• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The unusual physicochemical properties of azulene and azulene-based compounds

    2019-12-18 02:21:44LiangOuYunyunZhouBinWuLiangliangZhu
    Chinese Chemical Letters 2019年11期

    Liang Ou,Yunyun Zhou,Bin Wu,Liangliang Zhu*

    State Key Laboratory of Molecular Engineering of Polymers,Department of Macromolecular Science,Fudan University,Shanghai 200438,China

    Keywords:

    Azulene

    ABSTRACT

    Azulene,an isomer of naphthalene,has become one of hot chemical structures in the research field of functional materials,due to its anti-Kasha’s rule emissions and unusual physicochemical properties(e.g.,photophysical,electrochemical,and photoelectrochemical properties).In the past,the synthesis of azulene-based compounds is relatively inconvenient.Recently,there have been more and more reports about the synthesis strategies of the azulene-based compounds for finely tuning the physicochemical properties.In this article,we introduce several synthetic methods for kinds of azulene-based compounds which has unusual physicochemical properties.With these convenient methods and unique physicochemical properties,azulene-based compounds can be applied into many fields such as specific bioimaging,advanced molecular switches,organic field-effect transistor (OFET),organic light emitting diode (OLED),solar cells,and so forth.And these properties are also summarized here.

    1.Introduction

    In 1863,Piesse obtained a blue organic matter from oil of wormwood and named it as“azulene”[1].Due to its unusual structure,azulene had attracted wide interests of many research groups over the years.In 1939,Pfau finished its chemical synthesis,undoubtedly accelerating the development of the azulene family [2].Azulene has a 10-π electron system,and the resonance delocalization of azulene affords cyclopentadienyl anionic and tropylium cationic character to gain the Hückel aromatic stabilization(Fig.1)[3].Due to this special structure,azulene has a large dipole moment of about 1.08 D and an unusual apparent color(deep blue)[4].On the contrary,the naphthalene only consists of two fused six membered rings,ensuring that it is colorless and has zero dipole moment [5].

    Furthermore,as compared to its isomer naphthalene,azulene has a distinct absorption and electronic transition (Fig.2a).The non-mirror-related highest occupied molecular orbital (HOMO) -lowest unoccupied molecular orbital(LUMO)geometry of azulene results in a small energy gap between the ground state(S0)and the first excited state (S1).Therefore,the absorption from S0→S1transition is in the visible range,making azulene become the smallest isolable organic compound [6,7].With simple substitutions,the absorption of azulene can be varied remarkably[8].And the change of absorptions depends on both the kind of substitution and the position of substitution.

    On the other hand,the emission of azulene is normally from S2,whereas the emission from S1is negligible,disobeying the Kasha’s rule [6].In 1950,Michael Kasha claimed that no matter what the excitation energy is,the emitting level of a given multiplicity is always the lowest level of that multiplicity for the vast majority of organic emitters,which is named as Kasha’s rule [9].In recent years,however,there are some reports about exceptional photophysical properties in azulene,thiones,pyrene,etc.,with anti-Kasha’s rule emission [10-12].

    Since the intensity and wavelength of the absorption and emission of azulene is sensitive to a series of factors as compared to most π-skeletons,azulene-based material has been applied into many fields like molecular switches,liquid crystalline,nonlinear optics(NLO)materials,near-infrared(NIR)materials,organic fieldeffect transistor(OFET),organic light emitting diode(OLED),solar cells,and metal-organic framework(MOF)[13-21].However,due to its special chemical structure,azulene-based compounds is difficult to synthesize,especially the 2,6-substituted azulene[22].To facilitate the development of synthesis method of the azulene family,thus far,some groups has reported some new synthesis strategies about azulene-based compounds,including all derivatives with different substituted places.

    Fig.1.azulene and its polarized resonance structure.

    Fig.2.(a) Unique fluorescence observed for naphthalene and azulene.(b)Probability of locating an electron in the HOMO,LUMO,and LUMO+1 of azulene(left) and naphthalene (right).Spheres represent the squares of atomic orbital coefficients.Reproduced with permission[6].Copyright 2017,John Wiley and Sons.

    2.Synthesis strategy of azulene-based compounds

    Due to the electronic and structural properties of azulene,the synthesis of 2-and 6-substituted derivatives is especially difficult.Hence the past researches regarding the synthesis of azulenebased compounds almost focused on the synthesis of 1/3-substituted derivatives or 4/7-substituted derivatives [22].As compared to other derivatives,however,the 2- and 6-substituted derivatives of azulene have larger dipole moment because of the C2vsymmetry.Thus the 2- and 6-substitution can cause stronger π-conjunction,which is useful in the field of organic (opto)electronic devices [23].As shown in Fig.2b,the electron distribution in frontier MOs should be considered while functionalizing azulene[6].Due to the resonance delocalization,the 1-,3-,5-and 7-positions of azulene are electron-rich and can be reacted with electrophilic reactants.On the contrary,the 2-,4-,6- and 8-positions of azulene are electron-poor and can be reacted with nucleophilic reactants (Fig.3).

