• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高性能計算機有向指數(shù)步長環(huán)網拓撲結構設計

    2019-12-11 03:33:26方木云吳輝冬劉海波趙鮮鮮
    關鍵詞:方木馬鞍山環(huán)網

    方木云,金 瑜,吳輝冬,仇 禎,劉海波,趙鮮鮮

    (安徽工業(yè)大學計算機科學與技術學院,安徽馬鞍山243032)

    Communication latency and physical cable length are always the major concerns for the large parallel applications deployed on High Performance Computing(HPC)systems,which could reach hundreds of nanoseconds[1-4],and thousands of kilometers[5].Thus, there are strong desire and fundamental requirement for designing a system with low latency and short cable length. Switch delays (about 100 nanoseconds in InfiniBand QDR) are larger than the wire and flit injection delays even including serial and parallel converters(SerDes)[6].Therefore,the problem of developing low latency and short cable length system could be converted into designing a topology of switches having low diameter,average shortest path length and total cable length.Thanks to the high-radix switches with dozens of ports[7],it is possible to design low-latency topologies by using multiple links per switch nowadays.Unfortunately, more links will increase cable length, so layout-conscious technology should be always taken into account for HPC oあ-chip interconnects[8-9].

    Various topologies of high-radix switches have been adopted in HPC systems. Specifically,there are tori,meshes and hypercubes for directed topology design,and Fat trees,Clos network,Omega and flattened butterfly for undirected topology design[1].These topologies are either regular or irregular depending on that whether their switches have the same steps and degrees or not. They have their own advantages and drawbacks in terms of latencies,cable length, packaging complexity, and fault tolerance. Which kind of topology is more suitable for a HPC system is hard to tell, which is based on its scale, electrical power budget, surface areas, and cost. HPC systems maintain a particular trade-oあamong these attributes.The diversity of topologies provides a wide range of choices for the design of HPC on-chip and oあ-chip interconnects.

    Undirected topologies in which some switches only link other switches for facilitating communication are widely adopted in oあ-chip HPC systems.However,directed topologies due to its space limitation so that no more switches could be embedded in are usually adopted in most on-chip HPC systems.

    Loop topologies,as an important parallel computing pattern and potential choice for HPC systems,have been studied over several decades. Fixed-step loop topology was firstly introduced in [10], such as double-loop networks[11-13]and multi-loop networks[14-15]. Random-step loop topology was recently addressed in [1-4, 8-9].Michihiro Koibuchi et al. proposed the use of random shortcuts and found out that it could drastically reduce the diameter and average shortest path length comparing with the non-random shortcuts scheme(i.e.,a kind of fixedstep loop topologies).There are two kinds of random methods:the first one forms a ring ahead and then randomly adds shortcuts, the second one randomly adds links and thus no ring formed ahead. In this paper we use randomshortcut and random-step to denote them respectively.

    Random-step loop topology can dramatically reduce latencies, but it leads to complex packaging and long physical cables which impact the cost negatively.In this paper,we propose a novel exponential-step loop topology for HPC interconnections, which not only further reduces the latency of the network by up to 30%, but also decreases the packaging complexity and physical cable length. Furthermore, contrary to the fixed-step and random-step schemes that calculate communication latencies after generating the topologies,the proposed scheme could estimate the latencies before the topology generation.

    1 Related Work

    1.1 Fixed-step Loop Topologies

    According to the number of steps,fixed-step loop topologies can be classified into double loop networks and multi-loop networks.

    1) Double Loop Topologies: Double loop topologies have been widely studied in the past years due to their importance to the design of interconnection or communication computer networks. For a survey about these networks see, for example, the papers of Chen et al.[11,16-17],Aguilo et al.[12]or Hwang[13,18-19].The directed graphs that model such networks are usually called double fixed step or circulate directed graphs.A double fixed-step directed graphs with n vertices, denoted by G(N; s1; s2) , is a digraph with set of vertices V, the set of integers modulo n,and adjacencies given by the rules i →i+s1(mod N);i →i+s2(mod N),with i;s1;s2 ∈V.The integer s1 and s2 are called the steps of the directed graph.The condition gcd(N;s1;s2)=1 must hold for the directed graph to be strongly connected.

    One of the most important parameters in these directed graphs is the diameter,which represents the transmission latency of the corresponding network.Other interesting parameters include the mean distance,fault tolerance,and connectivity.

    Wong and Coppersmith[10]gave the lower bound of the diameter and mean distance for the directed double loop networks as

    Most work focus on the minimization of the diameter for any given number of vertices.

    2)Multi-loop Topologies:Multi-loop topologies were firstly proposed by Wong and Coppersmith[10]for organizing multi-module memory services.Foil et al.[12]slightly extended its definition in their study of the data alignment problem in SIMD processors. Multi-loop topologies are also widely used in local area computer networks[15,20-21]and large area communication networks like SONET[22-24].

