• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An MPC-based manoeuvre stability controller for full drive-by-wire vehicles

    2019-12-09 10:35:50PingWANGZiyangLIUQifangLIUHongCHEN
    Control Theory and Technology 2019年4期

    Ping WANG, Ziyang LIU, Qifang LIU?, Hong CHEN

    1.The State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun Jilin 130025,China;

    2.Department of Control Science and Engineering,School of Communication Engineering,Jilin University,Changchun Jilin 130025

    Abstract Aiming at the actuator time delay caused by the drive-by-wire technology, a novel manoeuvre stability controller based on model predictive control is proposed for full drive-by-wire vehicles. Firstly, the future vehicle dynamics are predicted by a twodegree-of-freedom vehicle model with input delay.Secondly,in order to prevent the vehicle from destabilizing due to excessive side slip angles,the determined ideal yaw rate and side slip angle are tracked simultaneously by optimizing the front wheel angle and additional yaw moment.Moreover,in order to improve the trajectory tracking ability,a side slip angle constraint determined by phase plane stability boundaries is added to the cost function.The results of Matlab and veDYNA co-simulation show that the regulated yaw rate can track the reference value well and the side slip angle decreases.Meanwhile,the trajectory tracking ability is improved obviously by compensating the time delay.

    Keywords: Drive-by-wire technology,networked control system,model predictive control,stability control,time delay

    1 Introduction

    With the development of electric vehicles, more and more new technologies have been developed, such as drive-by-wire technology,active front steering(AFS)system and in-wheel motor drive system. The drive-bywire technology replaces the traditional mechanical control systems with electronic control systems [1], and the control signals are transmitted through a real time communication system.Then electronic stability control(ESC)system is a typical networked control system.To prevent over and under-steering,AFS system makes the front wheels turn a certain number of degrees in accordance with the speed of the vehicle.An electric vehicle(EV) with multiple motors can generate a direct yaw moment quickly by applying a driving torque to different wheels,because the response speed of the motor is within 10 milliseconds[2,3].They provide more degrees of freedom of automotive electronic control system,and cause some new problems.

    With a combination of active steering and full state feedback control, a vehicle’s handling characteristics can be arbitrarily tuned to driver preference as well as to maintain desired behavior when operating conditions vary [4]. However, this drive-by-wire system is integrated and networked by some ECU nodes, then the delay time of message transmission in communication cycles will affect the vehicle performance directly.The influences of time delay on vehicle handling and stability of the driver-vehicle closed-loop system were discussed in[5].In[6],based on a vehicle yaw dynamics model including the actuator saturation and delay,a linear quadratic controller was proposed to improve the tracking performance of the vehicle.The time delay was described as the modification term of the tracking error. However, once excessive side slip angles or excessive differences in the actual and desired yaw rates are detected,the vehicle has already entered an unstable state[7].At this time,the ESC can do nothing to prevent the vehicle from spinning or migrating from its desired trajectory.To solve this problem,model predictive control (MPC) has been used to stabilize the yaw moment of a vehicle by considering the near-future safety constraints and dynamics[7-12].Meanwhile,MPC has excellent properties at handling delay[13,14]and in other applications[15,16].

    Therefore, by considering the actuator time delay caused by the drive-by-wire technology, a novel manoeuvre stability controller based on model predictive control is proposed for full drive-by-wire vehicles.In the framework of model predictive control, the constraint of side slip angle is considered through the phase plane stability boundaries, then the control requirements are converted to the objective function. By optimizing the front wheel angle and additional yaw moment online,the vehicle yaw rate and side slip angle can track the expected value accurately.

    The paper is organized as follows. In Section 2, the vehicle model, and reference model are discussed. In Section 3, the design process of the stability controller is given. Then its performance is evaluated by cosimulation of veDYNA and Matlab in Section 4. Finally,we conclude our research in Section 5.

    2 Related models

    2.1 Vehicle model

    A 2DOF yaw plane vehicle model is considered, in which only the vehicle lateral and yaw motion are taken into account, then we assume that the longitudinal speed of EV is constant. At front and rear axles, the left and right wheels are lumped into a single wheel.Driver can only steer the front wheels and the steering angles of two front wheels are equal to each other. In this way, the model of vehicle is simplified to a bicycle model,shown in Fig.1[17].