    The 1- and 3-positions of azulene are the most active sites,so there are many reports about the synthesis of 1-and 3-substituted azulene derivatives.Some compounds of 1- and 3-substituted azulene derivatives are easily synthesized,just directly reacting with the electrophilic reagents in one step.For example,by the reaction with a fluorinating agents(Fig.3),1-fluoro-azulene can be prepared in one step with a high product yield about 34%.The 1,3-fluoro-azulene can also be prepared in this step with a product yield about 3% [24].

    The π-extension of the compounds can be expected by using Suzuki-Miyaura or Stille coupling reactions to form biaryl compounds [25,26].And azulenesulfonium salts can also be prepared from corresponding structures [27].For 1-substituted azulene derivatives,metal-catalyzed conditions can be used for the regioselective activation of CH bond at the electron-rich 1-position.With the metal like gold or palladium as catalyst,some 1- substituted azulene can be prepared(Scheme 1)[28].

    Fig.3.The numbering legend of azulene (left) and the fluorinating agents (right)[24].

    Scheme 1.Reported metal-catalyzed methods for azulene CH bond functionalization and C--C bond formation.Copied with permission [28].Copyright 2018.ACS Publications.

    Although other positions are less active,there are also some strategies to prepare these required structures.As compared to the 1-and 3-position,5-and 7-positions are less reactive so that the 1-and 3-positions should be basically protected first [29].The Stille cross-coupling can also occur on 6-position,with 1- and 3- positions already having substituent groups[26].Some peroxides can react with azulene to form 6-hydroxyl-azulene,which can be further modified [30].Competing with the addition at the 6-position,nucleophilic addition can react in 4-or 8-position in prior,and it can be easily added with methyl and phenyllithiums [6].

    Although 2-position has low coefficients relatively,there are still two popular strategies to prepare it.In the first strategy,azulene can react with some compounds such as pin2B2(Scheme 2,a)under the iridium catalysis,to form 2-substituted azulene[31].The other one for preparing 2-substituted azulene is shown in Scheme 2,route b [22].Without any catalysis,2-amino-azulene can easily react with Br2to prepare 2,6-substituted azulene.Further reactions can lead to much useful 2,6-substituted azulene,which can be applied into organic solar cells(OSCs),organic fieldeffect transistors (OFETs),and more [32].

    In addition to the synthesis on 1,3-and 2,6-positions,Hawker and co-workers reported a strategy to prepare 4,7-substituted azulene with a high product filed in 2011( Scheme 3)[33].And few years later,their group found that 1,3-substituted azulene,2,6-substituted azulene,5,7-substituted azulene can also be prepared by the similar strategy [34].

    Scheme 2.(a) Synthesis of 2-bromoazulene.(b) Another synthetic route to yield azulene derivatives substituted at 2-position.

    Scheme 3.Synthesis of 4,7-substituted azulene.

    3.The unusual photophysical properties of azulene-based compounds

    3.1.Application of emission of anti-Kasha’s rule

    Due to the special emission of S2to S0,as well as the remarkable change of absorption with substitution,the azulene derivatives have been widely applied into some fields like nonlinear optics(NLO) materials,near-infrared (NIR) materials,and fluorescence probes.

    In 2003,Robert and co- workers synthesized a series of substituted azulene ( Fig.4) to study the changes in the band gap,level structure and spectral properties with different substitution or in different substituted space[35].Compared with its isomer naphthalene,the LUMO+1 and HOMO of azulene is similar but the LUMO of azulene is substantially different.From LUMO to HOMO,the electron distributions of naphthalene are unchanged but electron distributions of azulene are totally different.The large difference means that it is possible to reduce the energy levels of these MOs and change the excited state,by attaching electron-donating or electron-withdrawing substituents to different ring positions.Attaching electron-donating at 1,3,5,7 positions will raise the energy level without changing the LUMO.Meanwhile,this effect will decrease the S0-S1energy gap and increase the S1-S2energy gap.The electron-withdrawing will lead to an opposite effect.The changes in the band gap and level structure lead to the change in apparent color.The azulene with electron-withdrawing substitution at 1,3 positions have a largely red-shifted absorption band,and even the maximum absorption peak of compound 10 (Fig.4) is up to 750 nm,indicating a good near-infrared material.

    The anti-Kasha’s rule of azulene is even not limited in the S2to S0transition.In 2018,our group reported that azulene with three aldehyde groups (Fig.5a) has the emission from S3to S0initially[36].With the addition of water to establish the H-bonding effect,the emission of compound TA(Fig.5a)is regulated to be from S2to S0with a totally different luminescence color (Fig.5b).Through such a H-bonding,the emission was controlled for realizing a superior emissive switching between S2to S0pathway and S3to S0pathway.