    A multi-loop network, denoted by L(N; s1; s2;…; sl), can be represented by a digraph on N nodes, 0;1;…;N-1.and l links of types:i →i+s1;i →i+s2;…;i →i+sl(mod N);i=0;1;…;N-1:When l is specified,we can also call it a directed l-loop network.A symmetric 2l-loop network,L(N;s1;…;sl;-sl;…;-sl)can be represented by a graph on N vertices with edges of l types:(i;i+s1);(i;i+s2);…;(i;i+sl)(mod N)for i=0;1;…s;N-1:

    Wong and Coppersmith[10]also gave the lower bound of the diameter and mean distance for the directed and undirected multi-loop networks,i.e.,

    1.2 Random Shortcut Topologies

    Random-step loop topologies are investigated in [1-4,8-9,25], which have better performance comparing with the fixed-loop ones in terms of low diameter,low average shortest path length and high default tolerance.

    There are two methods to add random shortcuts to a base ring in[1-4].The first one is that for a given ring with N vertices, consider a procedure by which shortcuts are added randomly to each vertices i , i.e., by picking each destination vertex uniformly among the possible 2n-1 vertices, while assuring that all vertices have the same degree so as to allow a comparison between same-degree topologies.The second one is a more sophisticated,but also more costly, shortcut generation method. When adding y shortcuts to a vertex, k×y random feasible destination vertices are found with k≥1. The length (in number of hops) of the shortest path to each of these vertices is computed.The y vertices with the longest and shortest paths are selected as the destination of shortcuts.The goal is to pick shortcuts judiciously, i.e., to avoid adding shortcuts between vertices that already have a shortest path between them.

    1.3 Topologies of HPC Systems

    In this subsection, we briefly introduce some topologies that are generally used for HPC interconnections with high-radix switches. In directed topologies, each switch connects directly to a number of compute nodes as well as to other switches. Popular directed topologies include k-ary n-cubes, with a degree of 2n which lead to tori, meshes, and hyper-cubes. Each topology leads to a particular trade-off between degree and diameter. These topologies are regular, meaning that all switches have the same degree as each switch is connected to the same number of switches.

    Undirected topologies,i.e.,topologies in which some switches are connected only to the neighboring switches, have also been proposed. They have low diameter at the expense of larger numbers of switches compared to directed topologies.The best known undirected topologies are Fat trees[25],Clos network and related multi-stage interconnection networks such as the Omega and Butterfly networks.A popular option is (p; q; r) Fat trees, with a degree of p+q,where p represents for the number of up-ward connections,q represents for the number of downward connections,and r represents for the number of tree levels.

    More recently, variations of these topologies, such as the flatten butterfly[26], have been proposed as a way to improve cost eあectiveness.In fact,for large-scale HPC systems,the network layout has a high impact on network cost,especially because longer wires must be optical if high bandwidth is required.The Dragonfly network uses a group of routers as a virtual router to reduce the wire length in the context of high-radix topologies,which is down by distinguishing inter-cabinet and intra-group networks[27].Various topologies,including exponential-step topologies,can be used for on-chip or oあ-chip interconnects.

    2 Proposed Directed Exponential-step Topology

    We propose the use of exponential-step in directed loop networks, which not only can furthermore reduce communication latencies but also maintain the logical relationship among vertices when compared to its random counterpart.

    2.1 Methodology

    In this subsection,we present a method to generate exponential-step loop topology.Assume there are N vertices noted by 1,2,…,N-1,N and degree K.The method to generate directed topologies by using exponential-step can be described as followings:

    Algorithm(I)aims at linking all the vertices as quickly as possible by using breadth-first method.Algorithm(I) achieves smaller communication latencies than random step because there exist no redundant links. Each link contributes to reducing delay.The linking process is just a routing method.

    Algorithm (II) is used to complement the degrees. These link relationships are not as obvious as those produced in Algorithm(I),but still more easily deduced than random-step.

    Recall the strategy of exponential step topologies: first routing and then linking. The strategy of fixed-step topologies and random-step topologies:first linking and then routing.

    To facilitate better understanding, we take an example in Fig. 1 to illustrate the proposed exponential-step scheme, where N=23 and K=2. In Fig. 1(a), node 1 links to nodes 2, 3. In Figs 1(b), nodes 2 and 3 links to nodes 4,5 and 6,7 respectively.In Fig.1(c),node 4 links to nodes 8,1 and the Algorithm(I)ends.Fig.1(d)shows the process of supplementing degrees: Node 5 links to nodes 6, 7. Node 6 links to nodes 8,1. Node 7 links to nodes 2,3.Node 8 links to nodes 4,5.Algorithm(II)ends.

