為線源任一點(diǎn)(,0)處的入滲公式。
滲流路徑計(jì)算公式為
式中為滲流路徑,cm。
、分別為概化濕潤(rùn)鋒一點(diǎn)橫、縱坐標(biāo),cm;為線源任一點(diǎn)橫坐標(biāo)值,cm。
因而其水分通量為
式中Δ(a,b)為線源對(duì)點(diǎn)(,)的水分通量,cm2/min,其中線源視為寬度為單位1,長(zhǎng)度為2的入滲源。
式(6)的積分結(jié)果為
式中各符號(hào)含義同式(6)。
用概化濕潤(rùn)鋒上任意一點(diǎn)(,)代替點(diǎn)(,),其中≥0(當(dāng)=0時(shí),>),則式(7)可化為
式中、為概化濕潤(rùn)鋒任一點(diǎn)坐標(biāo)值,cm。
此即為概化濕潤(rùn)鋒曲線。當(dāng)≤0時(shí),積分后得到Δ(x,z)相同。
依據(jù)基本假設(shè)中概化濕潤(rùn)鋒上各點(diǎn)水分通量相同,即各點(diǎn)處Δ(x,z)均相同,則整個(gè)濕潤(rùn)鋒線源水分通量Δ為
D=D(x,z)(9)
依線源視為寬度為單位1,長(zhǎng)度為2的入滲源可知,入滲率為線源水分通量與其面積的比值(這里僅取軸右半邊線源面積),使用下式計(jì)算
將式(8)代入式(10)得
如此,當(dāng)入滲率為已知的值時(shí),即可求得關(guān)于和濕潤(rùn)鋒的曲線(,),由此可得到濕潤(rùn)鋒的形狀。由于大田灌溉中濕潤(rùn)體形狀不便獲取,為保障灌溉水的合理應(yīng)用,了解清楚膜孔灌土壤濕潤(rùn)體特性規(guī)律,進(jìn)而選擇適宜的膜孔灌技術(shù)參數(shù)對(duì)于有效調(diào)控土壤水分分布顯得十分重要。
3)模型討論
將(,)繞Z軸旋轉(zhuǎn)1周,即利用式(12)進(jìn)行積分即可得到濕潤(rùn)體的表達(dá)式為
式中為旋轉(zhuǎn)體(此處為濕潤(rùn)體)的體積,cm3;()為繞軸旋轉(zhuǎn)的連續(xù)曲線,cm;1、2為積分上下限。
因由上得到的(,)為一個(gè)關(guān)于和的隱函數(shù),難以使(,)化為形如=()的形式,故直接利用式(14)進(jìn)行積分不可行??山Y(jié)合數(shù)值分析中求積分的方法復(fù)化辛普森公式計(jì)算概化濕潤(rùn)體體積:利用Matlab軟件畫出其函數(shù)圖像及圖像上各點(diǎn)的值后,再進(jìn)行積分計(jì)算得到概化濕潤(rùn)體體積。
由水量平衡原理,可得出累積入滲量()和濕潤(rùn)體之間得關(guān)系
()=(?)(13)
式中()為膜孔灌累積入滲量,cm3;為時(shí)間,min;θ、θ為土壤飽和含水率和初始含水率,cm3/cm3;為概化濕潤(rùn)體體積,cm3。
將計(jì)算得到的值代入式(13)后只可得到一個(gè)確定的累積入滲量值,不能得到濕潤(rùn)鋒曲線(,)和濕潤(rùn)體體積隨時(shí)間的變化關(guān)系。因此基于此方法難以直接建立類似于一維垂直入滲中Green-Ampt公式中濕潤(rùn)鋒隨時(shí)間的變化關(guān)系。
綜上,本文建立了濕潤(rùn)鋒形狀與入滲率之間的關(guān)系,而對(duì)于Green-Ampt公式中濕潤(rùn)鋒形狀隨時(shí)間變化的模型仍需進(jìn)一步探索。
驗(yàn)證中采用復(fù)化辛普森公式計(jì)算概化濕潤(rùn)鋒面積。為評(píng)價(jià)1.2節(jié)中模型的準(zhǔn)確性,進(jìn)行膜孔灌室內(nèi)試驗(yàn)和Hydrus-2D軟件膜孔灌數(shù)值模擬,主要通過單位面積累積入滲量和濕潤(rùn)鋒運(yùn)移過程來驗(yàn)證,并利用均方根誤差、偏差百分比和平均絕對(duì)誤差來評(píng)價(jià)模型計(jì)算結(jié)果的準(zhǔn)確性。
2.1.1 試驗(yàn)裝置