    Fig.1 Two degree-of-freedom vehicle model.

    Considering the delay τcaused by drive-by-wire technology,the bicycle model with input time delay is shown as

    where β(rad)is the side slip angle,γ(rad/s)is the yaw rate,δf(rad)is the front wheel angle,and ΔMz(Nm)is the additional yaw moment. Other vehicle parameters and their values are shown in Table 1.

    We define the upper limit value of β as βup=|arctan(0.02μg)|[18],the upper limit value of γ as γup=[18], the maximum front wheel angle as δmax,and the maximum additional yaw moment generated by the motor as ΔMmax. Then, the system state is defined asthe control input asand model (1) can be represented as the following state-space model:

    where

    Table 1 Vehicle parameters.

    2.2 2DOF reference model

    The desired yaw rate and side slip angle should be defined by the desired steering angle. When the additional yaw moment ΔMz, as the control input, assume that ˙β = 0 and ˙γ = 0 about the reference signal, a 2-DOF linear model of the yaw rate γ and side slip angle β dynamics is considered here:

    where the steady-state yaw rate gain

    the steady-state side slip angle gain

    the differential coefficients

    the undamped frequency

    the damping coefficient

    the distance from the front to rear axle L=Lf+Lr,and the stability factor

    Considering the tire-road friction coefficient μ, the limitations of the yaw rate and the side slip angle are given as follows[18,19]:

    3 Model predictive control strategy

    Considering the input time delay,a model predictive controller is designed to track the desired values of γ*of the yaw rate and β*of the side slip angle given by the reference model.The state and input constraints are considered to achieve better performance. The control scheme is given in Fig.2. The additional yaw moment generated by the designed MPC controller is distributed and added to the basic motor drive torque.

    3.1 Predictive model

    By discretizing (3) at the sampling instants kTs, the discrete-time model is given as

    Fig.2 Scheme of MPC strategy.

    where

    Define the discrete-time integrator of the control and state variables as

    Then the incremental form of model(5)is given as

    which is the basic model of the MPC controller designed in the next section.

    3.2 Prediction of future dynamic behavior

    At time k, the future dynamics are predicted based on model (6) and the initial condition x(k). Define the control horizon and prediction horizon of the system as N (N >τ′). Due to the causal relationship between the control inputs and the system outputs, the control input sequence is divided in two parts, which are the optimization variable

    and the known input

    at time k.

    Therefore,the future yaw rate X1(k+1|k)is described as follows:

    where

    Following the similar process, we replace C1by C2=[0,1],then the future side slip angle X2(k+1|k)is described as

    3.3 Optimization and feedback control

    The main control objective is to track the reference value of yaw rate and the side slip angle as soon as possible to improve the stability performance.Then,the cost function is given as follows:

    Moreover, with regard to the cost function related to energy consumption,the third term about the future control input is defined as

    where

    When the side slip angle exceeds a certain value,the vehicle is very difficult to manipulate. Therefore, the state constraint on side slip angle x1should be considered as

    The boundary x1minand x1maxis determined by phase plane analysis of side slip angle in Fig.3[20].

    Fig.3 The reference diagram of the phase plane.

    Due to actuator saturation,the motor torque and the front wheel angle are bounded.Based on the definition of control input u,the control input constraint is

    In this case, the MPC strategy is described by the following optimization problem:

    subject to (9) and (10), where Γyand Γuare weighting factors.

    The optimization problem (11) with the constraints can be formulated as a quadratic programming (QP)problem

    where

    By solving the above problem, the optimal control input Δu*(k) is submitted to u*(k) = Δu*(k)+u(k-1).Furthermore, the optimal control inputis used to calculate the additional motor drive torques ΔTcfl,ΔTcfr,ΔTcrl,and ΔTcrr,as

    4 Simulation

    To verify the reliability of the proposed control scheme, simulations of the distributed driving of EVs with veDYNA/Simulink are performed. Double lane change (DLC) maneuver is established in the simulations. The parameters of the full-vehicle model in ve-DYNA are given in Table 1. The basic control parameters are as:the sampling period Ts=0.001 s,the control horizon and prediction horizon N = 25, the maximum front wheel angle δmax= 0.15 rad, the maximum additional yaw moment ΔMmax= 5000 Nm [21], the time delay τ= 0.018 s [22]. In order to achieve the performance from the proposed strategy,practical parameter selection criteria are required. Here, we select several indicators shown in Table 2 to objectively evaluate the performance of the vehicle. The threshold value Yupof lateral displacement Δypis its maximum deviation from 0 to t.

