• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A unified optimal planner for autonomous parking vehicle

    2019-12-09 10:35:48DequanZENGZhuopingYULuXIONGPeizhiZHANGZhiqiangFU
    Control Theory and Technology 2019年4期

    Dequan ZENG, Zhuoping YU, Lu XIONG, Peizhi ZHANG, Zhiqiang FU

    School of Automotive Studies,Tongji University,Shanghai 201804,China;

    Clean Energy Automotive Engineering Center,Tongji University,Shanghai 201804,China

    Abstract In order to reduce the controlling difficulty caused by trajectory meandering and improve the adaptability to parking into regular lots, a versatile optimal planner (OP) is proposed. Taking advantage of the low speed specificity of parking vehicle, the OP algorithm was modeled the planning problem as a convex optimization problem. Collision-free constraints were formalized into the shortest distance between convex sets by describing obstacles and autonomous vehicle as affine set. Since employing Lagrange dual function and combining KKT conditions,the collision-free constraints translated into convex functions.Taking the national standard into account, 5 kinds of regular parking scenario, which contain 0°, 30°, 45°, 60° and 90° parking lots, were designed to verify the OP algorithm.The results illustrate that it is benefit from the continuous and smooth trajectory generated by the OP method to track, keep vehicle’s stability and improve ride comfort, compared with A* and hybrid A* algorithms.Moreover,the OP method has strong generality since it can ensure the success rate no less than 82%when parking planning is carried out at the start node of 369 different locations.Both of evaluation criteria,as the pear error and RMSE in x direction,y axis and Euclidean distance d,and heading deviation θ,are stable and feasible in real tests,which illustrates that the OP planner can satisfy the requirements of regular parking scenarios.

    Keywords: Optimal trajectory,autonomous parking vehicle,regular parking lots,generality,convex optimization

    1 Introduction

    With the rapidly increasing ownership of car and occupy of land resources [1], parking lots is scarcer and parking space smaller, it is great challenge for a driver,both physically and psychologically. In consequence,the adverse effects are not only sharply erasing of convenience and comfort by driving,but also frequently rising of parking accidents,such as scratches,collisions or traffic jams. Therefore, automatic/self-parking vehicles are the future development trend. As one of its key technologies,planning method becomes a research hotspot in universities and enterprises worldwide[2-4].

    The early and mature work for parking trajectory planning is the one using a geometric approach [5], which is based on a combination of straights, arcs, clothoids,etc.In[6],single circular trajectory method,which can be divided into three parts,that is,a straight,a circular arc and another straight respectively,is employed to implement parallel and vertical parking.To take the initial position of car into account,double circulars’trajectory is developed for vertical parking in [7]. However, since the trajectory curvature is discontinuity in connection of two parts, the tire is worn increasingly as having to shut down for steer [8-10]. For solving the problem, a robust grey-box control method is proposed to modify double circular strategy for parallel parking[11].As the same, double-constant-velocity trajectory is generated by introducing the concept of “transition radius” and“tangency radius” [12]. In contract, another prevalent implementation is adopted curve with continuous curvature function [13-15]. Liang [16] and Kawabata [17]employ Bezier curve to smooth the trajectory which is generated on multiple arcs. Similarly, A parametric Bezier curve directly has been designed to generated path for parallel and vertical parking[18,19].However,these methods are specially designed for parking specific scenarios and sensitive to the initial parking pose,which are lack of generality.

    To unify path planner for parking,Zheng[20]presents a method based on rapidly-exploring random tree(RRT)with non-holonomic constraint and kinematic model of vehicle.For optimizing the search efficiency,target preference and bi-RRT are used [20]. In [21], the distance metric couples both heading angle and Euclidean distance for taking the constraint of the maximum steering angle into account.Literature[22]integrates modelbased target trees into RRT, which speeds up the algorithm. However, the core of RRT is to use a random seed expanding nodes, which leads to a large randomness of the generated path,and it is difficult to guarantee the planning efficiency and track quality[23,24].Other than the random sampling method of RRT,graph search can guarantee the consistency [25] and optimality of trajectory [26]. A state-based planner with a different control-set is developed,which is integrated on a priori map information derived from the blueprints of a parking lot,for automated valet parking[27].In[28],hybrid A* is implemented for real parking, which plots a continuous vehicle state to discrete configuration in the grid map.This modification guarantees the execution of path,but sacrifices the completeness [29]. In order to improve the planning efficiency, Chen [30] introduces an extended version of space exploration guided heuristic search(SEHS)method,which considers the orientation of a vehicle in the space exploration phase to achieve knowledge about driving directions. However, the grid resolution and composed of the connected grids are always difficult problem for graph search method [31].Therefore, lots of machine learning method have been presented,like support vector machine(SVM)[32],artificial neural networks(ANN)[33],radial basis functions networks (RBFN) [34], and General Radial Basis Function (GRBF) [35]. Nevertheless, lots of new challenges are inevitable in the application of machine learning for parking,like optimality,block box,massive samples,etc.