    Fig.1 The generating process using exponential-step for N=23 and K=2

    We develop a simulation platform using Microsoft Visual Studio.C# to study HPC topologies.Fig.2 created by our simulation platform shows four topologies generated by algorithm with N= 26 and K = 2, 3, 4, 5, respectively. Unlike the asymmetric topologies generated by random-step scheme and the fully symmetric topologies generated by fixed-step, the topologies generated by the proposed scheme are partially symmetric topologies.Specifically, they are symmetric from global vision and asymmetric from local vision. If K = m, then there are m sparsely linked areas and m densely linked areas.The densely linked areas can be aggregated into nearly cabinets to reduce physical cable length as discussed in[8].

    Fig.2 Loop topologies using exponential-step with N=26 and K=2,3,4,5

    2.2 Algorithm Analysis

    Actually, the generated topology can be regarded as a kind of tree instead of loop. For the topologies with degree k=2,3,4,…,N,they could be regarded as binary,ternary,quaternary…n-ary tree.Here,we take an example of a topology with N=8 and K=2,3,4 respectively.Fig.3 denotes the tree generated by Algorithm(I).They are binary, ternary, quaternary trees respectively.Algorithm (II) shows the process of supplementing degrees. In this topology,the shortest path from one node to arbitrary another node all forms a tree.

    Fig.3 Tree topologies using exponential-step with N=23 and K=2,3,4

    For a topology with vertices N,there exist N trees.We find that the heights of these trees equal to either logkNor logkN+1,where k is the degree.The maximum height is just the diameter of the topology.Finally,our topology is generated by overlying N trees which denote N shortest path for N vertices.

    3 Compare With Other Loop Topologies

    In this section, by the aid of our simulation platform, we compare the proposed exponential-step topologies with random-shortcut, random-step and tight optimal fixed-step topologies in terms of communication latency,physical cable length and scalability.Note that except for random-shortcut,we also choose random-step topology because it has not been taken into account in [1-4]. Tight optimal fixed-step, rather than non-random shortcut topology which has a relatively large diameter referred in [1-4], is chosen to be made comparisons with other three kinds of topologies because it reaches the lower diameter bound among the fixed-step topologies.

    3.1 Communication Latency

    Communication latency is the most important property for topologies.In this section,we will make comparisons among the above four types of topologies in terms of diameter and average shortest path length in two cases.

    1)Degree is constant while N is variable

    Firstly we let degree K be a constant while vertices N be variable so as to view how communication latencies change with the increment of vertices.Assume K=2 and N=25, 26, 28, 210, 211respectively.Their diameters/average shortest path lengths are shown in Tab.1,and their change curves are shown in Fig.4.

    Tab.1 Diameter and mean distance vs.network size

    Fig.4 Diameter and average shortest path length vs.node size N for four kinds of topologies with K=2

    Note that,in Tab.1“8=5/33”means that 8 is the diameter and 5:33 is the mean distance.Seen from Tab.1 and Fig. 4, for the four kinds of topologies, their diameters and average shortest path lengths increase with the increment of node N. The proposed exponential-step topologies have the smallest latencies, which is further smaller than those of two kinds of random topologies. Compared to the tight optimal fixed-step topologies, it can reduce diameter by up to 85 percent. For instance, seen from the sixth line in Tab.1, reduction-bou may be up to 85%when K=2 and N=211.Compared to the two random topologies,it can reduce diameter by up to 30 percent or so.For instance,seen from the seventh line in Tab.1,reduction-ran maybe up to 33%when K=2 and N=26.Finally we find that random-shortcut and random-step topologies have the same diameters and nearly the same average shortest path lengths. Tight optimal fixed-step topologies, though reaches the lower diameter bound among the fixed-step topologies,have much larger diameters and average shortest path lengths than those of our proposed exponential-step and random counterparts.

    2)N is constant while degree is variable

    Secondly we let vertices N be a constant while degree K be variable so as to view how their communication latencies change with the increment of degree.Assume N=211and K=2,3,4,5,10 respectively.Their diameters/average shortest path lengths are shown in Tab.2,and their change curves are shown in Fig.5.

    Tab.2 Diameter and mean distance vs.degree

    Fig.5 Diameter and average shortest path length vs.degree K for four kinds of topologies with N=2 048

    From Tab. 2 and Fig. 5, with the increment of K both the diameter and mean distance decrease for the four kinds of topologies. Other observations are similar to those of the above experiment. For instance, the proposed exponential-step topologies have the smallest latencies, which is further smaller than those of two kinds of random topologies. The diameter reduction-bou may be up to 85 percent when compared to the lower diameter bound of fixed-step topologies. Meanwhile the diameter reduction-ran may be up to 30 percent or so when compared to the two random-step topologies.

    3.2 Packaging Complexity and Physical Cable Length

    Two practical concerns when deploying an HPC interconnects are packaging complexity and physical cable length which impact layout and costs respectively[1-4].

