• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced deep-red emission in donor-acceptor molecular architecture: The role of ancillary acceptor of cyanophenyl

    2019-12-18 02:21:56YueShenXiohuiTngYuweiXuHichoLiuShitongZhngBingYngYugung
    Chinese Chemical Letters 2019年11期

    Yue Shen,Xiohui Tng,Yuwei Xu,Hicho Liu*,Shitong ZhngBing Yng*,Yugung M

    a State Key Laboratory of Supramolecular Structure and Materials,College of Chemistry,Jilin University,Changchun 130012,China

    b State Key Laboratory of Luminescent Materials and Devices,South China University of Technology,Guangzhou 510640,China

    Keywords:

    Deep-red emission

    ABSTRACT

    Organic solid-state luminescent materials with high-efficiency deep-red emission have attracted considerable interest in recent years.Constructing donor-acceptor(D-A)type molecules has been one of most commonly used strategies to achieve deep-red emission,but it is always difficult to achieve high photoluminescence(PL)quantum yield(ηPL)due to forbidden charge-transfer state.Herein,we report a new D-A type molecule 4-(7-(4-(diphenylamino)phenyl)-9-oxo-9H-fluoren-2-yl)benzonitrile (TPAFOCN),deriving from donor-acceptor-donor (D-A-D) type 2,7-bis(4-(diphenylamino)phenyl)-9Hfluoren-9-one (DTPA-FO) with a fluorescence maximum of 627 nm in solids.This molecular design enables a transformation of acceptor from fluorenone (FO) itself to 4-(9-oxo-9H-fluoren-2-yl)benzonitrile (FOCN).Compared with DTPA-FO,the introduction of cyanophenyl not only shifts the emission of TPA-FOCN to deep red with a fluorescence maximum of 668 nm in solids,but also maintains the high ηPL of 10%.Additionally,a solution-processed non-doped organic light-emitting diode (OLED)was fabricated with TPA-FOCN as emitter.TPA-FOCN device showed a maximum luminous efficiency of 0.13 cd/A and a maximum external quantum efficiency(EQE)of 0.22%with CIE coordinates of(0.64,0.35).This work provides a valuable strategy for the rational design of high-efficiency deep-red emission materials using cyanophenyl as an ancillary acceptor.

    High-efficiency red light-emitting materials have attracted significant interest because of their extensive applications in the field of organic light-emitting diodes(OLEDs)[1-7],organic solidstate lasers[8],chemical and biological sensors[9,10].In the past decades,however,it is a great challenge to obtain highperformance red light-emitting materials in terms of both high efficiency and pure red color simultaneously.The reason is that intrinsic narrow band-gap of red fluorescent molecules inherits small energy difference between excited state and ground state,which readily suffers from large non-radiative internal conversion rate (kIC) according to the energy gap law [11,12].

    The previous molecular design strategy of red fluorescent molecules was mainly focused on the large π-conjugated compounds.Such molecules generally inherit enhanced aggregation-caused quenching (ACQ) in solid state due to the strong intermolecular π-π stacking [13,14].Recently,one of the most common methods of designing deep-red fluorescent molecules is to construct strong intramolecular charge transfer (ICT) compounds with donor-acceptor (D-A) structure [5,15-20].Based on energy level difference between the highest occupied molecular orbital (HOMO) of donor and the lowest unoccupied molecular orbital (LUMO) of acceptor,the emission band gap can be finely tuned in a wide range according to the choice of donor and acceptor units in D-A molecules.To obtain narrow-band-gap lightemitting materials,an ancillary acceptor should be incorporated into D-A system,which is especially worth trying for highefficiency deep-red D-A materials.

    The readily functionalized fluorenone(FO)has been intensively studied for its wide applications in the field of optoelectronic devices,such as OLEDs[21],organic field-effect transistors(OFETs)[22-24],organic photovoltaic cells (OPVs) [25,26],biological sensors [27,28] and nonlinear optical materials [29].Initially,FO-based derivatives were regarded as unfavorable luminous species,because the FO derivatives usually possess the n→π*state characteristic in the lowest singlet state (S1),which leads to a forbidden radiative transition and low photoluminescence (PL)quantum yield(ηPL).On the other hand,the π→π*state is possible to become the lowest S1state lying below n→π* state due to chemical modification in FO-based derivatives,and π→π* state is favorable for luminescence [30].Taoet al.have reported a red fluorescent molecule,2,7-bis(4-(diphenylamino)phenyl)-9H-fluoren-9-one(DTPA-FO)[31],employing FO as acceptor,and realized strong luminescence by lowering the π→π*state as radiative state.In this work,we designed a new fluorescent molecule based on FO,4-(7-(4-(diphenylamino)phenyl)-9-oxo-9H-fluoren-2-yl)benzonitrile (TPA-FOCN) with triphenylamine (TPA) as donor and benzonitrile-substituted FO as acceptor.As a result,TPA-FOCN not only realizes a deep-red emission with fluorescence maximum of 668 nm in solids,but also maintains the high ηPLof 10%.

