• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced deep-red emission in donor-acceptor molecular architecture: The role of ancillary acceptor of cyanophenyl

    2019-12-18 02:21:56YueShenXiohuiTngYuweiXuHichoLiuShitongZhngBingYngYugung
    Chinese Chemical Letters 2019年11期

    Yue Shen,Xiohui Tng,Yuwei Xu,Hicho Liu*,Shitong ZhngBing Yng*,Yugung M

    a State Key Laboratory of Supramolecular Structure and Materials,College of Chemistry,Jilin University,Changchun 130012,China

    b State Key Laboratory of Luminescent Materials and Devices,South China University of Technology,Guangzhou 510640,China

    Keywords:

    Deep-red emission

    ABSTRACT

    Organic solid-state luminescent materials with high-efficiency deep-red emission have attracted considerable interest in recent years.Constructing donor-acceptor(D-A)type molecules has been one of most commonly used strategies to achieve deep-red emission,but it is always difficult to achieve high photoluminescence(PL)quantum yield(ηPL)due to forbidden charge-transfer state.Herein,we report a new D-A type molecule 4-(7-(4-(diphenylamino)phenyl)-9-oxo-9H-fluoren-2-yl)benzonitrile (TPAFOCN),deriving from donor-acceptor-donor (D-A-D) type 2,7-bis(4-(diphenylamino)phenyl)-9Hfluoren-9-one (DTPA-FO) with a fluorescence maximum of 627 nm in solids.This molecular design enables a transformation of acceptor from fluorenone (FO) itself to 4-(9-oxo-9H-fluoren-2-yl)benzonitrile (FOCN).Compared with DTPA-FO,the introduction of cyanophenyl not only shifts the emission of TPA-FOCN to deep red with a fluorescence maximum of 668 nm in solids,but also maintains the high ηPL of 10%.Additionally,a solution-processed non-doped organic light-emitting diode (OLED)was fabricated with TPA-FOCN as emitter.TPA-FOCN device showed a maximum luminous efficiency of 0.13 cd/A and a maximum external quantum efficiency(EQE)of 0.22%with CIE coordinates of(0.64,0.35).This work provides a valuable strategy for the rational design of high-efficiency deep-red emission materials using cyanophenyl as an ancillary acceptor.

    High-efficiency red light-emitting materials have attracted significant interest because of their extensive applications in the field of organic light-emitting diodes(OLEDs)[1-7],organic solidstate lasers[8],chemical and biological sensors[9,10].In the past decades,however,it is a great challenge to obtain highperformance red light-emitting materials in terms of both high efficiency and pure red color simultaneously.The reason is that intrinsic narrow band-gap of red fluorescent molecules inherits small energy difference between excited state and ground state,which readily suffers from large non-radiative internal conversion rate (kIC) according to the energy gap law [11,12].

    The previous molecular design strategy of red fluorescent molecules was mainly focused on the large π-conjugated compounds.Such molecules generally inherit enhanced aggregation-caused quenching (ACQ) in solid state due to the strong intermolecular π-π stacking [13,14].Recently,one of the most common methods of designing deep-red fluorescent molecules is to construct strong intramolecular charge transfer (ICT) compounds with donor-acceptor (D-A) structure [5,15-20].Based on energy level difference between the highest occupied molecular orbital (HOMO) of donor and the lowest unoccupied molecular orbital (LUMO) of acceptor,the emission band gap can be finely tuned in a wide range according to the choice of donor and acceptor units in D-A molecules.To obtain narrow-band-gap lightemitting materials,an ancillary acceptor should be incorporated into D-A system,which is especially worth trying for highefficiency deep-red D-A materials.

    The readily functionalized fluorenone(FO)has been intensively studied for its wide applications in the field of optoelectronic devices,such as OLEDs[21],organic field-effect transistors(OFETs)[22-24],organic photovoltaic cells (OPVs) [25,26],biological sensors [27,28] and nonlinear optical materials [29].Initially,FO-based derivatives were regarded as unfavorable luminous species,because the FO derivatives usually possess the n→π*state characteristic in the lowest singlet state (S1),which leads to a forbidden radiative transition and low photoluminescence (PL)quantum yield(ηPL).On the other hand,the π→π*state is possible to become the lowest S1state lying below n→π* state due to chemical modification in FO-based derivatives,and π→π* state is favorable for luminescence [30].Taoet al.have reported a red fluorescent molecule,2,7-bis(4-(diphenylamino)phenyl)-9H-fluoren-9-one(DTPA-FO)[31],employing FO as acceptor,and realized strong luminescence by lowering the π→π*state as radiative state.In this work,we designed a new fluorescent molecule based on FO,4-(7-(4-(diphenylamino)phenyl)-9-oxo-9H-fluoren-2-yl)benzonitrile (TPA-FOCN) with triphenylamine (TPA) as donor and benzonitrile-substituted FO as acceptor.As a result,TPA-FOCN not only realizes a deep-red emission with fluorescence maximum of 668 nm in solids,but also maintains the high ηPLof 10%.