    Table 2 Performance evaluation indices.

    4.1 Analysis of the weighting parameter

    The cost function(11)describes not only the requirements for the handling ability,but also the requirement for energy consumption.Moreover,the trajectory tracking ability of the vehicle must be guaranteed as much as possible. The balance between the above performance is adjusted by the weighting parameters. We choose Γy= 0.6IN×N, and η1= 0.22. Then we analyze the influence of the change of weight coefficient η2on the system, as shown in Figs.4-7. If η2is increased or decreased, the additional yaw moment will also decrease or increase accordingly.We compare the system performance with η2=0.025,0.05,and 0.1,respectively.

    When η2= 0.025, the yaw moment has oscillated viciously. Meanwhile, as shown in Figs.4 and 5, more energy causes the larger yaw rate and side slip angle.Correspondingly,a larger front steer angle is needed,as shown in Fig.7.When η2=0.1,a smaller yaw moment with less actuation energy will be conducted on the vehicle.However,the ability of restraining the side slip angle shown in Fig.5 is reduced obviously. When η2= 0.05,the vehicle performance including handing stability, β suppression ability is satisfied with the smaller energy consumption.

    Fig.4 The yaw rate with different η2.

    Fig.5 The side slip angle with different η2.

    Fig.6 The additional yaw moment with different η2.

    Fig.7 The front steer angle with different η2.

    4.2 Analysis of the state constraint

    The constraints on the side slip angle are used to keep the vehicle instable driving conditions.Usually,the fixed boundary values are used to limit the tire side slip angles to the linear region of the tire model. However,according to the phase plane analysis, a more flexible and less conservative boundary value of the side slip angle is given in this paper.The vehicle performance with different boundary values is compared.

    By comparing the effect of state constraint on yaw rate tracking in Fig.8, we can see that the MPC controller with fixed constraints reduce partial tracking performance, and the MPC controller with adaptive constraints is not like this. Meanwhile, when the side slip angle constraint is enabled,the ability to track the target path is enhanced.Fig.9 shows the side slip angles with different constraints. The corresponding control inputs are given in Fig.10. It can be seen that the MPC controller with adaptive constraints has a better β suppression ability and consumes less energy.

    Fig. 8 Simulation results of yaw rate with state constraints. (a) Yaw rate without state constraints. (b) Yaw rate with fixed state constraints.(c)Yaw rate with adaptive state constraints.(d)The trajectory tracking compare.

    Fig.9 Simulation results of side slip angle with different state constraints.(a)Sideslip angle with fixed state constraints.(b)Sideslip angle with adaptive state constraints.

    Fig. 10 Simulation results of control value of state constraints. (a) The additional yaw moment with different state constraints.(b)The front steer angle with different state constraints.

    4.3 Analysis of the time delay compensation

    In the MPC framework,the predicted outputs(7)and(8)consider the effect of the input time delay on the vehicle performance. The results in Figs.11-13 show that the MPC controller with time delay compensation gives less overshoot,shorter response time,better stability and trajectory tracking ability than the other one.

    Fig.11 The yaw rate with and without time delay compensation.

    Fig.12 The side slip angle with and without time delay compensation.

    Fig. 13 The trajectory tracking result with and without time delay compensation.

    5 Conclusions

    Considering the input time delay caused by the driveby-wire technology,an MPC controller for vehicle stability enhancement was proposed in this paper. The optimal additional yaw moment and front wheel angle under safety and energy constraints was obtained based on the ideal yaw rate and side slip angle.Using a series of simulation results for DLC slalom maneuver,guidelines for control parameter selection were given. The results of Matlab and veDYNA co-simulation show that the regulated yaw rate can track the reference value well,the side slip angle was suppressed and the consumed energy decreased. Meanwhile, the trajectory tracking ability is improved obviously by compensating the time delay.