    We primarily tried to introduce a substituent to change the nature of emissive state.A new compound (4-(9-oxo-9H-fluoren-2-yl)benzonitrile(FOCN)was synthesized through Pd(0)-catalyzed Suzuki coupling reaction (Scheme S1 in Supporting information).Molar absorption coefficients (ε) were measured to understand the change of excited state from FO to FOCN (Fig.S1a and Table S1 in Supporting information).FOCN showed an ε of about 1113 L mol-1cm-1at the wavelength of 408 nm,which was much higher than 66 L mol-1cm-1of FO around 380 nm.For PL spectrum in tetrahydrofuran (THF) (Fig.S1b in Supporting information),FOCN exhibited strong emission peak at 502 nm,while no signal was detected for FO.Though FOCN powder shows a maximum emission wavelength of 520 nm similar to that of FO,the ηPLof FOCN powder is 32% much higher than 9% of FO.Therefore,it is very interesting what nature is responsible for the abnormal enhanced ηPLin FOCN.To better understand this essence,the timedependent density function theory (TD-DFT) calculations were performed to obtain natural transition orbitals (NTOs) of the emission in FO and FOCN (Figs.S6 and S7 in Supporting information) at the level of CAM-B3LYP/6-31 G (d,p).For S1→S0transition,FO shows that both“hole”and“particle”are delocalized over the whole molecular backbone.Obviously,FO exhibits n→π*transition and the oscillator strengthfis zero,indicating a forbidden transition of excited state.The phenomenon of no fluorescence in THF also confirms this calculation very well.Compared with FO,the S1→S0transition of FOCN undergoes the great change of excited state character from n→π* to π→π*upon the incorporation of cyanophenyl group.It shows that both“hole”and “particle” of FOCN are delocalized over the whole molecular backbone,and the transition configuration of π→π* substantially improves the oscillator strengthf(f=0.0800)relative to that of FO.At this time,the ICT states of FOCN were found in high-lying excited states,such as S3and S4,which can be experimentally probed by the solvatochromic effect from hexane(λmax= 485 nm)to dimethyl sulfoxide (λmax= 529 nm),as shown in Fig.S1c.With increasing solvent polarity,ICT energy level is gradually stabilized accompanying with the red-shifted PL spectra.For FO system,the incorporation of electron-withdrawing cyanophenyl essentially alters the electron transition configuration,which induces the increase of ηPLand high-lying ICT state.Therefore,using cyanophenyl as an ancillary acceptor in FO system,it is feasible to design highly efficient deep-red fluorescent materials.According to the results above,we selected TPA group as donor,and FOCN as acceptor to synthesize a new compound—TPA-FOCN(Scheme 1).

    Scheme 1.Molecular structures and design routes.

    Fig.1.(a)UV-vis spectra of DTPA-FO and TPA-FOCN in diluted THF solutions.(b)The PL spectra of DTPA-FO(λex= 440 nm)and TPA-FOCN(λex= 445 nm)in diluted THF solution and solid state.(c) Solvatochromic PL spectra of DTPA-FO (λex = 440 nm)and TPA-FOCN(λex= 430 nm)with increasing polarity of solvents.(d)Linear fitting of Lippert-Mataga model(the open squares and circles represent the Stokes shifts in different solvents,and the lines are fitted for solvatochromic models of the two compounds).

    To understand the basic photophysical properties of TPA-FOCN,the UV-vis and PL spectra in THF solution were measured respectively ( Figs.1a and b).DTPA-FO was also synthesized and measured for the purpose of comparison under the same conditions [31].Both DTPA-FO and TPA-FOCN show strong absorption bands in range of 270-370 nm,which can be assigned to π→π*transitions.Nevertheless,the weak band around 465 nm for DTPA-FO and 449 nm for TPA-FOCN can be attributed to the absorption of low-lying ICT excited state.The absorption band of TPA-FOCN at long wavelength was blue-shifted with respect to that of DTPA-FO,probably due to the larger conjugation extension in DTPA-FO and/or the electron-withdrawing ability of cyano group in TPA-FOCN.In THF solution,TPA-FOCN exhibits deep-red emission peaked at 660 nm,which is much red-shifted relative to 627 nm of DTPA-FO (Fig.1b).The red shift of 33 nm can be ascribed to the stronger ICT effect in TPA-FOCN than DTPA-FO,which is further confirmed by the larger redshift of PL spectra with increasing solvent polarity (Fig.1c).