膜孔灌試驗(yàn)裝置如圖4所示共分為馬氏瓶、膜孔和土箱3個(gè)部分。土箱規(guī)格為24 cm×20 cm×30 cm大小,使用厚度為10 mm的有機(jī)玻璃制成。為方便觀察濕潤(rùn)鋒,使用了1/4膜孔,膜孔使用5 mm厚的有機(jī)玻璃制成,水室高4 cm,試驗(yàn)時(shí)將膜孔置于土箱一角,并使用馬氏瓶為試驗(yàn)供水。
2.1.2 試驗(yàn)方法
供試土樣為西安粉砂土,風(fēng)干碾碎后過2 mm篩,以備后用。土壤顆粒由英國(guó)生產(chǎn)的Mastersizer-2000激光粒度分析儀(英國(guó)馬爾文儀器有限責(zé)任公司)測(cè)定,粒徑在≤0.002,>0.002~0.02,>0.02~2 mm的體積分?jǐn)?shù)分別為9.79%,56.61%,33.60%;土壤水分特征曲線采用van Genuchten模型,其參數(shù)通過RETC軟件獲得。土壤飽和導(dǎo)水率為0.025 cm/min、經(jīng)驗(yàn)擬合參數(shù)和分別為0.137和1.16、經(jīng)驗(yàn)擬合參數(shù)為0.006 cm-1、飽和含水率0.479 cm3/cm3、滯留含水率0.048 cm3/cm3。
圖4 試驗(yàn)裝置圖
試驗(yàn)中土壤容重設(shè)置為1.30 g/cm3。裝填土箱時(shí),每5 cm按設(shè)置容重計(jì)算后進(jìn)行壓實(shí)裝填,層間打毛。為驗(yàn)證膜孔灌Green-Ampt入滲模型,本次試驗(yàn)以膜孔直徑作為影響因素,設(shè)置3個(gè)不同的處理,各處理膜孔直徑分別為4、6和8 cm,每個(gè)處理重復(fù)3次。
試驗(yàn)觀測(cè)內(nèi)容包括:1)試驗(yàn)持續(xù)5 h,入滲開始后按先密后疏的時(shí)間間隔(1、3、5、10、20、30、40、50、60 min,以后每隔30 min記錄一次)記錄馬氏瓶讀數(shù),用以計(jì)算累積入滲量;2)在土箱外壁上描繪不同時(shí)刻的濕潤(rùn)鋒的位置及形狀。
2.2.1 模擬土壤特性
數(shù)值模擬使用Hydrus-2D軟件對(duì)不同膜孔直徑的膜孔灌進(jìn)行模擬。為保證土壤的廣泛性和研究成果的普適性,采用了Hydrus-2D軟件中的3種典型土質(zhì)(典型砂壤土、典型壤土和典型粉壤土)進(jìn)行模擬,其基本物理參數(shù)如表1所示。數(shù)值模擬中采用6 cm的膜孔直徑,水頭為4 cm。
表1 典型土壤物理參數(shù)
2.2.2 膜孔灌數(shù)學(xué)模型
膜孔灌入滲為三維充分供水條件下的入滲,由于單點(diǎn)源自由入滲在平面上軸對(duì)稱,因此將膜孔灌簡(jiǎn)化為如圖5所示的二維問題進(jìn)行研究。圖5為膜孔灌自由入滲縱向剖面圖。
圖5 膜孔灌自由入滲剖面圖
1)膜孔灌自由入滲土壤水分運(yùn)動(dòng)基本方程
假設(shè)土壤為均質(zhì)、各向同性、骨架不變形的多孔介質(zhì),不考慮率溫度和源匯項(xiàng)的影響,則土壤水分運(yùn)動(dòng)方程為
式中為土壤體積含水率,cm3/cm3;為徑向坐標(biāo),cm,規(guī)定向右為正;為垂向坐標(biāo),cm,規(guī)定向下為正;為入滲時(shí)間,min;為土壤負(fù)壓水頭,cm;()為非飽和土壤導(dǎo)水率,cm/min。
2)初始條件
土壤初始含水率分布均勻時(shí),土壤水分運(yùn)動(dòng)的初始條件為
(,)=0≤≤;0≤≤;=0 (15)
式中θ為土壤的初始含水率,cm3/cm3;為模擬區(qū)域邊界在徑向的坐標(biāo),cm;為模擬區(qū)域邊界在垂直方向的坐標(biāo),cm。
3)邊界條件
上邊界
下邊界
=0≤≤;=;>0 (18)
左邊界
右邊界
==;0≤≤;>0 (20)
式中為膜孔水室水頭,cm;為模擬區(qū)域邊界在徑向的坐標(biāo),cm;為模擬區(qū)域邊界在垂直方向的坐標(biāo),cm。