    Here we can’t give a quantitatively analysis for the pack-aging complexity and physical cable length,but we can give a qualitative analysis.Firstly,unlike the two random topologies which are asymmetric and possess chaos link relationship,the proposed exponential-step topology is symmetric and the node link relationships are certainly.So it has smaller packaging complexity.Secondly,as we known from the former section,there exist k denselylinked areas and k sparsely-linked areas in our proposed exponential-step topologies.The densely-linked areas can be aggregated into nearly cabinets to reduce physical cable length.Thirdly, the proposed exponential-step topologies can be laid out as a tree, so it is easy to be packaged. Its cable length can be smaller and packaging can be easier than those of the two random topologies.

    3.3 Scalability

    Scalability is the ability of a network to handle a growing amount of work in a capable manner or its ability to be enlarged to accommodate that growth[1].In one meaning,it can refer to the capability of a network to accept new vertices while ensure the original links can be modified as little as possible.When a new node must be added to an already existed layout, how many links have to be adjusted is a practical problem. Of course, the more less link-adjusted the more cheap fee-charged. For fixed-step and random-step topologies, when a vertex is added anywhere into the topology, only those links, which are linked to this new vertex, must be adjusted. But random topologies are more easily adjusted than fixed-step topologies. For the proposed exponential-step topologies, the price to add a new vertex is expensive. When the vertex is added to the start position of the topology, all links have to be adjusted.When the vertex is added to the middle position of the topology,all subsequent links have to be adjusted. When the vertex is added to the end position of the topology, the adjusted links is small. In a word,from this point of view the scalability of the proposed exponential-step topologies is the worst among the four kinds of topologies. On the other hand, scalability can also refer to the ability of a network to accept new nodes while maintain its diameter unchanged. Seen from Fig. 4, when N increases the diameters and mean distance of exponential-step topologies increase the most slowly.For a given diameter,the proposed exponential-step topologies can accommodate much large scope of vertices.So its scalability is the most best among the four kinds of topologies from this point of view.

    4 Conclusions

    1) In order to achieve lower communication latencies, as well as simpler packaging and shorter physical cable length, we have proposed the use of exponential-step in designing topologies, which take latencies into account ahead of the generation.

    2)Simulation results show that it can further reduce diameter by up to 30 percent or so when compared with random counterparts, and maybe reduce by up to 85 percent when compared with the lower diameter bound of fixed-step counterparts. If its degree equals to k, the proposed directed exponential-step loop topology have k densely-linked areas and k sparsely-linked areas that can reduce packaging complexity and physical cable length by gather densely-linked nodes into the same cabinet or nearly cabinets.

    3) In additional to being viewed as loop topology, the proposed topology can also be viewed as tree topologies in which there exist N overlying trees whose degrees are the same.