    To better understand excited-state character,the UV-vis absorption and PL spectra of two compounds were recorded in various solvents ranging from nonpolar n-hexane to polar THF(Fig.1c and Fig.S2 in Supporting information).The detailed photophysical data were summarized in Tables S2 and S3(Supporting information).The absorption spectra of DTPA-FO and TPA-FOCN seldom changed in terms of their shapes and positions with increasing solvent polarity,implying a rather small dipole change at ground state in different solvents.The fluorescence measurements reveal the remarkably red-shifted and broadened spectra as solvent polarity increases.The large solvatochromic effect indicates a strong ICT-character excited state of these two compounds.Interestingly,TPA-FOCN displays less red-shifted emission than DTPA-FO in low-polarity solvents fromn-hexane to butyl ether,while it shows more red-shifted emission in medium-polarity solvents from isopropyl ether to THF.Eventually,a much larger redshift of TPA-FOCN is observed.The Lippert-Mataga relation was applied to better understand the solvent effect in a plot of the Stokes shiftversussolvent polarizability (Δ),as shown in Fig.1d.Notably,DTPA-FO is fitted into a straight line while TPA-FOCN possesses two sets of linear relationships.From the slope of the line,the dipole moment of excited state,μe,is calculated to be only 10.6 D for DTPA-FO.As a comparison,TPA-FOCN possesses the μeof 11.6 D in low-polarity solvents and 21.3 D in high-polarity solvents respectively,corresponding to two different excited states: less ICT-like state for low-polarity solvents and more ICT-like state for high-polarity solvents.In high-polarity solvents,the μeis very close to that of a typical ICT-state molecule in (N,N-dimethylamino)benzonitrile(DMABN,μe=23 D) [32],demonstrating a strong ICT-state character of TPA-FOCN.Here,the μeof 10.6 D and 11.6 D can be ascribed to hybridized local and charge-transfer (HLCT) excited state [33-41].For the ηPLin solutions from hexane to THF,both compounds show the decreasing trend due to increasing ICT component as solvent polarity increases,from 27.94%to 3.89%for DTPA-FO and 29.37%to 2.11%for TPA-FOCN,respectively(Table S4 in Supporting information).Furthermore,the photophysical properties of DTPA-FO and TPA-FOCN were measured in powder and spin-coating film,respectively(Table 1,Fig.1b,Figs.S3 and S4 in Supporting information).Compared with the orange emission of TPA-FO in solids [31],TPA-FOCN exhibits the deep-red emission feature under two different types of solid states (668 nm for powder and 656 nm for film).Though the emission wavelength of TPA-FOCN is more red-shifted relative to DTPA-FO,the ηPL(10%)can be well maintained in powder.What is more,the ηPLof TPAFOCN is higher than that of DTPA-FO in spin-coating film.Both can be ascribed to the suppression of non-radiative deactivation upon the incorporation of cyano group [ 42].As a comparison,the introduction of cyanophenyl as acceptor is the more effective way to achieve the deep-red materials relative to that by incorporation of extra donors.

    To reveal the origin of largely red-shifted emission of TPA-FOCN relative to that of DTPA-FO,a theoretical calculation was carried out in TPA-FOCN and DTPA-FO (Fig.2 a).In terms of the frontier molecular orbital(HOMO and LUMO),LUMO is mostly localized on the FO unit,while HOMO is distributed on the whole molecular backbone of DTPA-FO.From DTPA-FO to TPA-FOCN,one-sided TPA unit is replaced by cyanophenyl,resulting in a great change of the wavefunctions of HOMO and LUMO.HOMO of TPA-FOCN is mostly localized on TPA and partial phenyl ring of FO,while its LUMO is mainly distributed on FO unit and cyanophenyl.As a result,a large orbital separation between HOMO and LUMO is observed for TPAFOCN,indicative of a stronger ICT character in TPA-FOCN.

    Fig.2.(a) Molecular orbital diagrams of HOMO and LUMO of optimized DTPA-FO and TPA-FOCN.(b) NTO in DTPA-FO and TPA-FOCN.Herein, f represents for the oscillator strength,and the percentage weights of hole-particle are given based on the S1 state geometry.

    To describe the excited-state character of TPA-FOCN and DTPAFO,NTOs of excited state are further calculated at the excited state S1geometry (Fig.2b and Figs.S8 and S9 in Supporting information).The estimated emission wavelengths of TPA-FOCN and DTPA-FO are in good agreement with the results in n-hexane solvent.The“particle”of TPA-FOCN is mainly localized on FO unit,which is similar to that of DTPA-FO.The "hole" of TPA-FOCN is distributed on TPA unit and FO unit,but it is on the whole molecular backbone for DTPA-FO.So HLCT state that consists of ICT(TPA→FO) and LE of FO is mainly responsible for the emission of TPA-FOCN in low-polarity solvents,and cyano group does not participate in "particle" according to results.Thus,the more localized “hole” results in the blue-shifted emission of TPA-FOCN in contrast to that of DTPA-FO in hexane.With the increase of solvent polarity,TPA-FOCN shows a stronger ICT character relative to DTPA-FO,probably because the high-lying ICT state(such as S4)with main participation of cyano group can be stabilized to become the low-lying excited state.