    Fig.4.A series of substituted azulene synthesized by Robert’s group.

    Fig.5.(a)Synthetic route for the preparation of compounds MA,DA and TA.(b)A proposed process for the formation of intermolecular H-bonding of compound TA upon addition of a small amount of H2O,accompanied by an anti-Kasha’s rule luminescent conversion.Copied with permission [36].Copyright 2018,ACS Publications.

    In 1988,Morley reported that azulene derivatives may have NLO properties as electron donator by computational investigation[37].Owing to the unusual electronic structure,azulene has large nonlinear optical responses,leading to potential application in nonlinear optics [14].In 1998,Herrmann reported that azulene combined with ferrocene could be an electronic accepter [38].In 2000,Lacroixet al.reported that 1-(4-nitrophenylazo)azulene possesses a β value of 80×10-30cm5/esu(at 1.907 μm),larger than that of 2-[N-ethyl-4-(4-nitrophenylazo)phenyl-amino]ethanol)(DR1),a related and well-known stilbene-based chromophore[39].In 2004,Lacroix reported on a series of cationic dyes built up from various 1-methylpyridinium based substituents as electron acceptors to investigate the potential application of azulene in nonlinear optics.And they also found that the substituted azulene may be used in cubic nonlinear optics [14].

    3.2.Application of emission of Kasha’s rule

    Recently,our group reported that azulene derivatives may overcome the limitation of the anti-Kasha’s rule emission,to realize a unique NIR emission.We found that the substitution of cyanostyryl can make azulene result in a controllable dual-channel imaging effect with the unimolecularly tunable visible-near Infrared luminescence [40].Compound A1was designed for the fundamental photochemical and photophysical studies in organic solution,while compound A2was for cell imaging application(Fig.6a).The strong emissions of A1and A2were only discovered when they are inE-form,so that the dual-channel (NIR and Vis)imaging can be realized by designing the structure of the compounds(Fig.6c).Fortunately,theZ/E-isomerization can occur easilyviapH and light control(Fig.6b),featuring such a material is smartly tunable.Furthermore,these compounds have so little biotoxicity that they can be used wellin vivo.The observation of the Kasha’s rule emission in this system can be attributed to 1) the enhancement of the S0to S1transition that increases the probability of the radiative decay from the S1state (referenced from the UV-vis spectral change),2)the conformational restriction of theE-form that can be helpful for inhibiting the nonradiative relaxation processes.

    4.The unusual electrical properties of azulene-based compounds

    Conjugated polymers have exhibited their huge potential as active materials in organic (opto)electronic devices such as organic solar cells (OSCs) and field-effect transistors (OFETs)[23].Correspondingly,azulene has also been employed into these materials for exerting specific optoelectronic behaviors tuning.

    Fig.6.(a)Chemical structures of the cyanostyryl-modified azulenyl compounds A1 and A2; (b) The protonation-assisted photoisomerization process; (c) Optimized conformational (up) Z- and (down) E-forms of the cyanostyryl-modified azulenyl moiety at the B3LYP/6-31G*level of theory and the illustration of the tunable dualpathway emission behaviors: the Vis and NIR emissions are both quenched in Zform in contrast to the E-form.Copied with permission [40].Copyright 2017,John Wiley and Sons.

    4.1.Application in organic solar cells (OSCs)

    In 2004,Piotrowiak reported that azulene and its derivatives with some substitutions can absorb light and transfer the photoinduced electrons to TiO2,showing the possibility for azulene application in organic solar cell materials (Fig.7) [41].In 2006,Zhang and co- workers reported that four azulene-based dye molecules,3-(azulene-1-yl)-2-cyanoacrylic acid,3-(7-isopropyl-1,4-dimethylazulen-3-yl)-2-cyanoacrylic acid,5-(azulen-1-yl)-2-cyanopenta-2,4-dienoic acid,and 5-(7-isopropyl-1,4-dimethylazulen-3-yl)-2-cyanopenta-2,4-dienoicacid have unusual photoelectrochemical properties that has great potential application in organic solar cells[42].Thereinto,the photoelectric conversion efficiency of 5-(7-isopropyl-1,4-dimethylazulen-3-yl)-2-cyanopenta-2,4-dienoicacid is 2.9%,which is the highest in such a series of compounds.

    Fig.7.Azulene can absorb light and transfer the photo-induced electrons to TiO2.Copied with permission [41].Copyright 2004,ACS Publications.