    av中文乱码字幕在线| 国产精品综合久久久久久久免费 | 精品久久久久久久久久免费视频 | 欧美日韩亚洲高清精品| 亚洲精品粉嫩美女一区| 99精品久久久久人妻精品| 婷婷丁香在线五月| 欧美不卡视频在线免费观看 | 国产成人免费观看mmmm| 真人做人爱边吃奶动态| 亚洲全国av大片| 亚洲成人国产一区在线观看| 成人手机av| 亚洲avbb在线观看| 精品福利观看| av视频免费观看在线观看| 午夜亚洲福利在线播放| 可以免费在线观看a视频的电影网站| 色播在线永久视频| av中文乱码字幕在线| 久久精品人人爽人人爽视色| 99久久精品国产亚洲精品| 日日夜夜操网爽| 亚洲成人免费电影在线观看| 亚洲av成人av| 国产色视频综合| 亚洲精品国产色婷婷电影| av免费在线观看网站| 日本欧美视频一区| 国产精品 国内视频| 熟女少妇亚洲综合色aaa.| 一本大道久久a久久精品| 丝瓜视频免费看黄片| 十八禁网站免费在线| 1024视频免费在线观看| 国产片内射在线| av免费在线观看网站| 国产高清激情床上av| 久久久久精品人妻al黑| 国产一区二区激情短视频| 少妇被粗大的猛进出69影院| 久久天堂一区二区三区四区| 国产一区二区激情短视频| 男女免费视频国产| 99riav亚洲国产免费| 精品一区二区三区四区五区乱码| 高潮久久久久久久久久久不卡| 天天躁日日躁夜夜躁夜夜| 在线国产一区二区在线| av超薄肉色丝袜交足视频| 久久香蕉激情| 国产精品 欧美亚洲| 91老司机精品| 亚洲中文日韩欧美视频| 老熟女久久久| 日韩欧美免费精品| 欧美成狂野欧美在线观看| 18禁裸乳无遮挡动漫免费视频| 淫妇啪啪啪对白视频| 啦啦啦视频在线资源免费观看| 亚洲va日本ⅴa欧美va伊人久久| 超碰97精品在线观看| 国产在线观看jvid| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久久毛片微露脸| 亚洲精华国产精华精| 美女 人体艺术 gogo| 亚洲avbb在线观看| 一级毛片高清免费大全| 久久久久国产精品人妻aⅴ院 | 久久精品91无色码中文字幕| 国产精品秋霞免费鲁丝片| 黑人欧美特级aaaaaa片| 999久久久精品免费观看国产| 黄片小视频在线播放| 18禁裸乳无遮挡免费网站照片 | 啦啦啦免费观看视频1| 久久99一区二区三区| 色综合欧美亚洲国产小说| 在线十欧美十亚洲十日本专区| 丁香欧美五月| 一区二区三区精品91| 国产日韩一区二区三区精品不卡| 女同久久另类99精品国产91| 成年人免费黄色播放视频| 18禁裸乳无遮挡免费网站照片 | 亚洲国产精品sss在线观看 | 午夜福利在线观看吧| 久久久国产成人精品二区 | 无遮挡黄片免费观看| 91av网站免费观看| 夫妻午夜视频| 亚洲精品中文字幕在线视频| 久久中文字幕一级| 伦理电影免费视频| 纯流量卡能插随身wifi吗| 啦啦啦 在线观看视频| 在线观看日韩欧美| 午夜福利影视在线免费观看| 国产主播在线观看一区二区| 一级作爱视频免费观看| 欧美日韩国产mv在线观看视频| 午夜免费成人在线视频| 一夜夜www| 成熟少妇高潮喷水视频| 午夜激情av网站| 国产精品久久久人人做人人爽| 亚洲一区二区三区欧美精品| 看片在线看免费视频| 国产深夜福利视频在线观看| 天堂中文最新版在线下载| 久久久国产成人精品二区 | 精品亚洲成a人片在线观看| 国产有黄有色有爽视频| 国产人伦9x9x在线观看| 日韩欧美国产一区二区入口| 性色av乱码一区二区三区2| 人妻久久中文字幕网| 水蜜桃什么品种好| 久久香蕉国产精品| av网站在线播放免费| 