• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Green-synthesized,low-cost tetracyanodiazafluorene (TCAF) as electron injection material for organic light-emitting diodes

    2019-12-18 02:22:04BingYngJinfengZhoZepengWngZhenlinYngZongqiongLinYnniZhngJieweiLiLinghiXieZhongfuAnHongmeiZhngJienWengWeiHung
    Chinese Chemical Letters 2019年11期

    Bing Yng ,Jinfeng Zho* ,Zepeng WngZhenlin Yng,Zongqiong LinYnni ZhngJiewei LiLinghi Xie,Zhongfu AnHongmei Zhng,*,Jien Weng*,Wei Hung,**

    a Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM),Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM),Nanjing Tech University (Nanjing Tech),Nanjing 211816,China

    b Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials,Nanjing University of Posts &Telecommunications,Nanjing 210023,China

    c Shaanxi Institute of Flexible Electronics (SIFE),Northwestern Polytechnical University (NPU),Xi’an 710072,China

    Keywords:

    Green-synthesis

    ABSTRACT

    Two electron-deficient azaacenes including di-and tetra-cyanodiazafluorene(DCAF and TCAF)with the advantages of deep lowest unoccupied molecular orbital (LUMO),green-synthesis,low-cost,simply purification method,excellent yields have been obtained,characterized and used as electron injection materials(EIMs)in three groups of electroluminescence devices.Device B with TCAF as EIM exhibited the best performance including turn-on voltage of 5.0 V,stronger maximum luminance intensity of 31,549 cd/m2,higher luminance efficiency of 62.34 cd/A and larger power efficiency of 21.74 lm/W which are 0.53,6.7,9.3 and 15.3 times than that of device A with DCAF as EIMs,respectively.The enhanced interfacial electron injection ability of TCAF than that of DCAF is supported by its better electron mobility in electron-only device,deeper LUMO(-4.52 eV),and stronger electronic affinity.Best external quantum efficiency of 16.56% was achieved with optimized thicknesses of TCAF as EIM and TPBi as electron transporting layer.As a new comer of acceptor family,TCAF would push forward organic electronics with more fascinating and significant applications.

    Electron-deficient acceptor materials are important components of organic electronic devices [1-8].Among those devices,organic light-emitting diodes (OLEDs) have been widely investigated on self-luminescent displays and even ascendant flexible displays [9-16] with wide viewing angle,high efficiency,low power consumption on the basis of organic materials especially for acceptor materials.Acknowledged to us,the transport of holes is faster than the transport of electrons in most organic semiconductors without charge transport balance leading to the insufficient excitons and decreased external quantum efficiency(EQE).In this situation,it is necessary to develop suitable electron injection materials(EIMs)between the transparent cathodes and electron transport layer(ETL)or emitting layer(EML)to optimize the charge injection and transport balance [17-22].In recent years,electrode interface between the cathode and the adjacent organic layer for effective electron injection has been achieved by using kinds of EIMs containing alkali metals[23-25],alkali metal halides [26,27],alkali metal carbonates,etc.[28,29].However,some EIMs were too active to be processed or performed in mild condition.Beside of those inorganic EIMs,some conjugated polymers including polyelectrolytes[30-39]and oligoelectrolytes[40] have been employed as EIMs to improve the performance of electroluminescence devices.Furthermore,some non-conjugated molecular systems including amide derivatives [41],smallmolecular zwitterions [42],sulfonium salts [43,44],polyethylenimines[45-47],and tetraoctylammonium bromide[48]have also been applied as EIMs with limited electron affinity,LUMO energy level and structural adjustability.

    Beside of that,small molecule π-acceptors have also been successfully used as EIMs [49-55] including widely-used but expensive and unsustainable tetracyano-p-quinodimethane(TCNQ,oxidation/Br2) [55] and hexaazatriphenylene-hexacabonitrile (HAT(CN)6) with deep LUMO energy levels,large electronic affinities [50-53].However,their synthetic routines and thermal sublimation procedure are still not“green”or facile enough.In this situation,it is necessary to explore novel green acceptor materialsviagreen-synthesis methods[56-61]with the advantages of cheap starting compounds,high yield,and facile purification process of wet-chemistry.Currently to our knowledge,no such acceptor azaacene has been reported as EIMs.

    In this contribution,we designed and synthesized two electrondeficient cyanodiazafluorene derivatives (CAFs) including di- and tetra-cyanodiazafluorene (DCAF and TCAF) as presented in Scheme 1.Every DCAF molecule possesses only two cyano groups,but every TCAF molecule has four cyano groups instead.Both of them could be easily green-synthesized in green solvent such as ethanol with rather high yields >85%per step.DCAF and TCAF are both soluble in common organic solvents and easily purified by washing,recrystallization or flash column chromatography.The electrochemical,thermal properties,film morphologies of two CAFs were fully characterized.Three systematic groups of OLED devices were fabricated with corresponding DCAF or TCAF as the EIMs.