    Azulene can also be the electron donor in electron donor(D)-acceptor(A)polymers for constructing organic solar cells.In 2015,Zhang and co- workers reported that they synthesized three conjugated polymers with dithienyldiketopyrrolopyrrole (DPP)and azulene.They can also be applied for solar cells with the highest photoelectric conversion efficiency up to 2.04% [43].In 2015,Murataet al.reported that tetra-substituted azulene can be used as a hole-transporting material (HTM) in perovskite solar cells.They observed that the power conversion efficiency is 16.5%,beyond the current HTM standard material Spiro-OMeTAD [18].

    4.2.Application in organic field-effect transistor (OFETs)

    As an important classes of electronic devices,organic fieldeffect transistors(OFETs)have numerous important applications in many fields [44].In 2007,Leeuw and co- workers reported that azulene-based compound has potential to be used in OFETs [6].After that,there have been more and more reports about the application of azulene in organic field-effect transistors.For example,in 2012,Katagiri reported that they synthesized 550-di(2-azulenyl)-220-bithiophene and 2,5-di(2-azulenyl)-thieno[3,2-b]thiophene,with the hole mobilities up to 5.0×10-2cm2V-1s-1[45].In 2016,Katagiri and co- worker reported that 2,6′:2′,6′′-terazulene,6,2′:6′,6′′-terazulene exhibited excellent performance as an n-type organic field-effect transistor,while 2,2′:6′,2′′-terazulene,2,2′:6′,6′′-terazulene acted as both n-type and p-type organic field-effect transistor ( Fig.8) [17].The FET mobilities were gradually improved with increasing temperature.At 100°C,the electron carrier mobilities of TAz3 can even be as high as 0.31 cm2V-1s-1,and the hole mobilities of TAz2 can be as high as 1.32 cm2V-1s-1.

    In addition,Prof.Gaoet al.developed biazulene diimides as another type of new azulene-based candidate for constructing optoelectronic materials in 2016 [46].Relative to other pertinent skeletons,their materials have relatively higher LUMO energies as well as narrower band gaps.When biazulene diimides were polymerized,they found these polymers can exhibit unipolar ntype transistor performance with relatively high electron mobility[32].These results show that developing new azulene-based building block like biazulene diimides is one of effective strategies for advancing organic electronic materials and devices.

    Fig.8.Polarity change of OFETs by molecular orbital distribution contrast.Copied with permission [17].Copyright 2016,ACS Publications.

    5.Conclusion

    As mentioned above,azulene has abundant physicochemical properties including photophysical properties and electrochemical properties,on account of its special structure and electronic structure.Therefore,it has been well applied into many fields like nonlinear optics (NLO) materials,near-infrared (NIR) materials,organic solar cells (OSCs),organic light emitting diodes (OLEDs)and organic field-effect transistors (OEFTs).In the past,the application of azulene and its derivatives has been limited because of the difficulties of synthesizing the azulene substituted derivatives of some position.These years,with more and more reports about new synthesis strategies,the synthesis of some certain substituted azulene has been possible and convenient.With the development of new synthesis strategies for different substituted position and substituendum,the more and more substituendums that can largely influence the properties of azulene can be attached to the azulene.Thus,better azulenebased materialsmay be formed in future.On the other hand,the azulene and its derivatives can be conjuncted with many superior organic function materials or devices to form advanced hybrid function materials,which has exhibited better properties than the precursor materials in absorption,energy transfer,stimuliresponsivity and more.These hybrid materials formed can be applied in other fields.In this way,we can foresee that the azulenebased materials can perform much more widely sooner or later.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.21644005) and National Program for Thousand Young Talents of China.