為評(píng)價(jià)模型準(zhǔn)確性,利用統(tǒng)計(jì)學(xué)中均方根誤差(root mean square error,RMSE)、偏差百分比(percentage of bias,PBIAS)和平均絕對(duì)誤差(mean absolute error,MAE)3個(gè)指標(biāo),對(duì)模型中公式計(jì)算值與試驗(yàn)觀測(cè)值和數(shù)值模擬值之間的符合度進(jìn)行評(píng)價(jià)分析。各指標(biāo)定義如下
式中RMSE為均方根誤差;PBIAS為偏差百分比;MAE為平均絕對(duì)誤差;M為第個(gè)觀測(cè)值或模擬值;S為第個(gè)計(jì)算值;為數(shù)據(jù)總個(gè)數(shù)。
RMSE和MAE越接近0,PBIAS<±10%時(shí),表示計(jì)算值與試驗(yàn)觀測(cè)值和數(shù)值模擬值差異越小,兩者吻合越好。
使用1.2節(jié)中推導(dǎo)得到的式(11)、式(12)和式(13)計(jì)算得到單位膜孔面積累積入滲量與試驗(yàn)觀測(cè)值和數(shù)值模擬值進(jìn)行比較,以驗(yàn)證推導(dǎo)得到的膜孔灌三維Green-Ampt入滲模型的準(zhǔn)確性。試驗(yàn)和數(shù)值模擬土壤參數(shù)及其他條件在第2節(jié)中詳細(xì)給出。
單位膜孔面積累積入滲量模型公式計(jì)算值與觀測(cè)值和模擬值之間的比較如圖6所示。
a. 試驗(yàn)觀測(cè)值與計(jì)算值
a. Experimental and calculated values
b. 數(shù)值模擬值與計(jì)算值
從圖6中可以得出:1)單位膜孔面積累積入滲量的計(jì)算值與觀測(cè)值和模擬值的RMSE分別為0.96和0.76 cm,RMSE接近于0;PBIAS分別為?4.8%和?3.1%,PBIAS<10%;MAE分別為0.54和0.11 cm,MAE接近于0;3組統(tǒng)計(jì)學(xué)指標(biāo)均符合要求,計(jì)算值大小接近于觀測(cè)值和模擬值。計(jì)算值和觀測(cè)值以及模擬值隨時(shí)間變化規(guī)律相一致,計(jì)算值整體略大于觀測(cè)值以及模擬值,其入滲前期的大小差別小于入滲后期;2)試驗(yàn)觀測(cè)值中不同膜孔直徑的處理觀測(cè)值與計(jì)算值接近程度不同,各處理均方根誤差從大到小為1.14(6 cm)>0.93(8 cm)>0.82(10 cm),膜孔直徑為6 cm的處理其觀測(cè)值與其計(jì)算值偏離程度大于其他2個(gè)處理,這可能是由于試驗(yàn)過程中膜孔直徑越小時(shí),試驗(yàn)觀測(cè)值的相對(duì)誤差將越大;3)通過對(duì)比數(shù)值模擬值與計(jì)算值可發(fā)現(xiàn),典型粉壤土的模擬結(jié)果與其計(jì)算值吻合程度最高,這是因?yàn)槟P突炯僭O(shè)中將土壤分為濕潤(rùn)區(qū)和未濕潤(rùn)區(qū),而粉壤土實(shí)際入滲情況中含水率的分布更加接近此基本假設(shè)[19]。
依據(jù)1.2節(jié)中式(13)計(jì)算得出概化濕潤(rùn)鋒與試驗(yàn)及模擬所得濕潤(rùn)鋒進(jìn)行比較,因篇幅有限,僅列出試驗(yàn)中直徑為6 cm濕潤(rùn)鋒觀測(cè)值及典型壤土模擬值與模型公式計(jì)算值的對(duì)比情況,如圖7所示。
a. 試驗(yàn)觀測(cè)值與計(jì)算值
a. Experimental and calculated values
b. 數(shù)值模擬值與計(jì)算值