    We primarily tried to introduce a substituent to change the nature of emissive state.A new compound (4-(9-oxo-9H-fluoren-2-yl)benzonitrile(FOCN)was synthesized through Pd(0)-catalyzed Suzuki coupling reaction (Scheme S1 in Supporting information).Molar absorption coefficients (ε) were measured to understand the change of excited state from FO to FOCN (Fig.S1a and Table S1 in Supporting information).FOCN showed an ε of about 1113 L mol-1cm-1at the wavelength of 408 nm,which was much higher than 66 L mol-1cm-1of FO around 380 nm.For PL spectrum in tetrahydrofuran (THF) (Fig.S1b in Supporting information),FOCN exhibited strong emission peak at 502 nm,while no signal was detected for FO.Though FOCN powder shows a maximum emission wavelength of 520 nm similar to that of FO,the ηPLof FOCN powder is 32% much higher than 9% of FO.Therefore,it is very interesting what nature is responsible for the abnormal enhanced ηPLin FOCN.To better understand this essence,the timedependent density function theory (TD-DFT) calculations were performed to obtain natural transition orbitals (NTOs) of the emission in FO and FOCN (Figs.S6 and S7 in Supporting information) at the level of CAM-B3LYP/6-31 G (d,p).For S1→S0transition,FO shows that both“hole”and“particle”are delocalized over the whole molecular backbone.Obviously,FO exhibits n→π*transition and the oscillator strengthfis zero,indicating a forbidden transition of excited state.The phenomenon of no fluorescence in THF also confirms this calculation very well.Compared with FO,the S1→S0transition of FOCN undergoes the great change of excited state character from n→π* to π→π*upon the incorporation of cyanophenyl group.It shows that both“hole”and “particle” of FOCN are delocalized over the whole molecular backbone,and the transition configuration of π→π* substantially improves the oscillator strengthf(f=0.0800)relative to that of FO.At this time,the ICT states of FOCN were found in high-lying excited states,such as S3and S4,which can be experimentally probed by the solvatochromic effect from hexane(λmax= 485 nm)to dimethyl sulfoxide (λmax= 529 nm),as shown in Fig.S1c.With increasing solvent polarity,ICT energy level is gradually stabilized accompanying with the red-shifted PL spectra.For FO system,the incorporation of electron-withdrawing cyanophenyl essentially alters the electron transition configuration,which induces the increase of ηPLand high-lying ICT state.Therefore,using cyanophenyl as an ancillary acceptor in FO system,it is feasible to design highly efficient deep-red fluorescent materials.According to the results above,we selected TPA group as donor,and FOCN as acceptor to synthesize a new compound—TPA-FOCN(Scheme 1).

    Scheme 1.Molecular structures and design routes.

    Fig.1.(a)UV-vis spectra of DTPA-FO and TPA-FOCN in diluted THF solutions.(b)The PL spectra of DTPA-FO(λex= 440 nm)and TPA-FOCN(λex= 445 nm)in diluted THF solution and solid state.(c) Solvatochromic PL spectra of DTPA-FO (λex = 440 nm)and TPA-FOCN(λex= 430 nm)with increasing polarity of solvents.(d)Linear fitting of Lippert-Mataga model(the open squares and circles represent the Stokes shifts in different solvents,and the lines are fitted for solvatochromic models of the two compounds).

    To understand the basic photophysical properties of TPA-FOCN,the UV-vis and PL spectra in THF solution were measured respectively ( Figs.1a and b).DTPA-FO was also synthesized and measured for the purpose of comparison under the same conditions [31].Both DTPA-FO and TPA-FOCN show strong absorption bands in range of 270-370 nm,which can be assigned to π→π*transitions.Nevertheless,the weak band around 465 nm for DTPA-FO and 449 nm for TPA-FOCN can be attributed to the absorption of low-lying ICT excited state.The absorption band of TPA-FOCN at long wavelength was blue-shifted with respect to that of DTPA-FO,probably due to the larger conjugation extension in DTPA-FO and/or the electron-withdrawing ability of cyano group in TPA-FOCN.In THF solution,TPA-FOCN exhibits deep-red emission peaked at 660 nm,which is much red-shifted relative to 627 nm of DTPA-FO (Fig.1b).The red shift of 33 nm can be ascribed to the stronger ICT effect in TPA-FOCN than DTPA-FO,which is further confirmed by the larger redshift of PL spectra with increasing solvent polarity (Fig.1c).