    The synthetic routines for the designed DCAF and TCAF were outlined in Scheme 1 as a two-step procedure(i,ii)and one-steptwo-stage procedure (iii) with different reaction components.DCAF was synthesized from the cyclo-condensation between 1Hindene-1,2,3-trione and 2,3-diaminomaleonitrile (DAMN) with a high yield of 85.0% (Scheme 1 a,i).Then TCAF was obtained from the atom-economical Knoevenagel condensation between DCAF and malononitrile with an excellent 91.5% yield (Scheme 1 a,ii).This two-step procedure was carried out in green solvent ethanol and produced target CAF and water with high yield as atomeconomical green-synthesis [56-61].Actually,TCAF could be directly synthesized by adding malononitrile into the mixed system of DCAF and DAMN after the first 10 h and then refluxed for another 10 h with similar high yield (Scheme 1 a,iii).Molecular structures of DCAF and TCAF were confirmed by1H NMR spectroscopy and GC-MS consistent with that depicted in Scheme 1.Furthermore,high quality single crystals of DCAF and TCAF were obtained from the evaporation of corresponding dichloromethane solution.TCAF possesses cofacial π-π stacking[6,7] within 0.33-0.34 nm ( Schemes 1c and e).But DCAF took a partially π-π stacking within 0.33 nm( Schemes 1b and d).Beside of that,the electrostatic potentials of DCAF and TCAF were calculated by the density functional theory B3LYP/6-31 G(d)method (details in Supporting information).Both CAFs have similar electropositive centers on CAF backbone,but TCAF presented stronger electronegativity of four protuberances than another.It is implied that stronger electronic affinity of TCAF than that of DCAF could potentially modificate organic/metal interfaces( Figs.1c and d).

    Fig.1.(a)Cyclic voltammogram recorded for DCAF and TCAF;b)Wave functions for the HOMO and LUMO of DCAF and TCAF molecules,respectively; (c,d) Calculated electrostatic potentials of single molecule of DCAF and TCAF.

    Scheme 1.(a) The synthetic routes of DCAF and TCAF: (i) 1H-indene-1,2,3-trione,2,3-diaminomaleonitrile (DAMN),EtOH,refluxed,10 h,85.0% for DCAF; (ii) DCAF,malononitrile,EtOH,refluxed,10 h,91.5%for TCAF;(iii)1,2,3-indantrione,DAMN,and EtOH,refluxed,10 h;then malononitrile,refluxed,another 10 h.Packing modes of DCAF(b,d) and TCAF (c,e) in single crystals.

    The electrochemical properties of DCAF and TCAF were investigated by cyclic voltammetry (CV) in Fig.1.The LUMO energy levels of DCAF and TCAF were calculated to be-4.17 eV and-4.52 eV,respectively,according to the empirical equation LUMO=-[4.4+Ere][62-64] as listed in Table 1.The corresponding highest occupied molecular orbital (HOMO) energy level were calculated to be -6.14 eV,-6.13 eV (Fig.S4 in Supporting information),respectively.In Fig.1b,the LUMO energy levels of DCAF and TCAF delocalized over the entire molecule including carbonyl,dicyanomethylene.While both HOMO energy levels delocalized on the CAF backbone.The thermogravimetric analysis (TGA) exhibited that DCAF and TCAF decomposed at 247°C and 261°C with 5% weight loss,respectively(Fig.S5 in Supporting information).It is indicated that DCAF and TCAF are stable enough and potentially suitable for electronic devices.

    In order to disclose the electron injection ability of DCAF and TCAF,two primary devices were fabricated using DCAF and TCAF as the electron injection layer(EIL)with 0.5 nm thickness and TPBi as the ETL with 40 nm thickness.The corresponding configurations were designed as ITO/MoO3(1 nm) [65] / CBP(45 nm)[66]/CBP:(ppy)2Ir(acac)(15 nm)[67]/TPBi(40 nm)[66]/CAFs(0.5 nm)/Al(120 nm)showed in Figs.2a and b,and Table S1(Supporting information).Figs.2d-f and Table 2 showed the current density-voltage-luminance (J-V-L) and luminance efficiency-luminance (LE-L)characteristics and main parameters.Devices A and B with 0.5 nm thickness CAFs as the EIL exhibited different turn-on voltage (Von) (Vonis defined as the voltage by luminance of 1 cd/m2).Obviously,the highVonof device A sharply decreased 0.54 times from 9.4 V to a lowerVonas 5.0 V of device B.Especially,the maximum luminescence (Lmax) intensity of device Breached as high as 31,549 cd/m2which is 6.8 times than theLmax(4672 cd/m2) of device A.Beside of that,the current density of device A and device B were 0.54,7.1 mA/cm2at 11 V,respectively.Meanwhile,the corresponding maximum luminance efficiency(LEmax)measured on device B was up to 62.34 cd/A,almost 9 times than that of device A(6.65 cd/A),theLEmaxof device B is obviously greater than that of device A in contrast to the performance of standard device with Cs2CO3as EIM (71.4 cd/A,Table S6 in Supporting information).This phenomenon [51,68,69] could be explained by the deeper LUMO and stronger electronic affinity of TCAF with four cyano groups inducing interface dipole effect with potential charge transfer at TPBi/TCAF/Al interfaces.