由圖7可知,1)概化濕潤(rùn)鋒計(jì)算值與濕潤(rùn)鋒觀測(cè)值及模擬值隨時(shí)間變化規(guī)律一致,形狀均類似1/4橢圓[22],試驗(yàn)觀測(cè)和數(shù)值模擬的濕潤(rùn)鋒范圍整體上均大于計(jì)算得到的概化濕潤(rùn)鋒值,這是因?yàn)閷?shí)際入滲中,濕潤(rùn)鋒范圍內(nèi)的土壤含水率存在飽和區(qū)、過渡區(qū)[23],在過渡區(qū)含水率未達(dá)到飽和狀況,而在概化濕潤(rùn)鋒范圍內(nèi)含水率為飽和含水率,故試驗(yàn)和模擬得到的濕潤(rùn)鋒范圍大于計(jì)算得到的概化濕潤(rùn)鋒范圍;2)與方向相比較,方向上計(jì)算得到的概化濕潤(rùn)鋒與濕潤(rùn)鋒觀測(cè)值和模擬值差值更小,計(jì)算結(jié)果更吻合。依據(jù)文獻(xiàn)[24],水分運(yùn)移過程中,在垂直方向上同時(shí)受到壓力水頭、基質(zhì)勢(shì)和重力勢(shì)的作用,而在水平方向上僅有基質(zhì)勢(shì)作用,所以水平方向的濕潤(rùn)鋒水分運(yùn)移較慢,含水率變化較大,因此1.2節(jié)中膜孔灌三維Green-Ampt公式計(jì)算得到的概化濕潤(rùn)鋒在方向(垂直方向)比方向(水平方向)更加接近實(shí)際濕潤(rùn)鋒。
基于一維Green-Ampt入滲公式,建立了膜孔灌條件下的三維Green-Ampt入滲模型。為驗(yàn)證推導(dǎo)所得模型的準(zhǔn)確性,利用膜孔灌室內(nèi)試驗(yàn)和數(shù)值模擬試驗(yàn)對(duì)其進(jìn)行驗(yàn)證,得出如下結(jié)論:
1)比較了單位膜孔面積累積入滲量模型公式計(jì)算值與試驗(yàn)觀測(cè)值和數(shù)值模擬值,統(tǒng)計(jì)分析指標(biāo)均方根誤差和平均絕對(duì)誤差接近于0,偏差百分比<10%,建立的模型的可靠性得到了驗(yàn)證。計(jì)算值和觀測(cè)值以及模擬值隨時(shí)間變化規(guī)律相一致,計(jì)算值整體略大于觀測(cè)值以及模擬值。
2)膜孔直徑為6 cm的處理較膜孔直徑為8和10 cm處理其累積入滲量計(jì)算值相對(duì)觀測(cè)值差異更大;
3)相較于典型砂壤土和典型壤土,典型粉壤土的累積入滲量計(jì)算值與模擬值吻合程度更高;
4)概化濕潤(rùn)鋒計(jì)算值與濕潤(rùn)鋒觀測(cè)值和模擬值隨時(shí)間變化規(guī)律一致,試驗(yàn)觀測(cè)和數(shù)值模擬的濕潤(rùn)鋒范圍整體上均大于計(jì)算得到的概化濕潤(rùn)鋒值。方向上計(jì)算得到的概化濕潤(rùn)鋒比方向計(jì)算結(jié)果更吻合。
[1] Green W H, Ampt G A. Studies in soil physics. I. The flow of air and water through soils[J]. J Agr Sci, 1911, 4: 1-24.
[2] Hammecker C, Antonino A C D, Maeght J L, et al. Experimental and numerical study of water flow in soil under irrigation in northern Senegal: Evidence of air entrapment[J]. European Journal of Soil Science, 2010, 54(3): 491-503.
[3] Paulus R, Dewals B J, Erpicum S, et al. Innovative modelling of 3D unsaturated flow in porous media by coupling independent models for vertical and lateral flows[J]. Journal of Computational and Applied Mathematics, 2013, 246(5): 38-51.