麻豆成人av在线观看| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩综合在线一区二区| av不卡在线播放| 久久精品熟女亚洲av麻豆精品| 久久精品91无色码中文字幕| 在线观看免费高清a一片| 午夜福利视频在线观看免费| 99riav亚洲国产免费| 99精品在免费线老司机午夜| 亚洲国产精品sss在线观看 | 精品无人区乱码1区二区| 国产成+人综合+亚洲专区| 国产xxxxx性猛交| 亚洲av欧美aⅴ国产| 中文字幕色久视频| avwww免费| 欧美乱码精品一区二区三区| 又黄又爽又免费观看的视频| 国产精品综合久久久久久久免费 | 首页视频小说图片口味搜索| 9色porny在线观看| 色婷婷久久久亚洲欧美| 日韩欧美国产一区二区入口| 亚洲熟妇中文字幕五十中出 | 亚洲一卡2卡3卡4卡5卡精品中文| 久久午夜综合久久蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女黄片视频| 天天添夜夜摸| 久久香蕉激情| 久久青草综合色| 免费日韩欧美在线观看| 天天躁夜夜躁狠狠躁躁| 久久精品国产清高在天天线| 亚洲av第一区精品v没综合| 老司机午夜十八禁免费视频| 亚洲精品av麻豆狂野| 麻豆乱淫一区二区| 国产av精品麻豆| 两性夫妻黄色片| xxx96com| 黑人巨大精品欧美一区二区mp4| 国产高清激情床上av| 电影成人av| 免费久久久久久久精品成人欧美视频| 又黄又爽又免费观看的视频| 成人特级黄色片久久久久久久| 久久狼人影院| 国产午夜精品久久久久久| 嫁个100分男人电影在线观看| 99久久综合精品五月天人人| 亚洲一区二区三区不卡视频| 大型黄色视频在线免费观看| 在线天堂中文资源库| 嫁个100分男人电影在线观看| 新久久久久国产一级毛片| 久久人妻av系列| 手机成人av网站| 啦啦啦免费观看视频1| 欧美激情高清一区二区三区| 欧美黄色淫秽网站| 超碰成人久久| 久久精品国产亚洲av香蕉五月 | 伊人久久大香线蕉亚洲五| 免费女性裸体啪啪无遮挡网站| www.熟女人妻精品国产| 91成人精品电影| 色精品久久人妻99蜜桃| 午夜91福利影院| 热99久久久久精品小说推荐| 女人精品久久久久毛片| 久久久久久免费高清国产稀缺| 精品国产一区二区三区久久久樱花| 国产精品久久电影中文字幕 | 久久精品成人免费网站| 久久精品国产综合久久久| 精品一品国产午夜福利视频| 美女 人体艺术 gogo| 97人妻天天添夜夜摸| 亚洲精品国产精品久久久不卡| 亚洲第一欧美日韩一区二区三区| 欧美日韩亚洲高清精品| 18禁裸乳无遮挡免费网站照片 | 亚洲熟妇中文字幕五十中出 | 欧美激情久久久久久爽电影 | 亚洲精品一二三| 性少妇av在线| 变态另类成人亚洲欧美熟女 | 在线免费观看的www视频| 两人在一起打扑克的视频| 日本a在线网址| 亚洲在线自拍视频| 一a级毛片在线观看| 欧美日韩一级在线毛片| 国产亚洲av高清不卡| 午夜福利免费观看在线| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免费看| 两人在一起打扑克的视频| 天堂俺去俺来也www色官网| 91av网站免费观看| 精品高清国产在线一区| 日本精品一区二区三区蜜桃| 免费久久久久久久精品成人欧美视频| 国产野战对白在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆成人av在线观看| 成在线人永久免费视频| 亚洲欧美日韩高清在线视频| 丰满的人妻完整版| av片东京热男人的天堂| 欧美 日韩 精品 国产| 男女免费视频国产| 亚洲 欧美一区二区三区| 久久亚洲精品不卡| 色婷婷av一区二区三区视频| 午夜精品国产一区二区电影| 