    Cyclic voltammetry(CV)curves of TPA-FOCN and DTPA-FO were measured against the ferrocene/ferrocenium redox couple as reference (Table 1 and Fig.S5 in Supporting information).The LUMO level of TPA-FOCN is -3.31 eV,which is lower than that of DTPA-FO (-3.19 eV).Meanwhile,the HOMO level of TPA-FOCN is-5.21 eV which is almost the same as-5.20 eV of DTPA-FO.As a consequence,TPA-FOCN possesses much narrower electronic bandgapof1.90 eVincomparisonwith2.01 eVofDTPA-FO,corresponding to the more red-shifted emission of TPA-FOCN than DTPA-FO in medium-and high-polarity solvents.

    To explore the application of deep-red TPA-FOCN,we focused on its electroluminescent (EL) properties.In view of its suitable energy levels and good solubility,non-doped solution-processed OLED was fabricated with a multilayer device structure (Fig.3a):ITO/PEDOT-PSS (40 nm)/TPA-FOCN (50 nm) /TPBi (40 nm)/LiF(1 nm)/Al (100 nm).Where,PEDOT-PSS is poly(3,4-ethylenedioxy-thiophene)-polystyrene sulfonate,serving as the holeinjecting layer.TPBi is 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene,acting as electron-transporting and hole-blocking layer.LiF is used as electron-injecting material in this device.Deep-red emission was obtained with EL spectrum peaked at 648 nm in device,together with CIE coordinate of (0.64,0.35).The EL spectrum (Fig.3b) of TPA- FOCN device well accords with its corresponding PL spectrum.The turn-on voltage of the device is 4.0 V,which is recorded at the luminance of 1 cd/m2,and the maximum luminance can reach 824 cd/m2(Fig.3c).TPA-FOCN device showed a maximum luminous efficiency of 0.13 cd/A and a maximum external quantum efficiency(EQE)of 0.22%( Figs.3c and d).Though EQE of this OLED is not very high,it is a meaningful attempt for non-doped solution-processed deep-red OLED.

    Table1 Detailed photophysical and electrochemical properties of DTPA-FO and TPA-FOCN.

    Fig.3.(a)Schematic energy level diagram of TPA-FOCN device.(b)EL spectrum of a multilayer OLED based on TPA-FOCN as the emitter.(c) Luminance-voltagecurrent density curves of TPA-FOCN.(d) External quantum efficiency-voltage curve of TPA-FOCN.

    In summary,we constructed a new D-A molecule TPA-FOCN by modifying DTPA-FO with the distinctive cyanophenyl group,which shows deep-red emission at 668 nm in powder.As an ancillary acceptor,the incorporation of cyanophenyl not only enhances the ability of acceptor,but also modulates the ICTcomponents in emissive state.Compared with DTPA-FO,the strong ICTcharacter of TPA-FOCN has been further confirmed by experimental and theoretical investigations.Importantly,the introduction of cyanophenyl maintains high PL efficiency of 10%.Our results suggest that cyanophenyl can act as an ancillary acceptor to effectively decrease emission band-gap,increase ICT component and maintain high PL efficiency,which is a good building block to design high-efficiency narrow-band-gap fluorescent materials using D-A molecular architecture.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Nos.91833304,51873077,51803071 and 51673083),the National Basic Research Program of China (Nos.2015CB655003 and 2016YFB0401001),the Postdoctoral Innovation Talent Support Project (Nos.BX201700097 and BX20180121),the China Postdoctoral Science Foundation (Nos.2017M620108 and 2018M641767) and JLUSTIRT (No.2019TD-33).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2019.07.059.