    To better understand excited-state character,the UV-vis absorption and PL spectra of two compounds were recorded in various solvents ranging from nonpolar n-hexane to polar THF(Fig.1c and Fig.S2 in Supporting information).The detailed photophysical data were summarized in Tables S2 and S3(Supporting information).The absorption spectra of DTPA-FO and TPA-FOCN seldom changed in terms of their shapes and positions with increasing solvent polarity,implying a rather small dipole change at ground state in different solvents.The fluorescence measurements reveal the remarkably red-shifted and broadened spectra as solvent polarity increases.The large solvatochromic effect indicates a strong ICT-character excited state of these two compounds.Interestingly,TPA-FOCN displays less red-shifted emission than DTPA-FO in low-polarity solvents fromn-hexane to butyl ether,while it shows more red-shifted emission in medium-polarity solvents from isopropyl ether to THF.Eventually,a much larger redshift of TPA-FOCN is observed.The Lippert-Mataga relation was applied to better understand the solvent effect in a plot of the Stokes shiftversussolvent polarizability (Δ),as shown in Fig.1d.Notably,DTPA-FO is fitted into a straight line while TPA-FOCN possesses two sets of linear relationships.From the slope of the line,the dipole moment of excited state,μe,is calculated to be only 10.6 D for DTPA-FO.As a comparison,TPA-FOCN possesses the μeof 11.6 D in low-polarity solvents and 21.3 D in high-polarity solvents respectively,corresponding to two different excited states: less ICT-like state for low-polarity solvents and more ICT-like state for high-polarity solvents.In high-polarity solvents,the μeis very close to that of a typical ICT-state molecule in (N,N-dimethylamino)benzonitrile(DMABN,μe=23 D) [32],demonstrating a strong ICT-state character of TPA-FOCN.Here,the μeof 10.6 D and 11.6 D can be ascribed to hybridized local and charge-transfer (HLCT) excited state [33-41].For the ηPLin solutions from hexane to THF,both compounds show the decreasing trend due to increasing ICT component as solvent polarity increases,from 27.94%to 3.89%for DTPA-FO and 29.37%to 2.11%for TPA-FOCN,respectively(Table S4 in Supporting information).Furthermore,the photophysical properties of DTPA-FO and TPA-FOCN were measured in powder and spin-coating film,respectively(Table 1,Fig.1b,Figs.S3 and S4 in Supporting information).Compared with the orange emission of TPA-FO in solids [31],TPA-FOCN exhibits the deep-red emission feature under two different types of solid states (668 nm for powder and 656 nm for film).Though the emission wavelength of TPA-FOCN is more red-shifted relative to DTPA-FO,the ηPL(10%)can be well maintained in powder.What is more,the ηPLof TPAFOCN is higher than that of DTPA-FO in spin-coating film.Both can be ascribed to the suppression of non-radiative deactivation upon the incorporation of cyano group [ 42].As a comparison,the introduction of cyanophenyl as acceptor is the more effective way to achieve the deep-red materials relative to that by incorporation of extra donors.

    To reveal the origin of largely red-shifted emission of TPA-FOCN relative to that of DTPA-FO,a theoretical calculation was carried out in TPA-FOCN and DTPA-FO (Fig.2 a).In terms of the frontier molecular orbital(HOMO and LUMO),LUMO is mostly localized on the FO unit,while HOMO is distributed on the whole molecular backbone of DTPA-FO.From DTPA-FO to TPA-FOCN,one-sided TPA unit is replaced by cyanophenyl,resulting in a great change of the wavefunctions of HOMO and LUMO.HOMO of TPA-FOCN is mostly localized on TPA and partial phenyl ring of FO,while its LUMO is mainly distributed on FO unit and cyanophenyl.As a result,a large orbital separation between HOMO and LUMO is observed for TPAFOCN,indicative of a stronger ICT character in TPA-FOCN.

    Fig.2.(a) Molecular orbital diagrams of HOMO and LUMO of optimized DTPA-FO and TPA-FOCN.(b) NTO in DTPA-FO and TPA-FOCN.Herein, f represents for the oscillator strength,and the percentage weights of hole-particle are given based on the S1 state geometry.

    To describe the excited-state character of TPA-FOCN and DTPAFO,NTOs of excited state are further calculated at the excited state S1geometry (Fig.2b and Figs.S8 and S9 in Supporting information).The estimated emission wavelengths of TPA-FOCN and DTPA-FO are in good agreement with the results in n-hexane solvent.The“particle”of TPA-FOCN is mainly localized on FO unit,which is similar to that of DTPA-FO.The "hole" of TPA-FOCN is distributed on TPA unit and FO unit,but it is on the whole molecular backbone for DTPA-FO.So HLCT state that consists of ICT(TPA→FO) and LE of FO is mainly responsible for the emission of TPA-FOCN in low-polarity solvents,and cyano group does not participate in "particle" according to results.Thus,the more localized “hole” results in the blue-shifted emission of TPA-FOCN in contrast to that of DTPA-FO in hexane.With the increase of solvent polarity,TPA-FOCN shows a stronger ICT character relative to DTPA-FO,probably because the high-lying ICT state(such as S4)with main participation of cyano group can be stabilized to become the low-lying excited state.