成年人黄色毛片网站| 色婷婷久久久亚洲欧美| 极品教师在线免费播放| 成人精品一区二区免费| 精品人妻在线不人妻| 国产麻豆69| 麻豆成人av在线观看| 久久中文字幕一级| 亚洲中文日韩欧美视频| 捣出白浆h1v1| 成人影院久久| 亚洲国产看品久久| 亚洲成国产人片在线观看| 飞空精品影院首页| a在线观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品综合久久久久久久免费 | 国产欧美日韩一区二区三| 操美女的视频在线观看| ponron亚洲| 老鸭窝网址在线观看| 国产亚洲欧美精品永久| 50天的宝宝边吃奶边哭怎么回事| 两个人免费观看高清视频| 18禁黄网站禁片午夜丰满| 女同久久另类99精品国产91| 男女之事视频高清在线观看| 午夜日韩欧美国产| av有码第一页| 欧美最黄视频在线播放免费 | 91精品三级在线观看| 国产男女内射视频| 亚洲第一av免费看| 亚洲成国产人片在线观看| 欧美日韩亚洲高清精品| 亚洲色图 男人天堂 中文字幕| 久久久久国产精品人妻aⅴ院 | 一边摸一边抽搐一进一出视频| 国产精品九九99| 国内久久婷婷六月综合欲色啪| 久久国产乱子伦精品免费另类| 在线观看免费午夜福利视频| 亚洲精品成人av观看孕妇| 欧美日韩亚洲综合一区二区三区_| 脱女人内裤的视频| 亚洲成av片中文字幕在线观看| 欧洲精品卡2卡3卡4卡5卡区| 一级a爱片免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 国产精品98久久久久久宅男小说| 欧美在线一区亚洲| 久久久久国产精品人妻aⅴ院 | 精品高清国产在线一区| 在线免费观看的www视频| 成人亚洲精品一区在线观看| 精品午夜福利视频在线观看一区| 欧美精品高潮呻吟av久久| 日韩大码丰满熟妇| 黑人巨大精品欧美一区二区mp4| 91av网站免费观看| 国产成+人综合+亚洲专区| 国产精品.久久久| 久久午夜综合久久蜜桃| 国产精品国产av在线观看| 操美女的视频在线观看| 亚洲少妇的诱惑av| 日本wwww免费看| 欧美日韩黄片免| 一边摸一边抽搐一进一小说 | 久久性视频一级片| 又紧又爽又黄一区二区| 久久亚洲真实| 岛国在线观看网站| 天堂中文最新版在线下载| 黑人操中国人逼视频| 精品人妻熟女毛片av久久网站| 成人18禁在线播放| 一区福利在线观看| 亚洲综合色网址| 国产男靠女视频免费网站| 国产极品粉嫩免费观看在线| 国产高清视频在线播放一区| 欧美日韩福利视频一区二区| 亚洲专区中文字幕在线| bbb黄色大片| 午夜视频精品福利| 麻豆国产av国片精品| 国产亚洲一区二区精品| 久久精品91无色码中文字幕| 在线观看免费视频日本深夜| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久人妻精品电影| av电影中文网址| 伊人久久大香线蕉亚洲五| 亚洲精品一二三| 欧美中文综合在线视频| 精品视频人人做人人爽| 国产成人啪精品午夜网站| 精品一区二区三卡| 精品午夜福利视频在线观看一区| 一级a爱片免费观看的视频| 最新在线观看一区二区三区| 男女午夜视频在线观看| 免费不卡黄色视频| 国产男靠女视频免费网站| 无人区码免费观看不卡| 亚洲 国产 在线| 亚洲熟女精品中文字幕| 欧美成人午夜精品| 成人手机av| 国产亚洲一区二区精品| 91国产中文字幕| 成人特级黄色片久久久久久久| 18在线观看网站| 亚洲专区国产一区二区| 视频在线观看一区二区三区| 亚洲三区欧美一区| 男人的好看免费观看在线视频 | avwww免费| 久久久国产一区二区| 午夜福利视频在线观看免费| 777米奇影视久久| 