    猜你喜歡
    方木馬鞍山環(huán)網
    活尸之死
    馬鞍山鄭蒲港新區(qū)
    江淮法治(2022年2期)2022-03-17 08:54:16
    基于ODUk Spring方式實現(xiàn)基礎網絡環(huán)網保護的研究
    一塊方木里的自由
    揚子江(2020年4期)2020-08-04 11:59:33
    高速公路萬兆環(huán)網建設探析
    成自瀘高速馬鞍山隧道機電工程維護淺析
    木走廊
    南方文學(2016年7期)2016-09-27 01:08:48
    “詩城”馬鞍山 魅力黃梅戲
    黃梅戲藝術(2016年3期)2016-07-08 07:34:38
    馬鞍山村巨變
    基于CAN的冗余控制及其在軌道交通門禁環(huán)網中的應用
    日韩 欧美 亚洲 中文字幕| 蜜桃在线观看..| 中文字幕高清在线视频| 少妇人妻 视频| 嫩草影视91久久| 中文天堂在线官网| 汤姆久久久久久久影院中文字幕| 国产精品一二三区在线看| 天天操日日干夜夜撸| kizo精华| 午夜影院在线不卡| 亚洲三区欧美一区| 精品少妇一区二区三区视频日本电影 | 亚洲欧美日韩另类电影网站| 亚洲一级一片aⅴ在线观看| 人成视频在线观看免费观看| 捣出白浆h1v1| 免费黄频网站在线观看国产| 国产精品免费视频内射| 国产成人免费无遮挡视频| 中文字幕高清在线视频| 亚洲国产欧美网| 9色porny在线观看| 久久久精品国产亚洲av高清涩受| 成年美女黄网站色视频大全免费| 午夜福利,免费看| 纯流量卡能插随身wifi吗| 老司机深夜福利视频在线观看 | 咕卡用的链子| 天美传媒精品一区二区| 满18在线观看网站| 综合色丁香网| 亚洲av成人精品一二三区| 天天躁夜夜躁狠狠久久av| 老司机影院毛片| 亚洲精品美女久久av网站| 免费少妇av软件| 亚洲av成人不卡在线观看播放网 | 人人妻,人人澡人人爽秒播 | 国产成人精品久久二区二区91 | 香蕉丝袜av| 久热这里只有精品99| 国产欧美日韩一区二区三区在线| 国产精品一区二区精品视频观看| 91精品伊人久久大香线蕉| 国产高清国产精品国产三级| 日韩伦理黄色片| 狠狠婷婷综合久久久久久88av| avwww免费| 男人舔女人的私密视频| 一区二区三区激情视频| 精品卡一卡二卡四卡免费| 国产亚洲午夜精品一区二区久久| 如日韩欧美国产精品一区二区三区| 国产女主播在线喷水免费视频网站| 国产av码专区亚洲av| 久久久国产精品麻豆| 18禁国产床啪视频网站| 日韩 欧美 亚洲 中文字幕| 日日啪夜夜爽| 男人舔女人的私密视频| 999精品在线视频| 韩国高清视频一区二区三区| 久久人人爽人人片av| 午夜激情av网站| 午夜激情av网站| 久久精品国产综合久久久| 一级毛片电影观看| 亚洲美女视频黄频| 欧美精品一区二区免费开放| 欧美在线一区亚洲| videosex国产| 91精品三级在线观看| 人人妻,人人澡人人爽秒播 | 亚洲国产欧美一区二区综合| 国产在线视频一区二区| 少妇被粗大的猛进出69影院| 一级爰片在线观看| 三上悠亚av全集在线观看| 久久人人爽人人片av| 亚洲精品国产av成人精品| 91精品国产国语对白视频| 天美传媒精品一区二区| 成人影院久久| 少妇人妻久久综合中文| 国产一区二区在线观看av| 日韩av不卡免费在线播放| 人人妻人人澡人人爽人人夜夜| 午夜福利乱码中文字幕| 国产日韩欧美亚洲二区| 成年av动漫网址| 女的被弄到高潮叫床怎么办| 黄色 视频免费看| 最近的中文字幕免费完整| 丰满饥渴人妻一区二区三| 伦理电影免费视频| bbb黄色大片| 亚洲av中文av极速乱| 男女免费视频国产| 国产欧美亚洲国产| 两个人免费观看高清视频| 色播在线永久视频| 人人妻人人澡人人看| 看十八女毛片水多多多| 少妇精品久久久久久久| 最近的中文字幕免费完整| 久久久久精品性色| av电影中文网址| 精品第一国产精品| 中国三级夫妇交换| 91aial.com中文字幕在线观看| 日韩一本色道免费dvd| 欧美日韩一区二区视频在线观看视频在线| 国产成人一区二区在线| 国产成人系列免费观看| 黄色视频在线播放观看不卡| 永久免费av网站大全| 国产精品久久久av美女十八| 一本大道久久a久久精品| 香蕉国产在线看| 在线看a的网站| 大陆偷拍与自拍| 亚洲男人天堂网一区| 精品少妇一区二区三区视频日本电影 | 人妻 亚洲 视频| 9热在线视频观看99| 夫妻午夜视频| 各种免费的搞黄视频| 亚洲伊人久久精品综合| 欧美精品一区二区大全| 天堂中文最新版在线下载| 久久久精品免费免费高清| 熟妇人妻不卡中文字幕| 