    午夜免费鲁丝| 欧美高清成人免费视频www| kizo精华| 国产精品福利在线免费观看| 欧美性猛交╳xxx乱大交人| 国产免费视频播放在线视频| 国产爽快片一区二区三区| 人妻一区二区av| 亚洲精品亚洲一区二区| 亚洲最大成人av| 五月天丁香电影| 又爽又黄a免费视频| 精品酒店卫生间| 国产真实伦视频高清在线观看| 精品午夜福利在线看| av国产久精品久网站免费入址| 亚洲成人一二三区av| 欧美老熟妇乱子伦牲交| 久久国产乱子免费精品| 免费大片18禁| 午夜福利视频1000在线观看| 亚洲不卡免费看| 大香蕉久久网| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产成人久久av| 在线免费十八禁| 亚洲在线观看片| 女人久久www免费人成看片| 少妇人妻一区二区三区视频| 欧美少妇被猛烈插入视频| 亚洲精品日本国产第一区| 免费黄频网站在线观看国产| 免费观看av网站的网址| 精品久久久久久久久av| 国产人妻一区二区三区在| 日韩电影二区| 边亲边吃奶的免费视频| 夫妻午夜视频| 建设人人有责人人尽责人人享有的 | 免费观看无遮挡的男女| 欧美日韩亚洲高清精品| 看十八女毛片水多多多| 最新中文字幕久久久久| 成人无遮挡网站| 蜜桃久久精品国产亚洲av| 搞女人的毛片| 少妇被粗大猛烈的视频| 能在线免费看毛片的网站| 高清在线视频一区二区三区| 免费观看在线日韩| 97在线视频观看| 国产美女午夜福利| 亚洲精品一二三| 一区二区三区精品91| 美女xxoo啪啪120秒动态图| 韩国高清视频一区二区三区| 五月开心婷婷网| 少妇人妻 视频| 色播亚洲综合网| 如何舔出高潮| 色网站视频免费| 国产成人免费观看mmmm| 久久久久精品性色| 国产伦理片在线播放av一区| 国产一区二区在线观看日韩| 国产免费一区二区三区四区乱码| 国产大屁股一区二区在线视频| 人人妻人人澡人人爽人人夜夜| 日本与韩国留学比较| av一本久久久久| 人妻系列 视频| 人妻一区二区av| 少妇人妻一区二区三区视频| 国产黄片视频在线免费观看| 亚洲美女搞黄在线观看| 在线天堂最新版资源| 亚洲伊人久久精品综合| 亚洲国产精品成人久久小说| 熟女av电影| 亚洲欧美精品专区久久| 国精品久久久久久国模美| 亚洲av不卡在线观看| 亚洲经典国产精华液单| 99久久中文字幕三级久久日本| 毛片一级片免费看久久久久| 成人综合一区亚洲| 黄片无遮挡物在线观看| 18禁裸乳无遮挡免费网站照片| 高清毛片免费看| 国产黄片美女视频| 一本色道久久久久久精品综合| 性色avwww在线观看| 日日啪夜夜爽| 日韩av不卡免费在线播放| 国产视频首页在线观看| 热re99久久精品国产66热6| 日本熟妇午夜| 视频区图区小说| 最后的刺客免费高清国语| 国产大屁股一区二区在线视频| 最近中文字幕2019免费版| 黑人高潮一二区| 人妻少妇偷人精品九色| 十八禁网站网址无遮挡 | 亚洲电影在线观看av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一个人看视频在线观看www免费| 亚洲自拍偷在线| 国产av国产精品国产| 99久久人妻综合| 欧美三级亚洲精品| 激情五月婷婷亚洲| 国产v大片淫在线免费观看| 日韩,欧美,国产一区二区三区| 五月伊人婷婷丁香| 亚洲国产最新在线播放| 免费看不卡的av| 涩涩av久久男人的天堂| 欧美精品一区二区大全| av国产精品久久久久影院| 国产在线一区二区三区精| 精品国产一区二区三区久久久樱花 | 国产极品天堂在线| 嫩草影院入口| 久久久久久久久久久丰满| 欧美xxⅹ黑人| 亚洲精品国产色婷婷电影| 成人二区视频| 国产成人精品久久久久久| 一级毛片电影观看| 亚洲国产精品国产精品| 边亲边吃奶的免费视频| 视频中文字幕在线观看| 国产成人a区在线观看| 三级国产精品欧美在线观看| 在线观看一区二区三区| av专区在线播放| 免费大片黄手机在线观看| 26uuu在线亚洲综合色| 国产精品女同一区二区软件| 熟女人妻精品中文字幕| 熟女人妻精品中文字幕| 中文字幕人妻熟人妻熟丝袜美| 欧美日本视频| 国产爱豆传媒在线观看| 欧美精品国产亚洲| 亚洲国产色片| 国产色爽女视频免费观看| 白带黄色成豆腐渣| 亚洲欧美精品专区久久| 久久人人爽av亚洲精品天堂 | 亚洲欧美清纯卡通| 97在线人人人人妻| 白带黄色成豆腐渣| 汤姆久久久久久久影院中文字幕| 我的女老师完整版在线观看| 