    At the same luminance intensity of 4000 cd/m2(Fig.2e),the efficiencies could maintain 88.6%,91.7%ofLEmax(62.34 cd/A)when theLEof devices A and B reached 5.89 and 53.88 cd/A,respectively.As shown in Table 2,the maximum power efficiency (PEmax) of device B (21.74 lm/W) was much higher than that of device A(1.42 lm/W),which is almost 14 times than that of device A.The largestEQEbelonged to device B as high as 16.56%.Furthermore,as showed in Fig.2g and Table S2 (Supporting information),two electron-only devices (C and D) were fabricated and device D displayed larger current density than that of device C with Al.It was indicated that the lower driving voltage improved EL characteristics with higherLE,which demonstrating the better electron injection ability of TCAF than that of DCAF.

    Compared with device B,two more devices(E and F)have also been fabricated with 1.0 nm and 1.5 nm thick TCAF as EIM to further investigate the relationship between electron injection ability and thickness of TCAF(Fig.3).The general configuration ofdevices E and F was ITO/MoO3(1 nm)/CBP (45 nm)/CBP:Ir(ppy)2(acac) (8%,15 nm)/TPBi (40 nm)/TCAF/Al (120 nm) (Fig.S8 and Table S3 in Supporting information).And device B possessed different TCAF thickness.Fig.3 presented theJ-V-L,andLE-Lcharacteristics with the main parameters were shown in Table 2.Observed fromJ-V-Lgraph of device B(Figs.2 and 3),when 0.5 nm thick TCAF as EIM,device B displayed good performance.But when the TCAF thickness increased to 1.0 nm and 1.5 nm in devices E and F,theVonincreased to 7.3 V and 8.6 V,respectively.TheirL[107_ maxsharply decreased from 31,549,2005 to 209 cd/m2,respectively.TheL[107_ maxof device B was 15.7 and 150.9 times than that of devices E and F,respectively.

    Table1 Electrochemical and thermal characteristics of DCAF and TCAF.

    Following the increased voltage,the current density of device B reached a high level as 17.9 mA/cm2which was 8 times than that of devices E and F(2.0 and 1.7 mA/cm2),respectively.Meanwhile,the correspondingLEmaxmeasured on devices B,E,and F were recorded as 62.34,19.86,and 2.79 cd/A,respectively.As shown in Fig.3b and Table 2,when the thickness of TCAF increased,theLE-Lcurve slumped to a quite lower level and sharply decreased efficiency.It was indicated that the thicknesses of TCAF determined the electron injection ability.It was explained that charges could tunnel through the CAFs with only 0.5 nm thickness rather than thicker CAFs [70].Device B exhibited a very good stability with theLEkeeping at level of 57.8 cd/A which was 92.7% of theLEmax(62.34 cd/A) when luminance intensity was 4900 cd/m2.However,when the thickness of TCAF increased from 0.5 to 1 nm and 1.5 nm,the luminance curve immediately decreased bellow 250 cd/m2.As shown in the Fig.4c,the bestPEmax(21.47 lm/W)of device B was 16.8 and 34.6 times than that of device F(4.64 lm/W)and device G (0.62 lm/W),respectively.Fig.S12 (Supporting information) showed the EL spectra of device B and E driven at 14 V with the green light emission peaks at ~523 nm.Accordingly,the EQE of device B (16.56%) was 3.1 and 22.4 times than that of device E(5.29%)and device F(0.74%),respectively.It was indicated that device parameters based on TCAF as EIM largely depended on the special thickness of 0.5 nm of interfacial modification layer for better performance.

    As presented in Fig.S13 (Supporting information),the atomic force microscope (AFM) exhibited topographic images and phase images (5 μm×5 μm) of the vapor-deposited TCAF films under vacuum with gradually increased thickness from 0.5 nm,1 nm to 1.5 nm on bare Si substrates.All the surface morphologies of three films possessed similar roughness and uniform surface without obvious grain dispersion.The morphologies were conducive to the interfacial modification and electron injection.