    Cyclic voltammetry(CV)curves of TPA-FOCN and DTPA-FO were measured against the ferrocene/ferrocenium redox couple as reference (Table 1 and Fig.S5 in Supporting information).The LUMO level of TPA-FOCN is -3.31 eV,which is lower than that of DTPA-FO (-3.19 eV).Meanwhile,the HOMO level of TPA-FOCN is-5.21 eV which is almost the same as-5.20 eV of DTPA-FO.As a consequence,TPA-FOCN possesses much narrower electronic bandgapof1.90 eVincomparisonwith2.01 eVofDTPA-FO,corresponding to the more red-shifted emission of TPA-FOCN than DTPA-FO in medium-and high-polarity solvents.

    To explore the application of deep-red TPA-FOCN,we focused on its electroluminescent (EL) properties.In view of its suitable energy levels and good solubility,non-doped solution-processed OLED was fabricated with a multilayer device structure (Fig.3a):ITO/PEDOT-PSS (40 nm)/TPA-FOCN (50 nm) /TPBi (40 nm)/LiF(1 nm)/Al (100 nm).Where,PEDOT-PSS is poly(3,4-ethylenedioxy-thiophene)-polystyrene sulfonate,serving as the holeinjecting layer.TPBi is 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene,acting as electron-transporting and hole-blocking layer.LiF is used as electron-injecting material in this device.Deep-red emission was obtained with EL spectrum peaked at 648 nm in device,together with CIE coordinate of (0.64,0.35).The EL spectrum (Fig.3b) of TPA- FOCN device well accords with its corresponding PL spectrum.The turn-on voltage of the device is 4.0 V,which is recorded at the luminance of 1 cd/m2,and the maximum luminance can reach 824 cd/m2(Fig.3c).TPA-FOCN device showed a maximum luminous efficiency of 0.13 cd/A and a maximum external quantum efficiency(EQE)of 0.22%( Figs.3c and d).Though EQE of this OLED is not very high,it is a meaningful attempt for non-doped solution-processed deep-red OLED.

    Table1 Detailed photophysical and electrochemical properties of DTPA-FO and TPA-FOCN.

    Fig.3.(a)Schematic energy level diagram of TPA-FOCN device.(b)EL spectrum of a multilayer OLED based on TPA-FOCN as the emitter.(c) Luminance-voltagecurrent density curves of TPA-FOCN.(d) External quantum efficiency-voltage curve of TPA-FOCN.

    In summary,we constructed a new D-A molecule TPA-FOCN by modifying DTPA-FO with the distinctive cyanophenyl group,which shows deep-red emission at 668 nm in powder.As an ancillary acceptor,the incorporation of cyanophenyl not only enhances the ability of acceptor,but also modulates the ICTcomponents in emissive state.Compared with DTPA-FO,the strong ICTcharacter of TPA-FOCN has been further confirmed by experimental and theoretical investigations.Importantly,the introduction of cyanophenyl maintains high PL efficiency of 10%.Our results suggest that cyanophenyl can act as an ancillary acceptor to effectively decrease emission band-gap,increase ICT component and maintain high PL efficiency,which is a good building block to design high-efficiency narrow-band-gap fluorescent materials using D-A molecular architecture.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Nos.91833304,51873077,51803071 and 51673083),the National Basic Research Program of China (Nos.2015CB655003 and 2016YFB0401001),the Postdoctoral Innovation Talent Support Project (Nos.BX201700097 and BX20180121),the China Postdoctoral Science Foundation (Nos.2017M620108 and 2018M641767) and JLUSTIRT (No.2019TD-33).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2019.07.059.