    一级,二级,三级黄色视频| 亚洲五月天丁香| 久久香蕉国产精品| 一进一出好大好爽视频| 亚洲第一av免费看| 午夜影院日韩av| 日韩中文字幕欧美一区二区| 咕卡用的链子| 搡老乐熟女国产| 中出人妻视频一区二区| 99久久国产精品久久久| 欧美成狂野欧美在线观看| 一级a爱片免费观看的视频| 999久久久国产精品视频| 香蕉久久夜色| 国产日韩一区二区三区精品不卡| 久久九九热精品免费| 国产一区二区三区在线臀色熟女 | 一进一出抽搐动态| 中国美女看黄片| 黄频高清免费视频| 久久国产精品大桥未久av| 国产精品九九99| 天堂√8在线中文| 男女床上黄色一级片免费看| 精品人妻在线不人妻| 国产又爽黄色视频| 免费黄频网站在线观看国产| 日韩免费av在线播放| 美女视频免费永久观看网站| 又紧又爽又黄一区二区| 九色亚洲精品在线播放| 欧美 亚洲 国产 日韩一| 欧美日韩国产mv在线观看视频| 真人做人爱边吃奶动态| 亚洲在线自拍视频| 久久人妻熟女aⅴ| 精品亚洲成a人片在线观看| 黑人巨大精品欧美一区二区蜜桃| 999久久久国产精品视频| 中文字幕制服av| 12—13女人毛片做爰片一| 热re99久久精品国产66热6| 亚洲色图av天堂| 久久精品亚洲熟妇少妇任你| 日本黄色视频三级网站网址 | 久久精品国产99精品国产亚洲性色 | 亚洲专区字幕在线| 成人av一区二区三区在线看| 国产真人三级小视频在线观看| 岛国毛片在线播放| 色94色欧美一区二区| 久久天堂一区二区三区四区| 成在线人永久免费视频| 啪啪无遮挡十八禁网站| e午夜精品久久久久久久| 亚洲欧美一区二区三区久久| 老熟妇仑乱视频hdxx| 国产av一区二区精品久久| 久久中文字幕人妻熟女| 精品无人区乱码1区二区| 国产精品一区二区在线不卡| 亚洲专区字幕在线| 80岁老熟妇乱子伦牲交| 色精品久久人妻99蜜桃| 夫妻午夜视频| 欧美国产精品va在线观看不卡| 日韩成人在线观看一区二区三区| 国产一区二区三区在线臀色熟女 | 男女高潮啪啪啪动态图| 国产一区二区三区视频了| av欧美777| 一级片免费观看大全| 国产激情久久老熟女| 欧美 亚洲 国产 日韩一| 岛国在线观看网站| 老司机亚洲免费影院| 国内久久婷婷六月综合欲色啪| 欧美中文综合在线视频| 久久久久视频综合| 高清av免费在线| 国产男女内射视频| 一级片'在线观看视频| 精品久久久久久电影网| 人人妻人人澡人人看| 无人区码免费观看不卡| 精品无人区乱码1区二区| 亚洲熟女精品中文字幕| 精品熟女少妇八av免费久了| 精品久久久久久电影网| 国产成人欧美在线观看 | 手机成人av网站| 亚洲欧美精品综合一区二区三区| 麻豆乱淫一区二区| 999久久久精品免费观看国产| 亚洲三区欧美一区| 精品国产超薄肉色丝袜足j| 亚洲精品中文字幕在线视频| 18禁观看日本| 婷婷精品国产亚洲av在线 | 大香蕉久久网| av有码第一页| 亚洲九九香蕉| 18禁美女被吸乳视频| 极品教师在线免费播放| 欧美日韩乱码在线| 久久久久国内视频| 久9热在线精品视频| 极品人妻少妇av视频| 国产国语露脸激情在线看| 视频区图区小说| 久久久久视频综合| 欧美国产精品一级二级三级| 老司机午夜十八禁免费视频| 亚洲第一欧美日韩一区二区三区| 人人澡人人妻人| 99久久99久久久精品蜜桃| 欧美性长视频在线观看| 黄色 视频免费看| 一级a爱片免费观看的视频| 欧美午夜高清在线| 美女高潮到喷水免费观看| 丰满的人妻完整版| 国产一区二区三区综合在线观看| 国产男女超爽视频在线观看| 国产一区二区三区在线臀色熟女 | xxxhd国产人妻xxx| 亚洲五月色婷婷综合| 亚洲五月色婷婷综合| 亚洲五月色婷婷综合| 国产99白浆流出| 亚洲 国产 在线| 在线观看一区二区三区激情| 日韩欧美一区视频在线观看| 岛国毛片在线播放| 麻豆av在线久日| 欧美日韩一级在线毛片| 91麻豆av在线| 在线永久观看黄色视频| 露出奶头的视频| 天堂中文最新版在线下载| 天天添夜夜摸| 大陆偷拍与自拍| 久久中文字幕人妻熟女| 亚洲av日韩在线播放| 久久精品亚洲av国产电影网| 黑人欧美特级aaaaaa片| 老熟妇仑乱视频hdxx| 国产一区二区三区在线臀色熟女 | 国产精品自产拍在线观看55亚洲 | 久久久久久久精品吃奶| 久久精品国产清高在天天线| 日韩三级视频一区二区三区| 亚洲,欧美精品.