[4] 梁嘉平,史文娟,王全九.添加-聚谷氨酸條件下Philip模型與Green-Ampt入滲模型的對(duì)比分析[J]. 干旱地區(qū)農(nóng)業(yè)研究,2017,35(3):74-79.
Liang Jiaping, Shi Wenjuan, Wang Quanjiu. Comparison analysis of Philip model and Green-Ampt infiltration model under condition of added-PGA[J]. Agricultural Research in the Arid Areas, 2017, 35(3): 74-79. (in Chinese with English abstract)
[5] 周蓓蓓,侯亞玲,王全九.枯草芽孢桿菌改良鹽堿土過程中水鹽運(yùn)移特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(6):104-110.
Zhou Beibei, Hou Yaling, Wang Quanjiu. Characteristics of water and salt migration in process of improving saline alkali soil with bacillus subtilis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 104-110. (in Chinese with English abstract)
[6] Bouwer H. Infiltration of water into nonuniform soil[J]. Peoc ASCE, 1969, 95(IR4): 451-462.
[7] 張光輝,邵明安.用土壤物理特性推求Green-Ampt入滲模型中吸力參數(shù)Sf[J]. 土壤學(xué)報(bào),2000,37(4):553-557.
Zhang Guanghui, Shao Ming'an. Using soil physical propertles to determine the absorptire parameter Sf in green-ampt infiltration model[J]. ACTA Pedologica Sinica, 2000, 37(4): 553-557. (in Chinese with English abstract)
[8] 馬娟娟,孫西歡,郭向紅.基于Green-Ampt模型的變水頭積水入滲模型建立及其參數(shù)求解[J]. 水利學(xué)報(bào),2010,41(1):61-67.
Ma Juanjuan, Sun Xihuan, Guo Xianghong. Varying head infiltration model based on Green-Ampt model and solution to its key parameters[J]. Journal of Hydraulic Engineering, 2010, 41(1): 61-67. (in Chinese with English abstract)
[9] 王全九,邵明安,汪志榮,等.Green-Ampt公式在層狀土入滲模擬計(jì)算中的應(yīng)用[J]. 土壤侵蝕與水土保持學(xué)報(bào),1999,5(4):66-70.
Wang Quanjiu, Shao Ming'an, Wang Zhirong, et al. Application of green-ampt equation during infiltration in layered soil[J]. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(4): 66-70. (in Chinese with English abstract)
[10] Hu H Y, Jin J, Cheng D J, et al. Influence of plant space on dynamic changes of soil nitric nitrogen sunder film hole irrigation[J]. Procedia Engineering, 2012, 28: 246-251.
[11] 徐首先,魏玉強(qiáng),聶新山,等.膜孔灌理論及實(shí)用技術(shù)初步研究[J]. 水土保持研究,1996,3(3):23-29.
Xu Shouxian, Wei Yujiang, Nie Xinshan, et al. Theory of film holer irigation and practieal technology research[J]. Research of Soil and Water Conservation, 1996, 3(3): 23-29. (in Chinese with English abstract)
[12] 劉利華,費(fèi)良軍,陳琳,等.膜孔直徑對(duì)渾水膜孔灌土壤水氮運(yùn)移特性的影響[J]. 水土保持學(xué)報(bào),2018,32(3):126-131.
Liu Lihua, Fei Liangjun, Chen Lin, et al. Effect of film hole diameter on transport characteristics of water and nitrogen in soil under film hole irrigation with muddy water[J]. Journal of Soil and Water Conservation, 2018, 32(3): 126-131. (in Chinese with English abstract)
[13] 陳琳,費(fèi)良軍,劉利華,等.土壤初始含水率對(duì)渾水膜孔灌肥液自由入滲水氮運(yùn)移特性影響[J]. 水土保持學(xué)報(bào),2018,32(2):58-66.
Chen Lin, Fei Liangjun, Liu Lihua, et al. Effects of soil initial water content on transport characteristics of free infiltration water and nitrogen under film hole irrigation with muddy water[J]. Journal of Soil and Water Conservation, 2018, 32(2): 58-66. (in Chinese with English abstract)
[14] 董玉云,費(fèi)良軍,賈麗華.灌溉定額對(duì)膜孔灌玉米土壤水氮分布和產(chǎn)量的影響[J]. 土壤通報(bào),2014,45(5):1083-1088.