    In order to further investigate the performance of OLEDs with TCAF as EIM,another series of devices were constructed by regulating the thicknesses of TPBi as ETL (Fig.4).In contrast to device B with optimal thickness of TCAF(0.5 nm)and TPBi(40 nm),three more devices (G,H,and I) were fabricated by changing the thicknesses(30,50 and 60 nm)of TPBi as ETL(Fig.S9 and Table S4 in Supporting information).As shown in Fig.4a and Table 2,when the thickness of TPBi was 30 nm,device G displayed quite similar and slightly smallerVonof 4.7 V,higherLmaxof 34,504 cd/m2,smallerLEmaxof 54.67 cd/A,and decreasedPEmaxof 20.90 lm/W than that of device B.However,when the thickness of TPBi increased to 50 nm and 60 nm,devices H and I presented remarkably decreased parameters includingVon,LmaxandPEmax(Table 2) except forLEmaxand EQE.As depicted in Fig.4b and Table 2,these two parameters of devices G,B,H,and I kept at the same level as 54.67,62.34,56.95,and 58.66 cd/A and 14.53,16.56,15.25 and 15.71%with gradually increased thicknesses of TPBi.TheLmaxof device G reached 34,504 cd/m2larger than the value of devices B (31,549 cd/m2) and H (23,986 cd/m2).And it was also almost 5 times than the value of device I(6568 cd/m2).At 5000 cd/m2,LE decreased to be 87.63,92.60,84.84,and 77.35%in contrast to theirLEmaxwhileLEdescended to 47.91,57.73,48.32 and 45.35 cd/A relative to theLEmaxof devices G,B,H and I,respectively(Table 2).

    Fig.2.(a)Schematic configuration of devices A and B;(b)Energy level diagrams of devices A and B;(c)molecule structures of organic materials in devices A and B;(d)J-V-L characteristics of devices A and B;(e)LE-L characteristics of devices A and B;(f)PE-L characteristics of devices A and B;(g)L-V characteristics of DCAF/TCAF-based electrononly devices C and D.

    Table2 Three groups of device characteristics:I.Devices A and B with different CAFs as EIM;II.Devices B,E,and F with different thicknesses of TCAF;III.Devices G,B,H and I with different thicknesses of TPBi (30,40,50,and 60 nm).

    Fig.3.The(a)J-V-L characteristics of devices B,E,and F;(b)LE-L characteristics of devices B,E,and F;(c)PE-L characteristics of devices B,E,and F.*Means the curves of device B were presented for comparison.

    In summary,the first application of“green”-synthesized,atomeconomical acceptor azaacene TCAF was successfully carried out as EIM in OLEDs with good device performance than that of DCAF as EIM.It is reasonable to distribute the better performance of device B with TCAF as EIM to the stronger electron injection and interfacial modification ability originating from the deeper LUMO energy level.In this work,the thicknesses of TCAF (0.5 nm) and TPBi(40 nm)were the most suitable physical parameters for good device performance.The interfacial charge injection and transfer behaviors of TCAF at organic/metal interface would be further investigated by contrasting with widely-used but expensive halo-TCNQ and HAT(CN)6which are unsustainable and not facile enough [50-53,68,71-74].It is believed that TCAF would be explored as versatile material in the field of “green” electronics.

    Fig.4.The(a)J-V-L characteristics of devices G,B,H and I;(b)LE-L characteristics of devices G,B,H,and I;(c)PE-L characteristics of devices G,B,H and I.*Means the curves of device B were presented for comparison.

    Acknowledgments

    We thank the National Natural Science Foundation of China(Nos.21975126,51673095,21875104,21875191,21603104),the Natural Science Foundation of Jiangsu Province(Nos.BK20171470,BK20160991,BK20150064,BK20130912),and 973 Program (No.2015CB932200),and Ministry of Education and Synergetic Innovation Center for Organic Electronics and Information Displays for financial support.

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2019.08.054.