    In order to generate optimal trajectory with continuous curvature for keeping the adaptability to park into regular lots,a unified optimal planner(OP)is proposed.Considering the low speed specificity of parking vehicle, the OP algorithm models the planning problem as a convex optimization problem, which employs the internal point method to solve the problem. In order to verify the universality of OP, 5 kinds of regular parking scenario, which contains 0°, 30°, 45°, 60°and 90°parking lots, were designed according to the national standard[36].The rest of paper is structured as follows:problem definition in Section 2,unified optimal planner in Section 3,experiments and discussions in Section 4,and conclusion and future work in Section 5.

    2 Problem definition

    In general, the trajectory planning problem is a twopoint-boundary-value problem with a objective function,given two fixed points(starting point and end point)and lots of constraints (upper and lower limits of variables),as shown in equation(1)[37].

    where J is objective function,sp=(s0,··· ,sp)is planned sequence of trajectory nodes, p is the total number of nodes, G is set of equality constraints, H is set of inequality constraints, m and n are the total number of constraints respectively.

    3 Unified optimal planner

    Since that the local optimal solution is the global optimal solution, it is benefit to concretize and transform the parking planning problem into a convex optimization problem for solving to obtain the global optimal trajectory. Through the formal description of the constraints and objectives for each part of parking planning and appropriate deformation, the problem is presented in the unified form of convex optimization in below.Moreover,a strategy of accelerating solution is introduced.

    3.1 Equality constraints

    The start node sstartand target node stargetconsist of the initial value constraint for planner, as that the start mostly selects the vehicle’s current pose,and the target is the parking pose in the target lot. The initial value constraint gst(s0,sp)is defined as follow,

    For low-speed scenarios such as autonomous parking,there is no phenomenon of heavy slip-angle,sideslip or roll that should be taken vehicle’s handling stability into account. Therefore, the kinematic model is sufficient to describe the movement of vehicle’s pose s(x,y,θ,v)under the input u of acceleration a and steer angle δ. The vehicle posture point s(x,y,θ,v) is selected in the center of the rear axis with the coordinate point is z(x,y). Key vehicle parameters contain axle base L, vehicle width 2l1, distance l2from rear axle to tail and distance l3from rear axle to head. Under the sampling rate Δt in time k with u(ak,δk)as control input,the vehicle will move from the current position sk(xk,yk,θk,vk)to sk+1(xk+1,yk+1,θk+1,vk+1),according to the kinematic model constraints gmodel(sk+1):

    3.2 Inequality constraints

    The planning is carried out in the environmental map provided by the perception system.When the areas outside the map,the safety cannot be judged,so the vehicle must ensure that every point on the vehicle body is in the map. Environment boundary constraint hmap(zk) is defined as

    where(xmin,xmax)is the vertical boundaries of the map,and(ymin,ymax)is the horizontal boundaries of the map.

    Restricted by the physical structure of vehicle actuator,the velocity v and control quantity u of autonomous parking trajectory should be within a reasonable range.Define the executor constraint hactor(vk,uk)as

    Collision-free constraint requires that the distance between any point zegoon the parking vehicle’s body and any point zobswithin the obstacles in the environment is greater than the minimum safe distance dsafe.That is,

    where‖·‖2is 2-norm,which is the Euclidean distance.

    To formalize the description of obstacles, it is an assumption that all obstacles in the environment are convex polygons (for concave polygons, it could be converted into convex polygons by expansion and fill).Then,any point zobsof obstacles Oobswith convex polygons satisfies the following conditions:

    where Aobsis the multinomial coefficient for obstacles’polygons,and Bobsis the polynomial value.

    Similarly,the parking vehicle is convex polygon,

    where Aegois multinomial coefficient for parking vehicle polygons,Begois polynomial value.

    Therefore, the collision-free constraint described in equation(6)could be specifically expressed as

    Since both autonomous parking vehicle and obstacles are convex sets described by affine sets, the dual problem of equation(9)is[37,38]

    where λ and μ are Lagrangian variables.

    Since equation(10)satisfies KKT conditions[37,38],meanwhile,parking vehicle and obstacles are described in affine sets,equation(9)can be converted into

    Finally,the collision avoidance constraint hsafe(zego,zobs)described in equation(6)is

    3.3 Objective function

    The trajectory of autonomous parking planning should not only consider the economy(shortest path or shortest time),but also consider the comfort requirements of passengers when executing the trajectory(for low-speed parking conditions,comfort is reflected in less changes in speed and direction). Therefore, optimization objective function J is defined as

    3.4 Convex problem

    In combination with equations(2)-(5),(12)and(13),the specific form of the planning problem described in equation(1)can be obtained as shown in equation(14),which means the autonomous parking planning problem is a convex optimization problem, and it can be solved by using the interior point method.