Dong Yuyun, Fei Liangjun, Jia Lihua. Effects of different irrigation times on water and nitrogen distribution and maize yield under film hole irrigation[J]. Chinese Journal of Soil Science, 2014, 45(5): 1083-1088. (in Chinese with English abstract)
[15] 費(fèi)良軍,程?hào)|娟,雷雁斌,等. 膜孔灌單點(diǎn)源入滲特性與數(shù)學(xué)模型研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2007,32(5):212-216.
Fei Liangjun, Cheng Dongjuan, Lei Yanbin, et al. Study on the infiltration characteristic and the mathematical model of the point source free infiltration under film hole irrigation[J]. Journal of Northwest A& F University: Nat Sci Ed, 2007, 32(5): 212-216. (in Chinese with English abstract)
[16] 馬孝義,范嚴(yán)偉,王術(shù)禮,等. 膜孔灌平均入滲水深簡(jiǎn)化計(jì)算模型建立與驗(yàn)證[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(8):67-73.
Ma Xiaoyi, Fan Yanwei, Wang Shuli, et al. Simplified infiltration model of film hole irrigation and its validation[J]. Transactions of the Chinese Society of Agricultural Machinery, 2009, 40(8): 67-73. (in Chinese with English abstract)
[17] 范嚴(yán)偉,趙彤,趙文舉,等.膜孔灌灌溉入滲量的簡(jiǎn)化計(jì)算方法及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(13):67-74.
Fan Yanwei, Zhao Tong, Zhao Wenju, et al. Simplified calculation method and its validation of infiltration capacity for film hole irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 67-74. (in Chinese with English abstract)
[18] 鐘韻,費(fèi)良軍,劉樂.膜孔灌溉下土壤入滲特征的多因素分析[J]. 水科學(xué)進(jìn)展,2018,29(4):505-513.
Zhong Yun, Fei Liangjun, Liu Le, et al. Analysis on soil infiltration characteristics of film hole irrigation as affected by multi-factors[J]. Advances in Water Science, 2018, 29(4): 505-513. (in Chinese with English abstract)
[19] 雷志棟,楊詩(shī)秀,謝森傳. 土壤水動(dòng)力學(xué)[M]. 北京:清華大學(xué)出版社,1988:227.
[20] 范嚴(yán)偉,趙彤,白貴林,等. 水平微潤(rùn)灌濕潤(rùn)體HYDRUS-2D模擬及其影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):115-124.
Fan Yanwei, Zhao Tong, Bai Guilin, et al. HYDRUS-2D simulation of soil wetting pattern with horizontal moistube-irrigation and analysis of its influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 115-124. (in Chinese with English abstract)
[21] 繳錫云,王文焰,張建豐. 單點(diǎn)膜孔入滲特性的試驗(yàn)研究[J]. 水利學(xué)報(bào),1999,30(7):34-40.
Jiao Xiyun, Wang Wenyan, Zhang Jianfeng. Experimental research on infiltration from single hole of membrane[J]. Journal of Hydraulic Engineering, 1999, 30(7): 34-40. (in Chinese with English abstract)
[22] 費(fèi)良軍,吳軍虎,王文焰,等. 充分供水條件下單點(diǎn)膜孔入滲濕潤(rùn)特性研究[J]. 水土保持學(xué)報(bào),2001,15(S1):137-140.
Fei Liangjun, Wu Junhu, Wang Wenyan, et al. Study on wetting characteristics of point source infiltration under film hole irrigation[J]. Journal of Soil and Water Conservation, 2001, 15(S1): 137-140. (in Chinese with English abstract)
[23] 彭振陽(yáng),黃介生,伍靖?jìng)?,? 基于分層假設(shè)的Green-Ampt模型改進(jìn)[J]. 水科學(xué)進(jìn)展,2012,23(1):59-66.
Peng Zhenyang, Huang Jiesheng, Wu Jingwei, et al. Modification of Green-Ampt model based on the stratification hypothesis[J]. Advances in Water Science, 2012, 23(1): 59-66. (in Chinese with English abstract)
[24] 陳琳,費(fèi)良軍,劉利華,等. 土壤初始含水率對(duì)渾水膜孔灌肥液自由入滲水氮運(yùn)移特性影響[J]. 水土保持學(xué)報(bào),2018,29(2):58-66.