| 国产一区二区三区综合在线观看| 成人手机av| 法律面前人人平等表现在哪些方面| 成年人午夜在线观看视频| 久久狼人影院| a级毛片在线看网站| 制服人妻中文乱码| 老司机靠b影院| 成年人免费黄色播放视频| 男人的好看免费观看在线视频 | 欧美国产精品一级二级三级| 久久久精品区二区三区| 欧美老熟妇乱子伦牲交| 首页视频小说图片口味搜索| 亚洲色图av天堂| 黄色女人牲交| 欧美色视频一区免费| 最新美女视频免费是黄的| 飞空精品影院首页| 国产精品自产拍在线观看55亚洲 | 一区福利在线观看| 久久性视频一级片| 中出人妻视频一区二区| xxx96com| 日日夜夜操网爽| 激情在线观看视频在线高清 | 大型黄色视频在线免费观看| 亚洲少妇的诱惑av| a级片在线免费高清观看视频| 国内毛片毛片毛片毛片毛片| 交换朋友夫妻互换小说| 国产精华一区二区三区| 久久久久国产一级毛片高清牌| 啦啦啦在线免费观看视频4| 欧美人与性动交α欧美软件| 午夜视频精品福利| 女人高潮潮喷娇喘18禁视频| 国产成人系列免费观看| 黄色视频不卡| 亚洲aⅴ乱码一区二区在线播放 | 国精品久久久久久国模美| 欧美日韩亚洲国产一区二区在线观看 | 黄片小视频在线播放| 女性生殖器流出的白浆| 视频在线观看一区二区三区| 亚洲人成伊人成综合网2020| 久久久国产一区二区| 欧美国产精品va在线观看不卡| 日本五十路高清| 久久香蕉国产精品| 老司机影院毛片| 国产精品久久视频播放| 久久这里只有精品19| 欧美中文综合在线视频| 亚洲va日本ⅴa欧美va伊人久久| 国产高清视频在线播放一区| 国产不卡一卡二| 久久中文字幕一级| 亚洲五月天丁香| 久99久视频精品免费| 大片电影免费在线观看免费| 国产精品乱码一区二三区的特点 | 免费久久久久久久精品成人欧美视频| 国产精品99久久99久久久不卡| 国产不卡av网站在线观看| 在线观看免费日韩欧美大片| 天天躁日日躁夜夜躁夜夜| 亚洲精品中文字幕在线视频| 免费高清在线观看日韩| 精品少妇久久久久久888优播| 日本五十路高清| 欧美在线一区亚洲| 亚洲精品av麻豆狂野| 老司机亚洲免费影院| 深夜精品福利| 夫妻午夜视频| 天堂俺去俺来也www色官网| 大陆偷拍与自拍| 亚洲精品国产一区二区精华液| 国产亚洲av高清不卡| 日韩欧美一区二区三区在线观看 | 法律面前人人平等表现在哪些方面| 看黄色毛片网站| 水蜜桃什么品种好| 女人被躁到高潮嗷嗷叫费观| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁网站免费在线| av网站免费在线观看视频| 很黄的视频免费| 亚洲情色 制服丝袜| 免费在线观看视频国产中文字幕亚洲| 亚洲精品国产区一区二| 久久精品国产亚洲av香蕉五月 | 欧美成人免费av一区二区三区 | 成人18禁高潮啪啪吃奶动态图| 欧美精品啪啪一区二区三区| 亚洲专区中文字幕在线| 伊人久久大香线蕉亚洲五| cao死你这个sao货| 亚洲欧美日韩高清在线视频| 亚洲精品在线观看二区| 18禁裸乳无遮挡免费网站照片 | 亚洲一码二码三码区别大吗| 男女高潮啪啪啪动态图| 亚洲精品一卡2卡三卡4卡5卡| 久久久精品免费免费高清| 1024视频免费在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲精品在线美女| 成人亚洲精品一区在线观看| 久久久国产一区二区| 丝瓜视频免费看黄片| 国产精品成人在线| 老司机在亚洲福利影院| 狠狠狠狠99中文字幕| 丝袜美足系列| 久久香蕉国产精品| 人人妻人人添人人爽欧美一区卜| 欧美午夜高清在线| 免费av中文字幕在线| 涩涩av久久男人的天堂| 无人区码免费观看不卡| 中文字幕制服av| 高清毛片免费观看视频网站 | 国产在线精品亚洲第一网站| 午夜影院日韩av| 又大又爽又粗| 麻豆成人av在线观看| 亚洲av日韩在线播放| 99久久99久久久精品蜜桃| 十八禁网站免费在线| av一本久久久久| 国产xxxxx性猛交| 极品人妻少妇av视频| 妹子高潮喷水视频| 黄片大片在线免费观看| 在线观看免费视频日本深夜| 国产精品久久视频播放| 一二三四在线观看免费中文在| 国产有黄有色有爽视频| 亚洲午夜理论影院| 91成年电影在线观看| 淫妇啪啪啪对白视频| 他把我摸到了高潮在线观看| 国产精品欧美亚洲77777| 国产野战对白在线观看| 操美女的视频在线观看| 不卡av一区二区三区| 一本一本久久a久久精品综合妖精| 国产成人精品久久二区二区91| 夜夜躁狠狠躁天天躁| 999久久久精品免费观看国产| 新久久久久国产一级毛片| 欧美黄色片欧美黄色片| 