    日本五十路高清| 久久中文字幕人妻熟女| 国产亚洲欧美98| 成人欧美大片| 成人av一区二区三区在线看| 亚洲av美国av| 69精品国产乱码久久久| 国内精品久久久久精免费| 女同久久另类99精品国产91| 亚洲第一青青草原| 一级片免费观看大全| 国产区一区二久久| 亚洲最大成人中文| 美女免费视频网站| 国产成人精品久久二区二区91| 亚洲成a人片在线一区二区| 日日夜夜操网爽| 999久久久精品免费观看国产| 国产又色又爽无遮挡免费看| 电影成人av| 自拍欧美九色日韩亚洲蝌蚪91| 窝窝影院91人妻| 亚洲电影在线观看av| 他把我摸到了高潮在线观看| 啪啪无遮挡十八禁网站| 正在播放国产对白刺激| av免费在线观看网站| 99re在线观看精品视频| 亚洲精华国产精华精| 午夜久久久在线观看| 99国产精品一区二区三区| 国产亚洲精品第一综合不卡| 一夜夜www| 国产97色在线日韩免费| 真人做人爱边吃奶动态| 欧美日韩瑟瑟在线播放| 啦啦啦 在线观看视频| 精品久久久久久成人av| 日本 欧美在线| 一级作爱视频免费观看| aaaaa片日本免费| 狂野欧美激情性xxxx| 校园春色视频在线观看| 日韩欧美国产在线观看| 精品国产乱子伦一区二区三区| 色综合婷婷激情| 香蕉久久夜色| 欧美激情久久久久久爽电影 | 国产私拍福利视频在线观看| 日韩视频一区二区在线观看| 国产成人精品在线电影| 麻豆成人av在线观看| 看片在线看免费视频| 人人澡人人妻人| 黄色a级毛片大全视频| 精品高清国产在线一区| 国产成+人综合+亚洲专区| 欧美不卡视频在线免费观看 | 国产亚洲av嫩草精品影院| 精品熟女少妇八av免费久了| 91麻豆av在线| 黄色a级毛片大全视频| 色老头精品视频在线观看| 久久久久国产精品人妻aⅴ院| 又紧又爽又黄一区二区| 国产高清激情床上av| 亚洲七黄色美女视频| 亚洲成a人片在线一区二区| 美国免费a级毛片| 亚洲自拍偷在线| 搡老妇女老女人老熟妇| 国内久久婷婷六月综合欲色啪| 午夜激情av网站| 久久精品国产亚洲av香蕉五月| 久久久久久久久久久久大奶| 高潮久久久久久久久久久不卡| 999精品在线视频| 国产午夜精品久久久久久| 欧美日韩福利视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 最好的美女福利视频网| 69av精品久久久久久| 国产激情久久老熟女| 变态另类成人亚洲欧美熟女 | 午夜免费鲁丝| 国产亚洲精品第一综合不卡| 1024视频免费在线观看| 夜夜躁狠狠躁天天躁| 麻豆久久精品国产亚洲av| 亚洲熟妇熟女久久| 国产97色在线日韩免费| 亚洲欧美精品综合一区二区三区| 一进一出好大好爽视频| www.www免费av| 久久国产精品人妻蜜桃| 999久久久国产精品视频| 久久精品人人爽人人爽视色| 老司机午夜福利在线观看视频| 欧美精品啪啪一区二区三区| 两个人免费观看高清视频| 久久天躁狠狠躁夜夜2o2o| 天堂影院成人在线观看| ponron亚洲| 国产一区二区三区在线臀色熟女| 亚洲第一欧美日韩一区二区三区| 久热爱精品视频在线9| 午夜免费观看网址| 亚洲五月婷婷丁香| 国产成人精品久久二区二区免费| 丁香欧美五月| 大香蕉久久成人网| 夜夜躁狠狠躁天天躁| 999久久久国产精品视频| av在线天堂中文字幕| 成年女人毛片免费观看观看9| 亚洲专区字幕在线| 两个人免费观看高清视频| 国产成人影院久久av| 淫妇啪啪啪对白视频| 每晚都被弄得嗷嗷叫到高潮| 女性生殖器流出的白浆| 在线av久久热| 亚洲中文字幕日韩| 日韩视频一区二区在线观看| www.熟女人妻精品国产| 精品国产超薄肉色丝袜足j| 99国产精品免费福利视频| 真人一进一出gif抽搐免费| 啦啦啦韩国在线观看视频| 韩国精品一区二区三区| 两个人视频免费观看高清| 亚洲男人的天堂狠狠| 精品不卡国产一区二区三区| 亚洲无线在线观看| 欧美黄色淫秽网站| 中文亚洲av片在线观看爽| 99国产精品免费福利视频| 精品一区二区三区四区五区乱码| 好看av亚洲va欧美ⅴa在| 国产真人三级小视频在线观看| 久久精品成人免费网站| 久久青草综合色| 神马国产精品三级电影在线观看 | 欧美日本中文国产一区发布| 可以免费在线观看a视频的电影网站| 9热在线视频观看99| 男女床上黄色一级片免费看| 亚洲一区高清亚洲精品| 亚洲人成网站在线播放欧美日韩| 亚洲精品国产精品久久久不卡| 日韩一卡2卡3卡4卡2021年| 亚洲va日本ⅴa欧美va伊人久久| 亚洲激情在线av| 国产熟女午夜一区二区三区| 