国产又爽黄色视频| 欧洲精品卡2卡3卡4卡5卡区| 国产不卡av网站在线观看| 亚洲国产中文字幕在线视频| 另类亚洲欧美激情| 久久午夜综合久久蜜桃| a级片在线免费高清观看视频| 国产精品永久免费网站| 黄片小视频在线播放| 国产aⅴ精品一区二区三区波| 国产免费av片在线观看野外av| 免费久久久久久久精品成人欧美视频| 少妇被粗大的猛进出69影院| 丰满迷人的少妇在线观看| 亚洲av美国av| 亚洲色图综合在线观看| 女人久久www免费人成看片| 少妇猛男粗大的猛烈进出视频| 国产精品九九99| 一级毛片高清免费大全| 叶爱在线成人免费视频播放| 757午夜福利合集在线观看| 满18在线观看网站| 欧美日韩精品网址| 欧美日韩成人在线一区二区| 每晚都被弄得嗷嗷叫到高潮| 精品一区二区三区四区五区乱码| 久久国产乱子伦精品免费另类| 国产精品亚洲av一区麻豆| 91成人精品电影| 成年女人毛片免费观看观看9 | 国产一区在线观看成人免费| 美女扒开内裤让男人捅视频| 一进一出好大好爽视频| 人人澡人人妻人| 老汉色av国产亚洲站长工具| 色综合婷婷激情| 精品国产一区二区三区久久久樱花| 日韩免费高清中文字幕av| 男女之事视频高清在线观看| 欧美人与性动交α欧美软件| 成人免费观看视频高清| 久久国产精品人妻蜜桃| 久久狼人影院| 99热网站在线观看| 在线观看www视频免费| 男女之事视频高清在线观看| 一级毛片精品| 久久精品aⅴ一区二区三区四区| 国产成人av教育| 日本黄色视频三级网站网址 | 中文字幕精品免费在线观看视频| 亚洲成av片中文字幕在线观看| 亚洲avbb在线观看| 99国产极品粉嫩在线观看| 欧美成狂野欧美在线观看| 欧美不卡视频在线免费观看 | 国产高清激情床上av| 欧美丝袜亚洲另类 | 成人三级做爰电影| 日韩欧美一区视频在线观看| 亚洲在线自拍视频| 90打野战视频偷拍视频| 久久精品亚洲精品国产色婷小说| 国产亚洲精品久久久久5区| a级毛片黄视频| 在线观看午夜福利视频| 少妇粗大呻吟视频| 日韩一卡2卡3卡4卡2021年| 欧美精品高潮呻吟av久久| 日本a在线网址| 久久久精品国产亚洲av高清涩受| 悠悠久久av| 国产黄色免费在线视频| 亚洲中文日韩欧美视频| av国产精品久久久久影院| 欧美日韩国产mv在线观看视频| 午夜精品国产一区二区电影| 青草久久国产| 超色免费av| 又紧又爽又黄一区二区| 69av精品久久久久久| 国产成+人综合+亚洲专区| 国产免费现黄频在线看| 最新美女视频免费是黄的| 精品一区二区三卡| bbb黄色大片| 日本黄色视频三级网站网址 | 中文字幕色久视频| 日韩制服丝袜自拍偷拍| 中国美女看黄片| 老司机亚洲免费影院| 人人妻人人澡人人爽人人夜夜| 91老司机精品| 真人做人爱边吃奶动态| 亚洲成人免费电影在线观看| 男女下面插进去视频免费观看| 国产99久久九九免费精品| 国产又色又爽无遮挡免费看| 欧美乱妇无乱码| 在线十欧美十亚洲十日本专区| 国产一区二区激情短视频| 国内久久婷婷六月综合欲色啪| 一级a爱片免费观看的视频| 欧美日韩一级在线毛片| 建设人人有责人人尽责人人享有的| 久久精品国产亚洲av高清一级| 在线观看舔阴道视频| 日本黄色日本黄色录像| svipshipincom国产片| 久久天堂一区二区三区四区| 亚洲欧美日韩高清在线视频| 色94色欧美一区二区| 免费一级毛片在线播放高清视频 | 999久久久国产精品视频| 美女 人体艺术 gogo| 亚洲国产精品sss在线观看 | 两人在一起打扑克的视频| avwww免费| 午夜免费鲁丝| 欧美日韩乱码在线| 又黄又爽又免费观看的视频| 在线观看免费日韩欧美大片| 纯流量卡能插随身wifi吗| 很黄的视频免费| 