    亚洲精品乱久久久久久| 欧美日韩在线观看h| 亚洲成人一二三区av| 久久久久人妻精品一区果冻| av.在线天堂| 久久久欧美国产精品| 国产一级毛片在线| 能在线免费看毛片的网站| 一边亲一边摸免费视频| 91aial.com中文字幕在线观看| 黄色配什么色好看| 欧美一级a爱片免费观看看| 成年人午夜在线观看视频| 免费av中文字幕在线| 亚洲国产av新网站| 久久女婷五月综合色啪小说| 熟妇人妻不卡中文字幕| 在线观看免费高清a一片| 日本av免费视频播放| 欧美xxⅹ黑人| 亚洲精品一二三| 久久精品国产亚洲av天美| 丰满饥渴人妻一区二区三| 国产免费一区二区三区四区乱码| 久久久精品94久久精品| 极品人妻少妇av视频| freevideosex欧美| 插逼视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 黄色欧美视频在线观看| 亚洲国产成人一精品久久久| 熟女人妻精品中文字幕| 91精品伊人久久大香线蕉| 一级a做视频免费观看| 日韩制服骚丝袜av| 蜜臀久久99精品久久宅男| 精品国产露脸久久av麻豆| 国产毛片在线视频| 一个人免费看片子| 在线亚洲精品国产二区图片欧美 | 国产成人精品久久久久久| 亚洲精品美女久久av网站| 国产精品99久久久久久久久| 青春草视频在线免费观看| 亚洲第一av免费看| 精品亚洲成a人片在线观看| 中文字幕精品免费在线观看视频 | av在线观看视频网站免费| 91精品一卡2卡3卡4卡| 国产精品国产三级国产专区5o| 男女国产视频网站| 婷婷色麻豆天堂久久| 亚洲无线观看免费| 国产69精品久久久久777片| av在线播放精品| 99久久中文字幕三级久久日本| 超色免费av| 日本黄大片高清| 国产精品一区二区在线观看99| kizo精华| 久久狼人影院| 伊人久久国产一区二区| 国产无遮挡羞羞视频在线观看| 美女国产高潮福利片在线看| 一区二区三区免费毛片| 黄片播放在线免费| 色哟哟·www| 中国三级夫妇交换| 一区二区av电影网| 日本与韩国留学比较| 国产免费一级a男人的天堂| 成人亚洲精品一区在线观看| a级片在线免费高清观看视频| 日日啪夜夜爽| 一本大道久久a久久精品| 亚洲婷婷狠狠爱综合网| 校园人妻丝袜中文字幕| 中文字幕最新亚洲高清| 精品久久久久久久久av| 国产精品国产三级国产av玫瑰| 搡女人真爽免费视频火全软件| 久久精品久久久久久噜噜老黄| 国产极品天堂在线| 边亲边吃奶的免费视频| 熟女电影av网| 久久人人爽人人爽人人片va| xxxhd国产人妻xxx| 午夜福利影视在线免费观看| 久久人人爽人人片av| 美女国产高潮福利片在线看| 我要看黄色一级片免费的| 亚洲高清免费不卡视频| 视频中文字幕在线观看| 国产视频首页在线观看| 亚洲欧洲日产国产| 午夜激情久久久久久久| 中国三级夫妇交换| 桃花免费在线播放| 国产欧美日韩综合在线一区二区| 久久99蜜桃精品久久| 亚洲精品自拍成人| 日韩人妻高清精品专区| 中文天堂在线官网| 高清黄色对白视频在线免费看| 熟女电影av网| 国产av码专区亚洲av| 色网站视频免费| 国产精品一区二区在线观看99| 伦理电影大哥的女人| 黄色配什么色好看| 成年人免费黄色播放视频| 国产探花极品一区二区| 午夜福利,免费看| 亚洲无线观看免费| 亚洲性久久影院| 高清午夜精品一区二区三区| 欧美最新免费一区二区三区| 少妇高潮的动态图| 精品酒店卫生间| 少妇高潮的动态图| 久久精品人人爽人人爽视色| 性高湖久久久久久久久免费观看| 国产成人精品福利久久| 免费大片黄手机在线观看| 五月开心婷婷网| av有码第一页| 久久久国产精品麻豆| 成人亚洲精品一区在线观看| 人人妻人人澡人人爽人人夜夜| 成人免费观看视频高清| 久久久国产精品麻豆| 国产高清不卡午夜福利| 国产男女超爽视频在线观看| 插逼视频在线观看| 成年美女黄网站色视频大全免费 | 国产黄片视频在线免费观看| 人人澡人人妻人| 人人妻人人添人人爽欧美一区卜| 啦啦啦中文免费视频观看日本| 久久97久久精品| 久久 成人 亚洲| 男男h啪啪无遮挡| 丰满少妇做爰视频| 我要看黄色一级片免费的| 国内精品宾馆在线| 国产片特级美女逼逼视频| 人妻少妇偷人精品九色| 亚洲欧美日韩另类电影网站| 韩国高清视频一区二区三区| 国产精品久久久久久久久免| 中文字幕亚洲精品专区| 精品99又大又爽又粗少妇毛片| 自线自在国产av| 