亚洲最大成人中文| 国产午夜精品久久久久久| 久久久国产成人精品二区| 一级黄色大片毛片| 国产av精品麻豆| 亚洲国产中文字幕在线视频| 神马国产精品三级电影在线观看 | 欧美日韩亚洲综合一区二区三区_| 午夜福利成人在线免费观看| 男人舔女人的私密视频| 欧美成人一区二区免费高清观看 | 免费女性裸体啪啪无遮挡网站| 大码成人一级视频| 每晚都被弄得嗷嗷叫到高潮| 电影成人av| 国产精品电影一区二区三区| 欧美黑人精品巨大| 精品国产一区二区久久| 国产亚洲av高清不卡| 久久久久久国产a免费观看| 中文字幕色久视频| 日韩中文字幕欧美一区二区| 18禁美女被吸乳视频| 伦理电影免费视频| 女人高潮潮喷娇喘18禁视频| 久久性视频一级片| 欧美国产精品va在线观看不卡| av视频免费观看在线观看| 欧美日韩福利视频一区二区| 欧美日韩精品网址| 亚洲中文av在线| 精品欧美一区二区三区在线| 久久久久久人人人人人| 最近最新免费中文字幕在线| 99久久99久久久精品蜜桃| 精品一品国产午夜福利视频| 在线观看日韩欧美| 亚洲人成网站在线播放欧美日韩| 香蕉丝袜av| 亚洲天堂国产精品一区在线| 亚洲伊人色综图| 母亲3免费完整高清在线观看| 真人做人爱边吃奶动态| 在线免费观看的www视频| 很黄的视频免费| 在线观看66精品国产| 亚洲中文av在线| 亚洲精品国产一区二区精华液| 亚洲国产欧美日韩在线播放| 久久精品成人免费网站| 亚洲自偷自拍图片 自拍| 国产精品久久久久久精品电影 | 50天的宝宝边吃奶边哭怎么回事| 男人舔女人下体高潮全视频| 欧美日韩福利视频一区二区| 变态另类成人亚洲欧美熟女 | 欧美精品亚洲一区二区| 国产亚洲欧美在线一区二区| 亚洲精品国产色婷婷电影| 91字幕亚洲| 免费搜索国产男女视频| 91在线观看av| 88av欧美| 首页视频小说图片口味搜索| ponron亚洲| 一个人观看的视频www高清免费观看 | 丁香六月欧美| 一进一出好大好爽视频| 欧美中文日本在线观看视频| 亚洲精品中文字幕在线视频| 啪啪无遮挡十八禁网站| 在线国产一区二区在线| 中文字幕人妻丝袜一区二区| 国产高清videossex| 不卡一级毛片| 亚洲成av片中文字幕在线观看| 十八禁人妻一区二区| 中文字幕最新亚洲高清| 欧美精品亚洲一区二区| 91麻豆精品激情在线观看国产| 免费看十八禁软件| 级片在线观看| 久久精品亚洲熟妇少妇任你| 日本五十路高清| 国产精品爽爽va在线观看网站 | 精品一品国产午夜福利视频| 啪啪无遮挡十八禁网站| 国产97色在线日韩免费| 超碰成人久久| 美女大奶头视频| 日日干狠狠操夜夜爽| 精品久久久久久成人av| 麻豆成人av在线观看| 99精品欧美一区二区三区四区| 视频区欧美日本亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 久久亚洲真实| 最近最新中文字幕大全电影3 | 一区二区三区国产精品乱码| 欧美日韩黄片免| 国产一区二区三区综合在线观看| 真人一进一出gif抽搐免费| 久久热在线av| 国产一级毛片七仙女欲春2 | 一二三四社区在线视频社区8| tocl精华| 99精品在免费线老司机午夜| 亚洲精品国产区一区二| 亚洲熟妇熟女久久| 免费在线观看黄色视频的| 中文字幕高清在线视频| 国产野战对白在线观看| 满18在线观看网站| 久久精品国产综合久久久| 亚洲男人天堂网一区| 成人三级做爰电影| 97人妻精品一区二区三区麻豆 | 少妇的丰满在线观看| 老汉色∧v一级毛片| 精品免费久久久久久久清纯| 亚洲国产欧美网| 88av欧美| 国产精品永久免费网站| 久久精品aⅴ一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 久久婷婷成人综合色麻豆| 午夜福利在线观看吧| 一本综合久久免费| 国产欧美日韩精品亚洲av| 十分钟在线观看高清视频www| 少妇 在线观看| 丝袜美腿诱惑在线| 91九色精品人成在线观看| 国产精品二区激情视频| 制服人妻中文乱码| 国产免费av片在线观看野外av| 久久久国产成人精品二区| 大型黄色视频在线免费观看| 91国产中文字幕| 麻豆一二三区av精品| 亚洲精品中文字幕在线视频| 88av欧美| 99在线视频只有这里精品首页| 我的亚洲天堂| 老汉色∧v一级毛片| 久久久久久久午夜电影| 久久久久久亚洲精品国产蜜桃av| 欧美性长视频在线观看| 91成人精品电影| 高清毛片免费观看视频网站| 久久久久久久久免费视频了| 免费在线观看视频国产中文字幕亚洲| 巨乳人妻的诱惑在线观看| 