天堂俺去俺来也www色官网| 亚洲精品第二区| 国产精品一区二区精品视频观看| 一本大道久久a久久精品| 老司机深夜福利视频在线观看 | 看免费av毛片| 国产亚洲欧美精品永久| 男女高潮啪啪啪动态图| 国产人伦9x9x在线观看| 成年女人毛片免费观看观看9 | 欧美日韩精品网址| 亚洲精品av麻豆狂野| 亚洲精品国产一区二区精华液| 色吧在线观看| 桃花免费在线播放| 色婷婷av一区二区三区视频| 少妇人妻 视频| 波多野结衣一区麻豆| 国产黄色免费在线视频| 伊人亚洲综合成人网| 欧美精品一区二区大全| 亚洲精品视频女| 国产一区二区三区av在线| 观看av在线不卡| 精品一区二区三区四区五区乱码 | 午夜福利乱码中文字幕| 国产色婷婷99| 日韩欧美一区视频在线观看| 在线观看免费视频网站a站| 久久国产精品男人的天堂亚洲| 久久久精品免费免费高清| av在线app专区| 搡老岳熟女国产| 午夜免费观看性视频| 亚洲精品一二三| 尾随美女入室| 看免费成人av毛片| 五月开心婷婷网| 日韩av免费高清视频| 国产极品天堂在线| 久久免费观看电影| 亚洲熟女精品中文字幕| 亚洲一级一片aⅴ在线观看| 男女边吃奶边做爰视频| 久久韩国三级中文字幕| 不卡av一区二区三区| 在线观看www视频免费| 美女国产高潮福利片在线看| 老司机亚洲免费影院| 日韩一区二区三区影片| 国产亚洲av高清不卡| 韩国精品一区二区三区| 国产淫语在线视频| 亚洲在久久综合| 亚洲,欧美,日韩| 大香蕉久久网| 免费观看av网站的网址| 夫妻性生交免费视频一级片| 高清黄色对白视频在线免费看| 欧美亚洲 丝袜 人妻 在线| 又大又黄又爽视频免费| 中文精品一卡2卡3卡4更新| 成人影院久久| 91精品三级在线观看| 中文字幕色久视频| 亚洲免费av在线视频| 午夜久久久在线观看| 中国国产av一级| 9色porny在线观看| 一区二区三区四区激情视频| 久久韩国三级中文字幕| 下体分泌物呈黄色| 久久久久久免费高清国产稀缺| 乱人伦中国视频| 国产成人系列免费观看| 亚洲,欧美,日韩| 色网站视频免费| 国产成人精品久久久久久| 亚洲熟女精品中文字幕| av片东京热男人的天堂| 国产一区二区 视频在线| 嫩草影院入口| 国产黄色视频一区二区在线观看| 三上悠亚av全集在线观看| 在线观看免费视频网站a站| av有码第一页| 亚洲一区二区三区欧美精品| 99久久精品国产亚洲精品| 国产亚洲最大av| 精品久久久精品久久久| 啦啦啦啦在线视频资源| 亚洲国产毛片av蜜桃av| 欧美日本中文国产一区发布| 你懂的网址亚洲精品在线观看| 国产又色又爽无遮挡免| av有码第一页| 亚洲一区二区三区欧美精品| 成年女人毛片免费观看观看9 | 大片免费播放器 马上看| 女人爽到高潮嗷嗷叫在线视频| 性色av一级| 久久久精品免费免费高清| 午夜福利在线免费观看网站| 波多野结衣一区麻豆| 青春草亚洲视频在线观看| 国产精品久久久久久精品电影小说| 日韩制服丝袜自拍偷拍| 亚洲国产精品999| 天天躁夜夜躁狠狠久久av| 亚洲免费av在线视频| 看免费av毛片| 久久久久久免费高清国产稀缺| 亚洲av在线观看美女高潮| 国产xxxxx性猛交| 午夜福利,免费看| 人妻人人澡人人爽人人| 国产一级毛片在线| 999久久久国产精品视频| av线在线观看网站| 欧美av亚洲av综合av国产av | 欧美老熟妇乱子伦牲交| 国产亚洲av片在线观看秒播厂| 亚洲图色成人| 国产无遮挡羞羞视频在线观看| 黄网站色视频无遮挡免费观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品自拍成人| 99国产精品免费福利视频| 久久国产精品男人的天堂亚洲| 国产亚洲av高清不卡| 女性被躁到高潮视频| 好男人视频免费观看在线| av在线观看视频网站免费| 天堂中文最新版在线下载| kizo精华| 午夜免费男女啪啪视频观看| 久久国产精品男人的天堂亚洲| av线在线观看网站| 国产精品久久久av美女十八| 精品一品国产午夜福利视频| 在线观看人妻少妇| 久久久国产欧美日韩av| 国产一级毛片在线| 婷婷色av中文字幕| 老司机靠b影院| 欧美日韩亚洲高清精品| 韩国av在线不卡| 久久久久网色| 国产无遮挡羞羞视频在线观看| 欧美亚洲日本最大视频资源| 国产精品嫩草影院av在线观看| 一本久久精品| 久久韩国三级中文字幕| 一二三四中文在线观看免费高清| 久久ye,这里只有精品| 男女高潮啪啪啪动态图| 亚洲情色 制服丝袜| 天堂8中文在线网| 日本猛色少妇xxxxx猛交久久| 中文欧美无线码| 母亲3免费完整高清在线观看| 中文字幕另类日韩欧美亚洲嫩草| 人体艺术视频欧美日本| 