高清在线视频一区二区三区| videos熟女内射| 午夜影院在线不卡| 国产淫语在线视频| 在线播放无遮挡| 精品少妇黑人巨大在线播放| 国产成人精品福利久久| 99国产综合亚洲精品| 国产免费一级a男人的天堂| 日韩av在线免费看完整版不卡| 日产精品乱码卡一卡2卡三| 国产精品无大码| 精品久久久久久久久亚洲| 九九久久精品国产亚洲av麻豆| 久久精品国产自在天天线| 国产成人精品无人区| 久久精品人人爽人人爽视色| 精品人妻熟女毛片av久久网站| 久久女婷五月综合色啪小说| 我的老师免费观看完整版| 母亲3免费完整高清在线观看 | 日日摸夜夜添夜夜爱| videossex国产| 亚洲国产色片| 欧美3d第一页| 日日啪夜夜爽| 日韩欧美一区视频在线观看| 色5月婷婷丁香| 夫妻性生交免费视频一级片| 午夜福利在线观看免费完整高清在| 一级,二级,三级黄色视频| 国产成人精品在线电影| 色网站视频免费| 制服诱惑二区| 女人精品久久久久毛片| 国产成人免费观看mmmm| 久久人人爽人人爽人人片va| 国产精品三级大全| 亚洲精品国产色婷婷电影| 一级二级三级毛片免费看| 亚洲情色 制服丝袜| 丰满乱子伦码专区| 欧美少妇被猛烈插入视频| 一边亲一边摸免费视频| 一级毛片 在线播放| 97超视频在线观看视频| videossex国产| 成年人午夜在线观看视频| 乱码一卡2卡4卡精品| 免费大片黄手机在线观看| 欧美日韩综合久久久久久| 日本免费在线观看一区| 久久久久久久久久久久大奶| 亚洲欧洲国产日韩| 精品久久久久久电影网| 成人国产av品久久久| 日本黄色片子视频| 女的被弄到高潮叫床怎么办| 亚洲精品国产av蜜桃| 伊人久久国产一区二区| 又黄又爽又刺激的免费视频.| 欧美97在线视频| 午夜视频国产福利| 日韩成人伦理影院| 国产欧美亚洲国产| 免费av不卡在线播放| 91aial.com中文字幕在线观看| 免费观看a级毛片全部| 亚洲美女视频黄频| 国产一区二区在线观看av| 各种免费的搞黄视频| 黑人猛操日本美女一级片| 视频中文字幕在线观看| 啦啦啦啦在线视频资源| 国产午夜精品一二区理论片| 91精品三级在线观看| 亚洲人成77777在线视频| 国产成人精品无人区| 在线观看免费日韩欧美大片 | 国产成人aa在线观看| 久久久精品区二区三区| 亚洲图色成人| 日韩精品免费视频一区二区三区 | a 毛片基地| 亚洲精品中文字幕在线视频| 亚洲不卡免费看| 成人综合一区亚洲| 麻豆成人av视频| 最近中文字幕2019免费版| 永久免费av网站大全| av在线观看视频网站免费| 少妇人妻 视频| 亚洲综合色网址| 黑人欧美特级aaaaaa片| 久久午夜福利片| 人妻少妇偷人精品九色| 黑人巨大精品欧美一区二区蜜桃 | 亚洲图色成人| 青春草视频在线免费观看| 久久久久久久久久成人| 日韩熟女老妇一区二区性免费视频| 制服丝袜香蕉在线| 欧美日韩在线观看h| 99久久中文字幕三级久久日本| 丰满乱子伦码专区| 在线观看免费高清a一片| 成年人午夜在线观看视频| 超碰97精品在线观看| 国产色爽女视频免费观看| 亚洲欧美成人精品一区二区| 久久女婷五月综合色啪小说| 母亲3免费完整高清在线观看 | 久久99热这里只频精品6学生| 一级毛片我不卡| 久久99热6这里只有精品| 久久精品国产亚洲av天美| 精品人妻在线不人妻| 久久久久国产网址| 人妻夜夜爽99麻豆av| 亚洲美女黄色视频免费看| 日韩大片免费观看网站| 18禁在线播放成人免费| 精品久久久精品久久久| 韩国av在线不卡| av线在线观看网站| 国产又色又爽无遮挡免| 国产高清不卡午夜福利| 视频在线观看一区二区三区| 搡女人真爽免费视频火全软件| 夫妻午夜视频| av国产久精品久网站免费入址| 少妇人妻精品综合一区二区| 97精品久久久久久久久久精品| 久久久久久久国产电影| 日韩一区二区视频免费看| 精品酒店卫生间| 日韩av在线免费看完整版不卡| 女人精品久久久久毛片| 18禁在线播放成人免费| 欧美 亚洲 国产 日韩一| 久久精品久久久久久久性| 国产日韩欧美在线精品| 人妻制服诱惑在线中文字幕| 寂寞人妻少妇视频99o| 欧美人与性动交α欧美精品济南到 | 亚洲国产毛片av蜜桃av| 国产成人午夜福利电影在线观看| 色网站视频免费| 日本色播在线视频| 日韩av免费高清视频| 国产成人a∨麻豆精品| 99热全是精品| 国产日韩欧美在线精品| 五月开心婷婷网| 日产精品乱码卡一卡2卡三| 