俄罗斯特黄特色一大片| 欧美日韩亚洲国产一区二区在线观看| 侵犯人妻中文字幕一二三四区| 精品乱码久久久久久99久播| 无人区码免费观看不卡| 老司机深夜福利视频在线观看| 久久狼人影院| 日韩大码丰满熟妇| 国产精品一区二区免费欧美| 久久婷婷成人综合色麻豆| 亚洲人成77777在线视频| 狂野欧美激情性xxxx| 久久国产精品影院| 国产精品免费一区二区三区在线| 国产欧美日韩综合在线一区二区| 亚洲一区二区三区不卡视频| 天堂√8在线中文| 最近最新中文字幕大全电影3 | 亚洲成人国产一区在线观看| 国产精品一区二区在线不卡| 日韩欧美三级三区| 国产精品一区二区免费欧美| 91麻豆精品激情在线观看国产| 午夜久久久在线观看| 久久国产精品男人的天堂亚洲| 十分钟在线观看高清视频www| 欧美另类亚洲清纯唯美| 乱人伦中国视频| 午夜精品久久久久久毛片777| 亚洲精品一卡2卡三卡4卡5卡| cao死你这个sao货| 国产精品98久久久久久宅男小说| 色精品久久人妻99蜜桃| 在线观看免费视频日本深夜| 国产精华一区二区三区| 亚洲电影在线观看av| 一边摸一边抽搐一进一小说| 欧美日韩精品网址| 母亲3免费完整高清在线观看| 色老头精品视频在线观看| 亚洲欧美一区二区三区黑人| 无限看片的www在线观看| 极品教师在线免费播放| 精品国产国语对白av| 淫秽高清视频在线观看| netflix在线观看网站| 琪琪午夜伦伦电影理论片6080| 怎么达到女性高潮| 国产一区二区激情短视频| 精品国产乱子伦一区二区三区| 欧美黑人欧美精品刺激| 亚洲在线自拍视频| 国产午夜精品久久久久久| 99精品在免费线老司机午夜| videosex国产| 美国免费a级毛片| 99国产综合亚洲精品| 久久精品国产综合久久久| 精品久久久久久久毛片微露脸| 在线国产一区二区在线| 精品国产乱码久久久久久男人| 91九色精品人成在线观看| 亚洲性夜色夜夜综合| 亚洲av片天天在线观看| 少妇裸体淫交视频免费看高清 | 首页视频小说图片口味搜索| 国产xxxxx性猛交| 成熟少妇高潮喷水视频| 午夜福利一区二区在线看| 日本在线视频免费播放| 精品乱码久久久久久99久播| 精品国产乱子伦一区二区三区| 亚洲精品美女久久久久99蜜臀| 91老司机精品| 亚洲中文av在线| 免费观看精品视频网站| 黄色女人牲交| 久久人妻福利社区极品人妻图片| 深夜精品福利| 日本vs欧美在线观看视频| av电影中文网址| 久久精品影院6| 欧美日韩亚洲国产一区二区在线观看| 在线十欧美十亚洲十日本专区| 亚洲欧美日韩无卡精品| 黄色片一级片一级黄色片| 激情视频va一区二区三区| 亚洲黑人精品在线| 欧美乱码精品一区二区三区| 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区| 一级a爱视频在线免费观看| 一二三四社区在线视频社区8| 中出人妻视频一区二区| 精品福利观看| 亚洲男人天堂网一区| 欧美一级毛片孕妇| 色哟哟哟哟哟哟| 国产精品 国内视频| 久久青草综合色| 婷婷精品国产亚洲av在线| 免费搜索国产男女视频| 亚洲午夜理论影院| 十八禁网站免费在线| svipshipincom国产片| 91字幕亚洲| 这个男人来自地球电影免费观看| 亚洲国产日韩欧美精品在线观看 | 国产精品野战在线观看| 97人妻精品一区二区三区麻豆 | 国产精品精品国产色婷婷| 欧洲精品卡2卡3卡4卡5卡区| 黄色 视频免费看| 亚洲一码二码三码区别大吗| 亚洲色图综合在线观看| 国产高清激情床上av| 97超级碰碰碰精品色视频在线观看| 黑人巨大精品欧美一区二区mp4| 淫秽高清视频在线观看| 欧美大码av| 国产真人三级小视频在线观看| 亚洲人成电影免费在线| 男女午夜视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品二区激情视频| 这个男人来自地球电影免费观看| 国产亚洲精品av在线| 久久人妻熟女aⅴ| 精品福利观看| a在线观看视频网站| 欧美日韩精品网址| 黄频高清免费视频| 久久久久久久午夜电影| 丰满人妻熟妇乱又伦精品不卡| 日本 av在线| 大码成人一级视频| 亚洲精品一区av在线观看| 香蕉国产在线看| 麻豆成人av在线观看| 欧美日本中文国产一区发布| 18禁观看日本| 中文字幕人妻熟女乱码| 亚洲一区二区三区色噜噜| 亚洲黑人精品在线| 国产伦一二天堂av在线观看| 90打野战视频偷拍视频| 久久青草综合色| 亚洲第一青青草原| 色尼玛亚洲综合影院| 在线观看一区二区三区| 在线av久久热| 