男的添女的下面高潮视频| 天天躁夜夜躁狠狠久久av| 制服丝袜香蕉在线| 一级,二级,三级黄色视频| 中文字幕人妻丝袜制服| 伊人久久国产一区二区| 免费黄频网站在线观看国产| 国产午夜精品一二区理论片| 欧美人与善性xxx| 国产一区二区激情短视频 | 亚洲成人手机| av又黄又爽大尺度在线免费看| 欧美国产精品一级二级三级| 国产成人啪精品午夜网站| 夫妻午夜视频| 久久精品久久精品一区二区三区| 国产成人免费无遮挡视频| 国产在视频线精品| 国产视频首页在线观看| 午夜免费鲁丝| av国产久精品久网站免费入址| 国产片特级美女逼逼视频| 精品少妇一区二区三区视频日本电影 | 免费高清在线观看日韩| 亚洲成av片中文字幕在线观看| 亚洲中文av在线| 大话2 男鬼变身卡| 婷婷色麻豆天堂久久| 男人操女人黄网站| 99久久精品国产亚洲精品| 免费久久久久久久精品成人欧美视频| √禁漫天堂资源中文www| 青春草亚洲视频在线观看| 亚洲成人手机| 欧美日韩精品网址| 国产亚洲av高清不卡| 乱人伦中国视频| 午夜福利乱码中文字幕| 欧美黑人欧美精品刺激| 蜜桃在线观看..| 岛国毛片在线播放| 成人亚洲精品一区在线观看| 国产福利在线免费观看视频| 亚洲激情五月婷婷啪啪| 免费观看av网站的网址| 制服丝袜香蕉在线| 国产成人精品久久二区二区91 | 国产黄色视频一区二区在线观看| 日韩一区二区三区影片| 精品亚洲成a人片在线观看| 秋霞伦理黄片| 亚洲国产日韩一区二区| 永久免费av网站大全| 日本av免费视频播放| 中文欧美无线码| 又大又爽又粗| 如日韩欧美国产精品一区二区三区| 亚洲av男天堂| 久久人人爽av亚洲精品天堂| 丰满少妇做爰视频| 美女国产高潮福利片在线看| 免费看av在线观看网站| 婷婷色av中文字幕| 在线观看一区二区三区激情| 高清视频免费观看一区二区| 黄频高清免费视频| 十八禁人妻一区二区| 欧美日韩福利视频一区二区| 久久精品人人爽人人爽视色| 精品一品国产午夜福利视频| 97在线人人人人妻| 亚洲国产精品999| 欧美日韩综合久久久久久| 欧美在线一区亚洲| 波多野结衣一区麻豆| 色婷婷av一区二区三区视频| 91aial.com中文字幕在线观看| 香蕉国产在线看| 亚洲欧美精品自产自拍| 国产女主播在线喷水免费视频网站| 亚洲精品日韩在线中文字幕| 最新的欧美精品一区二区| 少妇被粗大猛烈的视频| 亚洲精品乱久久久久久| 青春草亚洲视频在线观看| 久久韩国三级中文字幕| 国产亚洲一区二区精品| 亚洲图色成人| 欧美老熟妇乱子伦牲交| 国产伦人伦偷精品视频| 欧美黄色片欧美黄色片| 制服丝袜香蕉在线| 超色免费av| 一级a爱视频在线免费观看| 久久婷婷青草| 汤姆久久久久久久影院中文字幕| 99热网站在线观看| a 毛片基地| 亚洲成av片中文字幕在线观看| 日韩中文字幕视频在线看片| 女人被躁到高潮嗷嗷叫费观| 国产一区二区激情短视频 | 亚洲久久久国产精品| 日韩av免费高清视频| 成年av动漫网址| 亚洲av日韩精品久久久久久密 | 青草久久国产| 亚洲四区av| 欧美在线一区亚洲| 日韩免费高清中文字幕av| 国产一区二区三区综合在线观看| 中文字幕av电影在线播放| 国产不卡av网站在线观看| 中国三级夫妇交换| 亚洲精品久久成人aⅴ小说| e午夜精品久久久久久久| 久久精品久久久久久久性| 91aial.com中文字幕在线观看| 水蜜桃什么品种好| 汤姆久久久久久久影院中文字幕| 亚洲一区中文字幕在线| 色精品久久人妻99蜜桃| 亚洲精品国产区一区二| 日韩av在线免费看完整版不卡| 国语对白做爰xxxⅹ性视频网站| 欧美黑人精品巨大| 一级片'在线观看视频| 欧美变态另类bdsm刘玥| 日韩av免费高清视频| 午夜免费男女啪啪视频观看| 亚洲熟女精品中文字幕| 免费黄网站久久成人精品| 美女主播在线视频| 麻豆乱淫一区二区| 国产 一区精品| 久久人人爽人人片av| 亚洲一码二码三码区别大吗| 在线免费观看不下载黄p国产| 肉色欧美久久久久久久蜜桃| 久久精品国产综合久久久| 热99久久久久精品小说推荐| 我的亚洲天堂| 男女床上黄色一级片免费看| 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| www.