高清欧美精品videossex| 亚洲天堂国产精品一区在线| 可以在线观看毛片的网站| 色网站视频免费| 亚洲欧洲国产日韩| 99热6这里只有精品| 国产精品人妻久久久久久| 哪个播放器可以免费观看大片| 免费大片18禁| 国产高清三级在线| 黄片无遮挡物在线观看| 免费观看的影片在线观看| 秋霞伦理黄片| 国产成人91sexporn| 黄色视频在线播放观看不卡| 久久鲁丝午夜福利片| 一级毛片 在线播放| 久久久久国产精品人妻一区二区| 天天一区二区日本电影三级| 亚洲自偷自拍三级| 嘟嘟电影网在线观看| 日本免费在线观看一区| 午夜免费鲁丝| 丝袜喷水一区| 国产精品福利在线免费观看| 在线 av 中文字幕| 久久久久久久久久久免费av| 国产男女内射视频| 亚洲国产精品国产精品| 日韩av在线免费看完整版不卡| 国产高清国产精品国产三级 | 80岁老熟妇乱子伦牲交| 亚洲av.av天堂| 久久精品夜色国产| 天堂中文最新版在线下载 | 别揉我奶头 嗯啊视频| 大话2 男鬼变身卡| 观看美女的网站| 蜜桃久久精品国产亚洲av| 全区人妻精品视频| 久久人人爽av亚洲精品天堂 | 一个人看的www免费观看视频| 亚洲av.av天堂| 韩国av在线不卡| 国产黄片美女视频| 精品午夜福利在线看| 婷婷色av中文字幕| 亚洲电影在线观看av| 激情五月婷婷亚洲| 男女那种视频在线观看| 欧美日韩在线观看h| 亚洲欧美清纯卡通| 内射极品少妇av片p| 最近最新中文字幕免费大全7| 五月天丁香电影| 成人高潮视频无遮挡免费网站| 视频区图区小说| 男人爽女人下面视频在线观看| 人人妻人人看人人澡| 看非洲黑人一级黄片| 久久久色成人| 免费看光身美女| 少妇人妻 视频| 久久久久国产精品人妻一区二区| 国产毛片a区久久久久| 男女下面进入的视频免费午夜| 亚洲综合精品二区| 黄色一级大片看看| 久久影院123| 免费黄频网站在线观看国产| 精品国产三级普通话版| 久久人人爽人人片av| 99视频精品全部免费 在线| 亚洲av电影在线观看一区二区三区 | 亚洲av日韩在线播放| 天美传媒精品一区二区| 男女无遮挡免费网站观看| 国产一区二区在线观看日韩| 三级国产精品片| 99精国产麻豆久久婷婷| 欧美zozozo另类| 国产一区有黄有色的免费视频| 婷婷色麻豆天堂久久| 亚洲婷婷狠狠爱综合网| 欧美老熟妇乱子伦牲交| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 最近最新中文字幕大全电影3| av卡一久久| 春色校园在线视频观看| 别揉我奶头 嗯啊视频| 免费观看在线日韩| 亚洲国产欧美人成| 国产免费一区二区三区四区乱码| 99久久精品国产国产毛片| 18禁动态无遮挡网站| 久久久久久久久久久免费av| av播播在线观看一区| 91在线精品国自产拍蜜月| 五月开心婷婷网| 成人亚洲精品一区在线观看 | 性插视频无遮挡在线免费观看| 国产精品一区www在线观看| 中文字幕久久专区| 岛国毛片在线播放| 国产高潮美女av| 国产精品久久久久久精品电影| 嫩草影院新地址| 久热久热在线精品观看| 精品少妇黑人巨大在线播放| 97人妻精品一区二区三区麻豆| 日本猛色少妇xxxxx猛交久久| 欧美成人a在线观看| 成年av动漫网址| 成人免费观看视频高清| 一区二区av电影网| 色播亚洲综合网| 在线免费观看不下载黄p国产| 欧美老熟妇乱子伦牲交| 国产成人免费观看mmmm| 99热全是精品| 午夜福利高清视频| 91久久精品国产一区二区成人| 国产色婷婷99| 高清日韩中文字幕在线| 晚上一个人看的免费电影| 精品人妻偷拍中文字幕| 亚洲最大成人手机在线| 在线天堂最新版资源| 最近中文字幕高清免费大全6| 日本三级黄在线观看| 久久99精品国语久久久| 丝袜脚勾引网站| 国产白丝娇喘喷水9色精品| 国产精品爽爽va在线观看网站| 狠狠精品人妻久久久久久综合| 中文天堂在线官网| 春色校园在线视频观看| 久久久久久久久久久免费av| 最近中文字幕高清免费大全6| 真实男女啪啪啪动态图| 国产精品偷伦视频观看了| 高清欧美精品videossex| 少妇高潮的动态图| 天美传媒精品一区二区| 国产伦理片在线播放av一区| 激情五月婷婷亚洲| 国产淫语在线视频| 国产欧美另类精品又又久久亚洲欧美| 国产中年淑女户外野战色| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品国产av成人精品| 日韩国内少妇激情av| 久久久久久久午夜电影| 亚洲天堂国产精品一区在线| 久久精品久久久久久噜噜老黄| 国产在视频线精品| 插逼视频在线观看| 久久午夜福利片| 伊人久久精品亚洲午夜| 少妇裸体淫交视频免费看高清| 成人综合一区亚洲| 日韩三级伦理在线观看| 在线观看人妻少妇| 久久久久久伊人网av| 精品99又大又爽又粗少妇毛片| 久久热精品热| 熟女人妻精品中文字幕| 美女脱内裤让男人舔精品视频| 欧美一区二区亚洲| 小蜜桃在线观看免费完整版高清| 五月玫瑰六月丁香| 国产大屁股一区二区在线视频| 亚洲欧美日韩无卡精品| 日韩一区二区三区影片| 永久免费av网站大全| 最后的刺客免费高清国语| 国产精品.