此物有八面人人有两片| 成人手机av| 一级黄色大片毛片| 高清黄色对白视频在线免费看| 黑人操中国人逼视频| 亚洲中文av在线| 国产99久久九九免费精品| 亚洲男人天堂网一区| 亚洲天堂国产精品一区在线| 男女下面进入的视频免费午夜 | 精品久久久久久久毛片微露脸| 国产激情欧美一区二区| 岛国视频午夜一区免费看| 伦理电影免费视频| 两个人免费观看高清视频| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣av一区二区av| 国内精品久久久久久久电影| 999久久久国产精品视频| 性少妇av在线| 男女做爰动态图高潮gif福利片 | 日韩欧美一区二区三区在线观看| 窝窝影院91人妻| 久久人妻熟女aⅴ| 国产精品亚洲一级av第二区| 美女 人体艺术 gogo| 一级a爱片免费观看的视频| av天堂久久9| videosex国产| www.自偷自拍.com| 人妻久久中文字幕网| 黄色女人牲交| 真人做人爱边吃奶动态| 国产成人精品无人区| 亚洲熟女毛片儿| 国产麻豆69| 午夜a级毛片| 亚洲在线自拍视频| 少妇裸体淫交视频免费看高清 | 亚洲天堂国产精品一区在线| 淫秽高清视频在线观看| 国语自产精品视频在线第100页| 久久午夜亚洲精品久久| 欧美日本亚洲视频在线播放| av天堂久久9| 国产精品爽爽va在线观看网站 | 又紧又爽又黄一区二区| 中国美女看黄片| 非洲黑人性xxxx精品又粗又长| 激情视频va一区二区三区| 国产亚洲av嫩草精品影院| 欧美亚洲日本最大视频资源| 国产欧美日韩一区二区精品| 久久久久久免费高清国产稀缺| 亚洲精品久久国产高清桃花| 国产视频一区二区在线看| 桃红色精品国产亚洲av| 精品国产超薄肉色丝袜足j| 欧美乱妇无乱码| 久久久久久免费高清国产稀缺| 亚洲成av人片免费观看| 久久婷婷成人综合色麻豆| 一级作爱视频免费观看| 日本免费一区二区三区高清不卡 | 不卡av一区二区三区| 满18在线观看网站| 亚洲av五月六月丁香网| 日本 欧美在线| 在线观看免费视频日本深夜| 一区二区三区精品91| 日本黄色视频三级网站网址| 久久性视频一级片| 亚洲一区二区三区色噜噜| 好男人在线观看高清免费视频 | 亚洲无线在线观看| 国产精品免费视频内射| 老司机午夜十八禁免费视频| 色综合亚洲欧美另类图片| 成人精品一区二区免费| 中国美女看黄片| 午夜免费成人在线视频| 国产精品一区二区在线不卡| 国内毛片毛片毛片毛片毛片| 亚洲三区欧美一区| 少妇的丰满在线观看| 国产精品一区二区三区四区久久 | 日本黄色视频三级网站网址| 性欧美人与动物交配| 免费av毛片视频| 欧美乱码精品一区二区三区| 国产色视频综合| 日韩成人在线观看一区二区三区| 欧美一级a爱片免费观看看 | 免费女性裸体啪啪无遮挡网站| 不卡一级毛片| 大码成人一级视频| 国产一区二区在线av高清观看| 色老头精品视频在线观看| 亚洲成av人片免费观看| 国产一区在线观看成人免费| 一级毛片女人18水好多| 男女下面插进去视频免费观看| 一区二区三区高清视频在线| 亚洲精品国产一区二区精华液| 女性生殖器流出的白浆| 亚洲欧美日韩另类电影网站| 成人国语在线视频| 中文字幕人妻丝袜一区二区| 曰老女人黄片| 极品人妻少妇av视频| 1024香蕉在线观看| 老司机深夜福利视频在线观看| 久久香蕉激情| av视频免费观看在线观看| 91在线观看av| tocl精华| 一区二区日韩欧美中文字幕| 国产亚洲精品av在线| 成人手机av| 一a级毛片在线观看| 热re99久久国产66热| 久久精品成人免费网站| 在线视频色国产色| 日日爽夜夜爽网站| 亚洲五月天丁香| 91成人精品电影| 精品国内亚洲2022精品成人| 色精品久久人妻99蜜桃| 村上凉子中文字幕在线| 欧美最黄视频在线播放免费| 亚洲精华国产精华精| 午夜福利18| 国产激情欧美一区二区| 51午夜福利影视在线观看| 变态另类成人亚洲欧美熟女 | 一本久久中文字幕| 99国产精品一区二区三区| a级毛片在线看网站| 免费在线观看影片大全网站| 精品一区二区三区四区五区乱码| 91成人精品电影| 国产精品亚洲av一区麻豆| 午夜a级毛片| 国产av一区在线观看免费| 亚洲精品粉嫩美女一区| 欧美日韩瑟瑟在线播放| 欧美色视频一区免费| 精品久久久久久,| 日韩欧美国产在线观看| 久久久久久大精品| 午夜福利影视在线免费观看| 人成视频在线观看免费观看| 亚洲人成网站在线播放欧美日韩| av福利片在线| 美女免费视频网站| 中文字幕最新亚洲高清| 19禁男女啪啪无遮挡网站|