在线观看午夜福利视频| 在线播放国产精品三级| 97人妻天天添夜夜摸| 99re在线观看精品视频| 中文字幕另类日韩欧美亚洲嫩草| 老司机午夜十八禁免费视频| 高潮久久久久久久久久久不卡| 777久久人妻少妇嫩草av网站| 日本五十路高清| 18禁国产床啪视频网站| 亚洲熟妇熟女久久| 欧美成狂野欧美在线观看| 一级片'在线观看视频| 久久青草综合色| 激情在线观看视频在线高清 | 国产精品久久久av美女十八| 天堂动漫精品| 成年人黄色毛片网站| 法律面前人人平等表现在哪些方面| 亚洲一区中文字幕在线| 欧美 日韩 精品 国产| 午夜免费观看网址| 一级,二级,三级黄色视频| 一级作爱视频免费观看| 久久午夜综合久久蜜桃| 麻豆成人av在线观看| 亚洲片人在线观看| 亚洲av日韩在线播放| 国产精品美女特级片免费视频播放器 | 黄色怎么调成土黄色| 97人妻天天添夜夜摸| 国产高清激情床上av| 国产男女超爽视频在线观看| 中文欧美无线码| 亚洲一区高清亚洲精品| 亚洲精品久久午夜乱码| 亚洲专区国产一区二区| 一级a爱片免费观看的视频| 亚洲av电影在线进入| 久久九九热精品免费| 精品久久蜜臀av无| 两性午夜刺激爽爽歪歪视频在线观看 | 一区二区三区激情视频| 国产成人系列免费观看| 欧美日韩亚洲综合一区二区三区_| 欧美人与性动交α欧美精品济南到| 国产男女内射视频| 国产精品98久久久久久宅男小说| 18禁国产床啪视频网站| 国产精品成人在线| 久久人人爽av亚洲精品天堂| 午夜日韩欧美国产| 亚洲成人免费av在线播放| 性色av乱码一区二区三区2| 亚洲综合色网址| 欧美日韩精品网址| 在线视频色国产色| 成在线人永久免费视频| 亚洲人成伊人成综合网2020| 亚洲色图av天堂| 一个人免费在线观看的高清视频| 看免费av毛片| 欧美激情 高清一区二区三区| 亚洲五月婷婷丁香| 欧美性长视频在线观看| 亚洲九九香蕉| 黄片播放在线免费| 妹子高潮喷水视频| 日韩精品免费视频一区二区三区| 在线看a的网站| 99精品久久久久人妻精品| 最近最新中文字幕大全电影3 | 久久精品国产清高在天天线| a在线观看视频网站| 最新美女视频免费是黄的| 久久精品亚洲熟妇少妇任你| 久久精品国产亚洲av香蕉五月 | 丁香六月欧美| 自线自在国产av| 国产有黄有色有爽视频| 高清av免费在线| 亚洲精品一卡2卡三卡4卡5卡| 80岁老熟妇乱子伦牲交| 桃红色精品国产亚洲av| 美女福利国产在线| www.自偷自拍.com| 免费观看人在逋| 午夜成年电影在线免费观看| 变态另类成人亚洲欧美熟女 | 欧美日韩亚洲综合一区二区三区_| 老司机午夜福利在线观看视频| 欧美日韩瑟瑟在线播放| 在线永久观看黄色视频| a在线观看视频网站| 中文字幕最新亚洲高清| 国产一区二区三区视频了| 亚洲熟妇熟女久久| 国产国语露脸激情在线看| 日日夜夜操网爽| 涩涩av久久男人的天堂| 男女之事视频高清在线观看| 国产精品永久免费网站| 在线观看www视频免费| 一a级毛片在线观看| 这个男人来自地球电影免费观看| 亚洲色图综合在线观看| 亚洲成人免费av在线播放| a级毛片在线看网站| 多毛熟女@视频| 欧美亚洲日本最大视频资源| 久久精品人人爽人人爽视色| 在线av久久热| a级毛片黄视频| a级片在线免费高清观看视频| 欧美精品一区二区免费开放| 国产1区2区3区精品| 精品一区二区三卡| 亚洲av欧美aⅴ国产| 91麻豆av在线| 欧美成人午夜精品| www.999成人在线观看| a在线观看视频网站| 人妻丰满熟妇av一区二区三区 | 精品福利观看| 亚洲成av片中文字幕在线观看| 国产成人一区二区三区免费视频网站| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品免费视频一区二区三区| 在线观看免费日韩欧美大片| 丁香六月欧美| 久久国产乱子伦精品免费另类| cao死你这个sao货| 99久久99久久久精品蜜桃| 一二三四社区在线视频社区8| 熟女少妇亚洲综合色aaa.