成人国语在线视频| 一区二区三区四区激情视频| 丝袜脚勾引网站| 精品人妻一区二区三区麻豆| 91精品三级在线观看| 精品人妻偷拍中文字幕| 女人精品久久久久毛片| 免费观看性生交大片5| 51国产日韩欧美| 亚洲欧美色中文字幕在线| 成人免费观看视频高清| 亚洲精品,欧美精品| 国产欧美另类精品又又久久亚洲欧美| 天美传媒精品一区二区| 黄色视频在线播放观看不卡| 精品亚洲乱码少妇综合久久| 欧美激情国产日韩精品一区| 精品人妻偷拍中文字幕| 97超视频在线观看视频| av卡一久久| 亚洲国产欧美日韩在线播放| 国产成人午夜福利电影在线观看| 日本-黄色视频高清免费观看| 一区二区av电影网| xxxhd国产人妻xxx| 青春草国产在线视频| 青春草视频在线免费观看| 最近中文字幕2019免费版| 精品久久久久久久久亚洲| 美女xxoo啪啪120秒动态图| 黄色视频在线播放观看不卡| 国产高清三级在线| 夫妻性生交免费视频一级片| 免费观看a级毛片全部| 亚洲av电影在线观看一区二区三区| 亚洲av免费高清在线观看| 97在线人人人人妻| 成人免费观看视频高清| 亚洲天堂av无毛| 日韩强制内射视频| 男人爽女人下面视频在线观看| 久久精品国产a三级三级三级| 国产探花极品一区二区| 蜜臀久久99精品久久宅男| 一级片'在线观看视频| 99久久人妻综合| 蜜桃在线观看..| 中文天堂在线官网| 亚洲国产欧美在线一区| 夜夜骑夜夜射夜夜干| 亚洲国产精品国产精品| 国产在线免费精品| 美女主播在线视频| 欧美性感艳星| 亚洲欧美日韩另类电影网站| 精品人妻在线不人妻| 欧美精品人与动牲交sv欧美| 国产亚洲欧美精品永久| 99久久精品国产国产毛片| 乱码一卡2卡4卡精品| 国产av精品麻豆| 亚洲伊人久久精品综合| 国产精品久久久久久av不卡| 狠狠精品人妻久久久久久综合| 久久久久久久久久久免费av| 26uuu在线亚洲综合色| 日日爽夜夜爽网站| 纯流量卡能插随身wifi吗| 久久久久久久久久成人| 欧美日韩在线观看h| 天堂8中文在线网| 丰满饥渴人妻一区二区三| 亚洲欧美成人精品一区二区| 欧美日韩视频精品一区| 午夜91福利影院| 97超碰精品成人国产| 久久久久久伊人网av| 18禁观看日本| 午夜av观看不卡| 秋霞在线观看毛片| 亚洲av欧美aⅴ国产| 一区二区三区乱码不卡18| 国产精品99久久久久久久久| 高清av免费在线| av在线老鸭窝| 极品人妻少妇av视频| 三上悠亚av全集在线观看| 国产高清不卡午夜福利| 亚洲精品久久久久久婷婷小说| 国产片特级美女逼逼视频| 精品熟女少妇av免费看| 亚洲国产最新在线播放| 国产成人freesex在线| 国产成人91sexporn| 国产精品久久久久成人av| 一级爰片在线观看| 我的老师免费观看完整版| 久久人人爽av亚洲精品天堂| 在线观看免费视频网站a站| 18禁裸乳无遮挡动漫免费视频| 久久99热6这里只有精品| 日韩精品免费视频一区二区三区 | 国产精品国产av在线观看| 久久精品夜色国产| 赤兔流量卡办理| 精品午夜福利在线看| 国产精品久久久久久久久免| 街头女战士在线观看网站| 91精品国产国语对白视频| 国产成人午夜福利电影在线观看| 日本午夜av视频| 欧美丝袜亚洲另类| 日韩人妻高清精品专区| 一级毛片我不卡| 国产精品.久久久| 久久精品久久精品一区二区三区| 国产精品人妻久久久久久| 免费不卡的大黄色大毛片视频在线观看| 99热这里只有是精品在线观看| av网站免费在线观看视频| 日韩免费高清中文字幕av| 成年人免费黄色播放视频| 啦啦啦在线观看免费高清www| 美女cb高潮喷水在线观看| 国产av码专区亚洲av| 欧美少妇被猛烈插入视频| 亚洲第一av免费看| 国产一区二区在线观看av| 嘟嘟电影网在线观看| 最新的欧美精品一区二区| 九色亚洲精品在线播放| 69精品国产乱码久久久| 波野结衣二区三区在线| 观看美女的网站| 久久亚洲国产成人精品v| 97超视频在线观看视频| 国产精品蜜桃在线观看| 最新的欧美精品一区二区| 99久国产av精品国产电影| 久久久久久久久久久免费av| 天堂8中文在线网| 国产不卡av网站在线观看| 精品久久国产蜜桃| 亚洲第一av免费看| 久久久国产一区二区| 黑人巨大精品欧美一区二区蜜桃 | 精品国产露脸久久av麻豆| 日韩成人av中文字幕在线观看| 久热这里只有精品99| 97超视频在线观看视频| 亚洲精品国产av蜜桃| 午夜av观看不卡| 