久久久| 啦啦啦中文免费视频观看日本| 国产成人a区在线观看| 亚洲怡红院男人天堂| 晚上一个人看的免费电影| 亚洲精品,欧美精品| 秋霞在线观看毛片| 国产亚洲5aaaaa淫片| 亚洲欧美中文字幕日韩二区| 两个人的视频大全免费| 男插女下体视频免费在线播放| 伦理电影大哥的女人| 一级毛片久久久久久久久女| 久久亚洲国产成人精品v| 国产一区二区亚洲精品在线观看| 国产成人精品一,二区| 日韩制服骚丝袜av| 极品少妇高潮喷水抽搐| 久久久成人免费电影| 婷婷色av中文字幕| 久久国产乱子免费精品| 女的被弄到高潮叫床怎么办| 欧美日韩精品成人综合77777| 五月天丁香电影| 一级毛片黄色毛片免费观看视频| 毛片一级片免费看久久久久| 色网站视频免费| 在线观看免费高清a一片| 国产一区二区三区综合在线观看 | 男插女下体视频免费在线播放| 少妇高潮的动态图| 毛片一级片免费看久久久久| h日本视频在线播放| 日本爱情动作片www.在线观看| 日日摸夜夜添夜夜添av毛片| 欧美日韩视频高清一区二区三区二| 国产色爽女视频免费观看| 我的女老师完整版在线观看| 新久久久久国产一级毛片| 久久久久久久久大av| 97在线人人人人妻| 亚洲国产欧美在线一区| 国产淫语在线视频| 精品久久久久久久久av| 亚洲精华国产精华液的使用体验| 国产一区二区亚洲精品在线观看| 中文字幕久久专区| 我的女老师完整版在线观看| 国产一区有黄有色的免费视频| 日韩精品有码人妻一区| 欧美成人午夜免费资源| 亚洲伊人久久精品综合| 国产 一区 欧美 日韩| 少妇人妻 视频| 午夜精品国产一区二区电影 | 精品一区二区三区视频在线| 久久热精品热| 日本黄色片子视频| 国产一区二区三区av在线| 亚洲精品中文字幕在线视频 | 午夜免费男女啪啪视频观看| 美女xxoo啪啪120秒动态图| 欧美老熟妇乱子伦牲交| 69人妻影院| 人妻制服诱惑在线中文字幕| 色播亚洲综合网| 国产毛片在线视频| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看 | av一本久久久久| 18+在线观看网站| 我要看日韩黄色一级片| 天天一区二区日本电影三级| 欧美一区二区亚洲| 不卡视频在线观看欧美| 好男人视频免费观看在线| 看十八女毛片水多多多| 日韩欧美精品免费久久| av在线蜜桃| 99久国产av精品国产电影| 在线天堂最新版资源| 日本一二三区视频观看| 你懂的网址亚洲精品在线观看| 观看美女的网站| 熟女av电影| 久久久精品欧美日韩精品| 91精品一卡2卡3卡4卡| 国产亚洲91精品色在线| 亚洲精华国产精华液的使用体验| 欧美国产精品一级二级三级 | 精品一区二区三区视频在线| 亚洲一区二区三区欧美精品 | 黄片wwwwww| 中文字幕免费在线视频6| 精品久久久久久电影网| 成人美女网站在线观看视频| 色哟哟·www| 赤兔流量卡办理| 美女xxoo啪啪120秒动态图| 久久鲁丝午夜福利片| 一二三四中文在线观看免费高清| 亚洲国产日韩一区二区| 性色avwww在线观看| 欧美日韩一区二区视频在线观看视频在线 | 久热久热在线精品观看| 国产一区二区在线观看日韩| 亚洲精品一区蜜桃| 国产成年人精品一区二区| 国产精品麻豆人妻色哟哟久久| 日韩中字成人| 高清在线视频一区二区三区| 免费播放大片免费观看视频在线观看| 国产爽快片一区二区三区| 久久99热这里只有精品18| 蜜桃亚洲精品一区二区三区| 少妇丰满av| 欧美 日韩 精品 国产| 26uuu在线亚洲综合色| 精品亚洲乱码少妇综合久久| xxx大片免费视频| 日韩视频在线欧美| 一级毛片电影观看| av在线亚洲专区| 国产高清有码在线观看视频| 国产探花极品一区二区| 大片免费播放器 马上看| 在线天堂最新版资源| 国产老妇伦熟女老妇高清| 午夜福利在线在线| 99热6这里只有精品| 