| 色婷婷久久久亚洲欧美| 免费高清在线观看日韩| 脱女人内裤的视频| 免费在线观看完整版高清| 老司机在亚洲福利影院| 久久精品人人爽人人爽视色| 夜夜躁狠狠躁天天躁| 国产精品久久久人人做人人爽| 亚洲第一欧美日韩一区二区三区| 丝瓜视频免费看黄片| 久热这里只有精品99| 久99久视频精品免费| 久久久精品区二区三区| 视频在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 国产有黄有色有爽视频| 热re99久久国产66热| 欧美激情 高清一区二区三区| 日韩欧美在线二视频 | 69精品国产乱码久久久| 日本黄色视频三级网站网址 | 亚洲五月色婷婷综合| cao死你这个sao货| 老司机深夜福利视频在线观看| 亚洲av电影在线进入| 黄色毛片三级朝国网站| 亚洲av成人av| 亚洲在线自拍视频| 亚洲欧美色中文字幕在线| 日本一区二区免费在线视频| 亚洲精品国产区一区二| 十八禁人妻一区二区| 欧美不卡视频在线免费观看 | av视频免费观看在线观看| 成熟少妇高潮喷水视频| 国产一区有黄有色的免费视频| 日本vs欧美在线观看视频| 欧美+亚洲+日韩+国产| 制服诱惑二区| 国产99白浆流出| 国产精品偷伦视频观看了| 少妇 在线观看| 麻豆av在线久日| 一级黄色大片毛片| 日韩人妻精品一区2区三区| 女性被躁到高潮视频| 18禁美女被吸乳视频| 亚洲自偷自拍图片 自拍| 久久中文字幕一级| 欧美乱码精品一区二区三区| 老司机影院毛片| 亚洲国产欧美网| 国产精品一区二区在线观看99| 久久国产亚洲av麻豆专区| 岛国毛片在线播放| 亚洲精品av麻豆狂野| 亚洲熟妇熟女久久| 看免费av毛片| 老汉色av国产亚洲站长工具| 黑人欧美特级aaaaaa片| 欧美黄色片欧美黄色片| av天堂久久9| 91麻豆精品激情在线观看国产 | 欧美性长视频在线观看| 中文欧美无线码| 午夜影院日韩av| 久久午夜综合久久蜜桃| 精品国产一区二区三区久久久樱花| 一二三四在线观看免费中文在| 国产精品美女特级片免费视频播放器 | av电影中文网址| 国产精品久久视频播放| 韩国精品一区二区三区| 色尼玛亚洲综合影院| 国产精品二区激情视频| xxxhd国产人妻xxx| 久久香蕉国产精品| 91精品国产国语对白视频| 大香蕉久久网| 免费在线观看日本一区| 啦啦啦 在线观看视频| 一区二区三区国产精品乱码| 亚洲国产欧美一区二区综合| 自线自在国产av| 国产精品 欧美亚洲| 亚洲熟妇熟女久久| 欧美不卡视频在线免费观看 | 99精品在免费线老司机午夜| 人人妻人人澡人人爽人人夜夜| 韩国av一区二区三区四区| 天堂中文最新版在线下载| 日本一区二区免费在线视频| 无限看片的www在线观看| 大型av网站在线播放| 丰满人妻熟妇乱又伦精品不卡| a级片在线免费高清观看视频| 色尼玛亚洲综合影院| 18禁国产床啪视频网站| 午夜免费鲁丝| 欧美黄色片欧美黄色片| www.熟女人妻精品国产| 亚洲熟妇中文字幕五十中出 | 中文字幕人妻熟女乱码| 91成人精品电影| 男女高潮啪啪啪动态图| 亚洲av成人av| 韩国av一区二区三区四区| 精品免费久久久久久久清纯 | av有码第一页| 无限看片的www在线观看| 国产成人精品久久二区二区91| 久热爱精品视频在线9| 亚洲五月婷婷丁香| ponron亚洲| 最新在线观看一区二区三区| 一a级毛片在线观看| 中文字幕最新亚洲高清| 精品人妻熟女毛片av久久网站| 亚洲 欧美一区二区三区| 国产一区二区三区在线臀色熟女 | 成人特级黄色片久久久久久久| 免费观看a级毛片全部| 国产在线一区二区三区精| 亚洲精品乱久久久久久| 亚洲精品久久成人aⅴ小说| 最近最新中文字幕大全电影3 | а√天堂www在线а√下载 | 国产精华一区二区三区| 日韩免费av在线播放| 久久久久久亚洲精品国产蜜桃av| 一a级毛片在线观看| 久久人妻av系列| 久久久国产精品麻豆| 超碰成人久久| 一边摸一边抽搐一进一小说 | 18禁黄网站禁片午夜丰满| 午夜影院日韩av| 视频区图区小说| 窝窝影院91人妻| 午夜福利在线免费观看网站| 亚洲自偷自拍图片 自拍| 亚洲精品自拍成人| 不卡一级毛片| 亚洲成a人片在线一区二区| 亚洲片人在线观看| 大片电影免费在线观看免费| 国产精品久久久人人做人人爽| 精品少妇久久久久久888优播| 露出奶头的视频| 亚洲一区中文字幕在线| 一区二区三区精品91| 91字幕亚洲| 久久草成人影院| a级片在线免费高清观看视频| 久久 成人 亚洲| 18禁美女被吸乳视频| 一级黄色大片毛片| 99精品久久久久人妻精品| av中文乱码字幕在线| 一二三四社区在线视频社区8| xxxhd国产人妻xxx| 国产男女超爽视频在线观看| 好看av亚洲va欧美ⅴa在| 母亲3免费完整高清在线观看| 黄色 视频免费看| 无人区码免费观看不卡| 亚洲国产精品sss在线观看 | 成年人免费黄色播放视频| 一本大道久久a久久精品| av网站免费在线观看视频| 黄色 视频免费看| 中文字幕色久视频|