熟女人妻精品国产| 国产精品久久久人人做人人爽| 一级毛片 在线播放| 晚上一个人看的免费电影| 国产午夜精品一二区理论片| 一边亲一边摸免费视频| 亚洲国产毛片av蜜桃av| 久久久久精品国产欧美久久久 | 欧美精品一区二区免费开放| 亚洲四区av| 日韩av在线免费看完整版不卡| 我要看黄色一级片免费的| 成年人免费黄色播放视频| 99九九在线精品视频| 精品亚洲成a人片在线观看| 亚洲人成电影观看| 亚洲国产成人一精品久久久| 如日韩欧美国产精品一区二区三区| 一二三四在线观看免费中文在| 成人亚洲精品一区在线观看| av不卡在线播放| 国产男女超爽视频在线观看| 两个人看的免费小视频| 性高湖久久久久久久久免费观看| 久久青草综合色| 亚洲男人天堂网一区| 多毛熟女@视频| 日韩视频在线欧美| 男女边吃奶边做爰视频| 亚洲第一av免费看| 亚洲成国产人片在线观看| 国产精品蜜桃在线观看| 日韩不卡一区二区三区视频在线| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看 | 久久天堂一区二区三区四区| 啦啦啦在线观看免费高清www| 在线亚洲精品国产二区图片欧美| 国产成人欧美在线观看 | 美女视频免费永久观看网站| 久久性视频一级片| 欧美人与性动交α欧美软件| 汤姆久久久久久久影院中文字幕| 麻豆乱淫一区二区| 超色免费av| 伊人久久大香线蕉亚洲五| 国产极品粉嫩免费观看在线| 啦啦啦啦在线视频资源| 99热网站在线观看| 97在线人人人人妻| 日本一区二区免费在线视频| av在线老鸭窝| 久久久久国产一级毛片高清牌| 韩国av在线不卡| 日韩不卡一区二区三区视频在线| 国产深夜福利视频在线观看| 国产一区二区三区av在线| 高清欧美精品videossex| 日韩人妻精品一区2区三区| 午夜激情av网站| 亚洲av日韩在线播放| a 毛片基地| 久久国产精品大桥未久av| 亚洲色图综合在线观看| 亚洲国产精品999| 国产1区2区3区精品| 在线天堂中文资源库| 91老司机精品| 香蕉丝袜av| 老司机深夜福利视频在线观看 | 十八禁高潮呻吟视频| 69精品国产乱码久久久| 999精品在线视频| 一本—道久久a久久精品蜜桃钙片| 丁香六月天网| 日韩大片免费观看网站| 亚洲,欧美精品.| 成人18禁高潮啪啪吃奶动态图| 欧美黄色片欧美黄色片| 午夜91福利影院| 色网站视频免费| 91精品国产国语对白视频| 人成视频在线观看免费观看| 黄色视频在线播放观看不卡| 亚洲欧美精品自产自拍| 国产精品嫩草影院av在线观看| 国产免费福利视频在线观看| 亚洲美女视频黄频| 国产欧美日韩一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产看品久久| av在线播放精品| 久久久国产精品麻豆| 观看美女的网站| 黄频高清免费视频| 国产片特级美女逼逼视频| 观看av在线不卡| 自线自在国产av| 日韩伦理黄色片| 日韩一区二区视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品香港三级国产av潘金莲 | 久久ye,这里只有精品| 午夜福利在线免费观看网站| 色播在线永久视频| 欧美日韩综合久久久久久| 国产日韩欧美视频二区| 丝袜人妻中文字幕| 亚洲欧美中文字幕日韩二区| 赤兔流量卡办理| 嫩草影院入口| 汤姆久久久久久久影院中文字幕| 亚洲欧美精品综合一区二区三区| 男女边摸边吃奶| 99久久综合免费| 国产精品久久久人人做人人爽| 制服诱惑二区| 韩国av在线不卡| 狠狠婷婷综合久久久久久88av| 多毛熟女@视频| 波野结衣二区三区在线| 国产在视频线精品| 欧美精品一区二区免费开放| 精品国产超薄肉色丝袜足j| 青草久久国产| 巨乳人妻的诱惑在线观看| 又粗又硬又长又爽又黄的视频| 无遮挡黄片免费观看| 国产一区亚洲一区在线观看| 国产又爽黄色视频| 黄色怎么调成土黄色| 成人亚洲精品一区在线观看| 国产精品久久久久成人av| 午夜av观看不卡| 自线自在国产av| 亚洲av男天堂| 国产精品二区激情视频| 亚洲色图综合在线观看| 男女边摸边吃奶| 亚洲成人一二三区av| 91aial.com中文字幕在线观看| 欧美在线黄色| 男女边吃奶边做爰视频| 一区福利在线观看| 国产高清国产精品国产三级| 97在线人人人人妻| 久久久久久久久免费视频了| 国产精品.久久久| 久久久久久久精品精品| 人人妻人人澡人人爽人人夜夜| 最近手机中文字幕大全| 国产熟女午夜一区二区三区| 日韩制服丝袜自拍偷拍| 两个人看的免费小视频| 九草在线视频观看| 一本久久精品| 看非洲黑人一级黄片| av线在线观看网站| 综合色丁香网| 老司机影院毛片| 亚洲成人手机| 中文欧美无线码| 飞空精品影院首页| √禁漫天堂资源中文www| 欧美黑人欧美精品刺激| 久久久久精品性色| 汤姆久久久久久久影院中文字幕| 波多野结衣av一区二区av| 男女边吃奶边做爰视频| 国产av码专区亚洲av| 日本欧美国产在线视频| 日韩不卡一区二区三区视频在线| 久久久久久人人人人人| 午夜激情久久久久久久|