校园人妻丝袜中文字幕| 国产欧美亚洲国产| 一本久久精品| 亚洲精品视频女| 欧美成人精品欧美一级黄| 免费av毛片视频| 男女无遮挡免费网站观看| 欧美性感艳星| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久末码| 99精国产麻豆久久婷婷| 国产淫片久久久久久久久| 国产精品福利在线免费观看| 久久精品国产鲁丝片午夜精品| 高清日韩中文字幕在线| 成人欧美大片| 久久影院123| 女人久久www免费人成看片| 亚洲av免费高清在线观看| 国产乱人视频| 国产精品国产三级国产专区5o| 深夜a级毛片| 日日啪夜夜爽| 精品一区在线观看国产| 国产精品.久久久| 日韩亚洲欧美综合| 亚洲自拍偷在线| av黄色大香蕉| 亚州av有码| 中文资源天堂在线| 久久精品久久精品一区二区三区| 国产精品一区二区在线观看99| 国产亚洲精品久久久com| 国产午夜福利久久久久久| 亚洲欧美一区二区三区国产| 日本色播在线视频| 成人美女网站在线观看视频| 少妇裸体淫交视频免费看高清| 国产毛片a区久久久久| 一本久久精品| 免费看a级黄色片| 精品亚洲乱码少妇综合久久| 91久久精品国产一区二区三区| 高清视频免费观看一区二区| 丰满少妇做爰视频| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品古装| av国产免费在线观看| 欧美高清性xxxxhd video| 大码成人一级视频| 伦精品一区二区三区| 精品久久久久久久末码| 亚洲电影在线观看av| 一本一本综合久久| 纵有疾风起免费观看全集完整版| 免费在线观看成人毛片| 一区二区三区精品91| 国产乱人偷精品视频| 欧美少妇被猛烈插入视频| 五月开心婷婷网| 麻豆成人午夜福利视频| 国产黄频视频在线观看| 国产大屁股一区二区在线视频| 2018国产大陆天天弄谢| 看免费成人av毛片| 丝袜脚勾引网站| 婷婷色综合大香蕉| 成人一区二区视频在线观看| 青春草亚洲视频在线观看| 精品国产一区二区三区久久久樱花 | 嫩草影院新地址| 成年女人看的毛片在线观看| 亚洲精品日本国产第一区| 黄片无遮挡物在线观看| 精品人妻一区二区三区麻豆| 亚洲av电影在线观看一区二区三区 | 亚洲综合色惰| 小蜜桃在线观看免费完整版高清| 色视频在线一区二区三区| 全区人妻精品视频| 亚洲国产色片| 街头女战士在线观看网站| 涩涩av久久男人的天堂| 噜噜噜噜噜久久久久久91| 人人妻人人爽人人添夜夜欢视频 | 在线观看一区二区三区| 可以在线观看毛片的网站| 午夜福利视频精品| 久久久久久九九精品二区国产| 三级国产精品片| 18禁裸乳无遮挡动漫免费视频 | 一级毛片久久久久久久久女| 日本免费在线观看一区| 又爽又黄无遮挡网站| 亚洲伊人久久精品综合| 国产伦理片在线播放av一区| 春色校园在线视频观看| 日产精品乱码卡一卡2卡三| 免费黄频网站在线观看国产| 99九九线精品视频在线观看视频| 国产一区二区三区综合在线观看 | 亚洲精品中文字幕在线视频 | 日日摸夜夜添夜夜添av毛片| 好男人视频免费观看在线| 亚洲一区二区三区欧美精品 | 国产精品一及| 久热这里只有精品99| 色播亚洲综合网| 日本免费在线观看一区| 一级av片app| 日韩av免费高清视频| 不卡视频在线观看欧美| 下体分泌物呈黄色| 久久99热这里只有精品18| 黄色欧美视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 永久免费av网站大全| 18禁动态无遮挡网站| 精品久久国产蜜桃| 欧美日韩综合久久久久久| 日韩一区二区三区影片| 七月丁香在线播放| 十八禁网站网址无遮挡 | 91久久精品国产一区二区三区| 天天一区二区日本电影三级| 六月丁香七月| 国产午夜精品久久久久久一区二区三区| 久久精品国产鲁丝片午夜精品| 精品久久久久久久久av| 国产毛片a区久久久久| 毛片女人毛片| 午夜福利在线在线| 久热久热在线精品观看| 午夜激情久久久久久久| .国产精品久久| 久久久久性生活片| 少妇被粗大猛烈的视频| 日韩欧美一区视频在线观看 | 日韩三级伦理在线观看| 久久精品国产亚洲av涩爱| 国产成人aa在线观看| 免费观看a级毛片全部| 人妻 亚洲 视频| 美女cb高潮喷水在线观看| 久久国产乱子免费精品| 国产在线男女| 日本一二三区视频观看| 亚洲精品,欧美精品| 日韩电影二区| 欧美成人a在线观看| 日本与韩国留学比较| 免费黄频网站在线观看国产|