久久精品久久久久久久性| 免费人妻精品一区二区三区视频| 亚洲国产色片| 国产女主播在线喷水免费视频网站| 热99国产精品久久久久久7| 黑丝袜美女国产一区| 男男h啪啪无遮挡| 欧美+日韩+精品| 中文字幕最新亚洲高清| 午夜免费男女啪啪视频观看| 一级a做视频免费观看| 大又大粗又爽又黄少妇毛片口| 黑人高潮一二区| 乱码一卡2卡4卡精品| 女人精品久久久久毛片| 九九爱精品视频在线观看| 日本色播在线视频| av女优亚洲男人天堂| 亚洲国产日韩一区二区| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品,欧美精品| 国产精品一二三区在线看| 在线观看免费日韩欧美大片 | 日本色播在线视频| 嘟嘟电影网在线观看| 美女主播在线视频| 亚洲精品国产av蜜桃| 亚洲欧洲国产日韩| 国产在线一区二区三区精| 国产成人91sexporn| 精品亚洲成国产av| 亚洲一级一片aⅴ在线观看| 久久久a久久爽久久v久久| 久久久午夜欧美精品| 美女cb高潮喷水在线观看| 亚洲欧美一区二区三区黑人 | 九九久久精品国产亚洲av麻豆| 十八禁高潮呻吟视频| 精品国产乱码久久久久久小说| 纯流量卡能插随身wifi吗| 人人妻人人澡人人看| 伊人久久国产一区二区| 久久久久久伊人网av| 日韩一区二区三区影片| 婷婷色麻豆天堂久久| 一边摸一边做爽爽视频免费| 亚洲国产精品一区二区三区在线| 午夜老司机福利剧场| 最近中文字幕2019免费版| 午夜激情久久久久久久| 国产日韩欧美在线精品| 黑人高潮一二区| 成人二区视频| 黄片无遮挡物在线观看| 久久精品国产亚洲网站| 国产永久视频网站| 亚洲欧美一区二区三区国产| 日本黄色日本黄色录像| 亚洲av电影在线观看一区二区三区| 国产精品人妻久久久久久| 国产日韩一区二区三区精品不卡 | av.在线天堂| 亚洲四区av| 亚洲欧美精品自产自拍| 免费日韩欧美在线观看| 中文天堂在线官网| 99热6这里只有精品| videosex国产| 五月玫瑰六月丁香| 夜夜爽夜夜爽视频| 午夜av观看不卡| 丝袜脚勾引网站| 亚洲欧美一区二区三区黑人 | 老司机影院毛片| av在线播放精品| 高清视频免费观看一区二区| 人人妻人人添人人爽欧美一区卜| 国产在线免费精品| 亚洲内射少妇av| 国产精品麻豆人妻色哟哟久久| 亚洲欧美成人综合另类久久久| 国产视频内射| 欧美精品人与动牲交sv欧美| 插阴视频在线观看视频| .国产精品久久| 热re99久久国产66热| 久久精品人人爽人人爽视色| 99九九在线精品视频| 欧美最新免费一区二区三区| 国产成人av激情在线播放 | 看十八女毛片水多多多| av一本久久久久| 亚洲第一av免费看| 伦理电影免费视频| 精品人妻熟女毛片av久久网站| 国产在线视频一区二区| 多毛熟女@视频| av在线老鸭窝| 欧美国产精品一级二级三级| 伦精品一区二区三区| 狂野欧美激情性xxxx在线观看| 国产又色又爽无遮挡免| 国产日韩一区二区三区精品不卡 | 九九在线视频观看精品| 精品国产国语对白av| 欧美最新免费一区二区三区| av卡一久久| 国产成人精品在线电影| 嫩草影院入口| 夫妻性生交免费视频一级片| 黄色怎么调成土黄色| 亚洲在久久综合| 人人澡人人妻人| 国产免费现黄频在线看| 中文乱码字字幕精品一区二区三区| 亚洲经典国产精华液单| 91精品国产国语对白视频| 看十八女毛片水多多多| 国产在视频线精品| 满18在线观看网站| 亚洲欧美中文字幕日韩二区| 成人毛片a级毛片在线播放| 五月天丁香电影| 肉色欧美久久久久久久蜜桃| 亚洲综合精品二区| 女人久久www免费人成看片| 日日摸夜夜添夜夜爱| 最近中文字幕2019免费版| 一级毛片我不卡| 欧美日韩一区二区视频在线观看视频在线| 制服人妻中文乱码| kizo精华| 亚洲高清免费不卡视频| 免费看不卡的av| av天堂久久9| 亚洲久久久国产精品| 亚洲成人手机| 99精国产麻豆久久婷婷| 2021少妇久久久久久久久久久| 亚洲精品aⅴ在线观看| 国产一级毛片在线| 日本午夜av视频| 国产欧美日韩一区二区三区在线 | 人妻少妇偷人精品九色| 久久热精品热| 99热6这里只有精品| 日产精品乱码卡一卡2卡三| 99热这里只有是精品在线观看| 中文欧美无线码| 建设人人有责人人尽责人人享有的| 超色免费av| 婷婷成人精品国产| 日韩中字成人| 老熟女久久久| 一本—道久久a久久精品蜜桃钙片|