丁香欧美五月| 久久久久精品国产欧美久久久| 亚洲av美国av| 在线观看免费高清a一片| 亚洲九九香蕉| 久热爱精品视频在线9| 久久性视频一级片| 99国产极品粉嫩在线观看| 狂野欧美激情性xxxx| 国产高清激情床上av| 夜夜躁狠狠躁天天躁| 一区二区三区激情视频| 国产精品二区激情视频| 啦啦啦视频在线资源免费观看| 精品久久久久久久毛片微露脸| av电影中文网址| 天天操日日干夜夜撸| 一级a爱视频在线免费观看| 国产精品偷伦视频观看了| 久久久久久人人人人人| 欧美一级毛片孕妇| 80岁老熟妇乱子伦牲交| 亚洲色图综合在线观看| 日韩欧美免费精品| 亚洲精品一卡2卡三卡4卡5卡| 成年人黄色毛片网站| 亚洲伊人色综图| 熟女少妇亚洲综合色aaa.| 精品乱码久久久久久99久播| 一区二区三区国产精品乱码| 久久精品国产亚洲av高清一级| 亚洲三区欧美一区| aaaaa片日本免费| 日韩 欧美 亚洲 中文字幕| 成人影院久久| 国产亚洲欧美在线一区二区| 久久久久国产精品人妻aⅴ院 | 国产亚洲一区二区精品| aaaaa片日本免费| 国产av一区二区精品久久| 欧美最黄视频在线播放免费 | 国产免费现黄频在线看| 欧美激情久久久久久爽电影 | 国产精品久久久人人做人人爽| 亚洲色图综合在线观看| 亚洲国产精品一区二区三区在线| 超碰97精品在线观看| 很黄的视频免费| 国产高清激情床上av| 欧美最黄视频在线播放免费 | 午夜精品在线福利| 91成人精品电影| xxx96com| 天堂中文最新版在线下载| 国产精品久久久久久精品古装| 久久久精品国产亚洲av高清涩受| 他把我摸到了高潮在线观看| 亚洲中文日韩欧美视频| 一边摸一边抽搐一进一小说 | 黄色丝袜av网址大全| 国产一区二区三区在线臀色熟女 | 一进一出好大好爽视频| 欧美乱码精品一区二区三区| 在线观看免费日韩欧美大片| 亚洲国产精品sss在线观看 | 中文字幕精品免费在线观看视频| 欧美成狂野欧美在线观看| 天天影视国产精品| 亚洲欧美日韩高清在线视频| 男女下面插进去视频免费观看| ponron亚洲| 夫妻午夜视频| 黑丝袜美女国产一区| 亚洲欧美日韩另类电影网站| 极品人妻少妇av视频| 久久中文看片网| 亚洲自偷自拍图片 自拍| 国产熟女午夜一区二区三区| 在线观看免费视频网站a站| 日日爽夜夜爽网站| 亚洲aⅴ乱码一区二区在线播放 | 黄色视频不卡| 国产精品1区2区在线观看. | 欧美日韩黄片免| 一级片'在线观看视频| 久久久久久久午夜电影 | 一区二区日韩欧美中文字幕| 91精品国产国语对白视频| 免费看十八禁软件| 波多野结衣av一区二区av| 国产在线精品亚洲第一网站| 国产伦人伦偷精品视频| 中文字幕制服av| 黄色丝袜av网址大全| 欧美激情高清一区二区三区| 亚洲国产欧美日韩在线播放| 欧美国产精品一级二级三级| 黄色视频,在线免费观看| 午夜两性在线视频| 在线av久久热| 日韩三级视频一区二区三区| 国产精品免费视频内射| aaaaa片日本免费| 中文字幕人妻丝袜一区二区| 欧美国产精品va在线观看不卡| 操出白浆在线播放| 1024香蕉在线观看| 国产精品乱码一区二三区的特点 | 午夜福利在线观看吧| 村上凉子中文字幕在线| 夜夜躁狠狠躁天天躁| 老鸭窝网址在线观看| videos熟女内射| 久久青草综合色| 久久天躁狠狠躁夜夜2o2o| 久久久国产欧美日韩av| 高潮久久久久久久久久久不卡| 久久久久久久久久久久大奶| 精品亚洲成a人片在线观看| 国产99久久九九免费精品| 视频在线观看一区二区三区| 国产精品久久久av美女十八| 亚洲色图综合在线观看| 日韩大码丰满熟妇| 国产精品久久电影中文字幕 | 在线播放国产精品三级| 天天添夜夜摸| 老司机靠b影院|