Chen Lin, Fei Liangjun, Liu Lihua, et al. Effects of soil initial water content on transport characterics of free infiltration water and nitrogen under film hole irrigation with muddy water[J]. Journal of Soil and Water Conservation, 2018, 29(2): 58-66. (in Chinese with English abstract)
Development and verification of 3D Green-Ampt based membrane pore infiltration model
Fei Liangjun, Kang Shouxuan, Nie Weibo, Zhong Yun, Jiang Ruirui, Chen Lin
(State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China)
Film hole irrigation is an advanced low-cost and high-ef?ciency irrigation method, which can improve water conservation and water use ef?ciency. The study presented a three-dimensional infiltration model of film hole based on the one-dimensional Green-Ampt in?ltration model and further explored the hypothesis that the generalized wetting front was flat in the one-dimensional formula. Given the characteristics of 3D infiltration of membrane pore irrigation, we discussed the shape of infiltration source, and proposed a line source of infiltration source. And the study presented hypothesis that water flowed from liner score of infiltration source to every point at wetting front. Based on the hypothesis, a three-dimensional Green-Ampt model for membrane pore irrigation including film hole diameter, characteristics of water conductivity and wetting front suction was established. Moreover, the model proposed in this study was validated and evaluated by laboratory experimental data of film hole diameter and Hydrus-2D model based on the theory for water movement in non-saturated soil. In the laboratory experiments, diameter were used to was designed with different levels of 4, 6, and 8 cm and the experiments carried out in Sated Key Laboratory Base of Eco-hydraulics in Northwest Arid Region. The infiltration was measured by difference of water level in Markov bottle. The water level was recorded every 1, 3, 5, 10, 20, 30, 40, 50, 60 min. Wetting front were recorded on soil box surface when water levels recorded. The experiment lasted for 5 h. Each treatment of laboratory experiment was replicated 3 times. In the case of different soil textures (sandy loam soil, loam soil and silty loam soil), the dynamic change of cumulative infiltration and wetting front was simulated by Hydrus-2D. The statistical comparisons (root mean square error-RMSE, percentage of bias-PBIAS, mean absolute error-MAE) of the estimated data with the measured and simulated data were conducted. The results showed that the variation of cumulative infiltration per unit film hole area with time obtained by the measured and simulated was consistent with the cumulative infiltration per unit film hole area of the proposed model. According to comparisons of the estimated values with the measured values, the root mean square error, mean absolute error, and percentage of bias were 0.96 cm, 0.54 cm and -4.8%, respectively. The root mean square error of measured and estimated values were 1.14 (6 cm) >0.93 (8 cm) >0.82 (10 cm). Besides, the simulated cumulative infiltration value of typical silt loam was more closer to the estimated values than typical sandy loam and typical loam. Comparing estimated wetting front with the measured and simulated ones, the difference was small in initial infiltration time and gradually increased with the increase of infiltration time. In addition, compared with the horizontal direction, the estimated generalized wetting front in the vertical direction was more closer to the measured and simulated value. In summary, the established 3-D infiltration model for film hole irrigation can be used to accurately calculate the cumulative infiltration of film hole and predicte the shape of wetting front.
numerical analysis; infiltration; soils; membrane hole irrigation; Green-Ampt model; wetting front’
費(fèi)良軍,康守旋,聶衛(wèi)波,鐘 韻,姜瑞瑞,陳 琳. 基于Green-Ampt的膜孔灌三維入滲模型建立與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(20):69-75.doi:10.11975/j.issn.1002-6819.2019.20.009 http://www.tcsae.org
Fei Liangjun, Kang Shouxuan, Nie Weibo, Zhong Yun, Jiang Ruirui, Chen Lin. Development and verification of 3D Green-Ampt based membrane pore infiltration model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 69-75. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.20.009 http://www.tcsae.org
2019-03-08
2019-09-10
國(guó)家自然科學(xué)基金資助項(xiàng)目(51479161、51779205);國(guó)家農(nóng)業(yè)公益項(xiàng)目(201203003-1)
費(fèi)良軍,教授,博士生導(dǎo)師,主要從事節(jié)水灌溉與農(nóng)業(yè)水資源利用研究。Email:feiliangjun2008@163.com
10.11975/j.issn.1002-6819.2019.20.009
S274.3
A
1002-6819(2019)-20-0069-07