    3.5 Solution strategy

    The variables to be solved in parking trajectory planning problem(14)are:vehicle pose s(x,y,θ,v),control quantity u(a,δ), Lagrange variable λ and μ. As the generated trajectory with p nodes, and the map with M obstacles within polygon variable N, the total number of variables to be determined is (p+1)(6+N(M+1)).For a complete parking(starting from the effective storage location identified by perception and ending at the target storage location),the trajectory’s length is no less than 10m, and there are 50 discrete nodes with 0.2 m distance interval.There are 1122 variables to be solved in the simple scenario where the obstacles are only two obstacle lots location on the left and right and one lane boundary.In more general scenarios,the variables to be solved multiply. To speed up computing, the collision avoidance constraint hsafe(zego,zobs)in equation(12)can be converted into equation(15),and the initial value obtained as the collision-free constraint hsafe(zego,zobs)can be substituted into equation(14)for solving.

    4 Experiments and discussions

    Based on Ubuntu16.04LTS environment, the processor is Intel Core i5-4200H@2.80GHz,memory 8.00GB,DDR4,2133Hz,and the solver of the algorithm adopts IPOPT.The platform is an E50 electric vehicle modified by the laboratory(as shown in Fig.1),and the parameters are shown in Table 1.

    Fig.1 E50 Parking platform.

    Table 1 Key parameters for tests.

    4.1 Trajectory tests

    According to the national standard[36],5 kinds of regular parking scenario, which contains 0°, 30°, 45°, 60°and 90°parking lots, were designed. The HA* (hybrid A*) algorithm [28], which is based on RS curve extension,is compared with the universal octa-neighborhood search A*algorithm[27].

    Fig.2 shows the planned trajectories by the three algorithms for the 0°lot(parallel parking)scenario.Fig.2(a)shows that all the algorithms can generate collisionfree paths connecting the start node and the target node. However, the heading planned by OP method is smoother than the results of A* and hybrid A* algorithms, as shown in Fig.3(b). The heading jump of A* algorithm is the most severe, since the direction changing unit is 45°when node extends with octoneighborhood method.Unlike A*,since that the hybrid A* algorithm employs the vehicle’s minimum turning radius constraint and the extension process is mostly in the form of straight segments plus arcs, the heading change is stable, but not continuous. The results illustrate that the trajectory planned by OP algorithm not only is smooth and continuous to track,but also satisfy the requirements of vehicle stability and ride comfort.

    Figs.3-6 show the results for 30°lot, 45°lot, 60°lot and 90°lot (vertical parking) respectively. All the three algorithms can plan the collision-free trajectory. However, the trajectory and heading generated by the OP method could remain smooth and continuous, which indicates that the OP algorithm in this paper could meet the parking requirements under regular conditions and has certain generality.

    Fig.2 Planning for 0° lot(parallel parking).(a)Trajectory.(b)Heading.

    Fig.3 Planning for 30° lot.(a)Trajectory.(b)Heading.

    Fig.4 Planning for 45° lot.(a)Trajectory.(b)Heading.

    Fig.5 Planning for 60° lot.(a)Trajectory.(b)Heading.

    Fig.6 Planning for 90° lot(vertical parking).(a)Trajectory.(b)Heading.

    4.2 Generality tests

    To further verify the generality of the OP algorithm proposed in this paper, the start parking pose ranges from(-10 m,6 m)to(10m,10m)with 0.5m a step according to the scenarios in Figs.2-6.Then,there are 369 different start nodes in total as shown in Fig.7. Moreover,as listed in Table 2,it is the success rate tested for the three algorithms with 5 scenarios under 369 different start nodes.

    Fig.7 Start node for parking.

    Table 2 Success rate for the three algorithms.

    The success rate of OP algorithm is more than 92%,except that in the 30°lot scenario is as low as 82%.The data illustrate that the generality of OP method could be competent to regular parking mission.

    4.3 Real tests

    The parking system, as shown in Fig.8, for real tests is developed based on E50 platform, shown in Fig.1,where a bird’s eye view preceptor [7] is projected to identify valid lots, a hierarchical motion controller[39,40] is employed to make the deviation of parking vehicle converge to zero respecting to a given reference trajectory,and an dead reckon(DR)with extended Kalman filter(EKF)is designed as locator[41,42],which could compute the spatial position and heading angle of the vehicle in real time.The real parking lot’s configurations are listed in Table 3.

    Fig.8 Parking system.

    Table 3 Real parking lot’s configurations.

    As shown in Figs.9-13, ten repeated experiments were carried out for each lot.In order to quantify the actual effect of parking planner,the pear error,root mean squared error(RMSE)and its’mean error are employed into distance deviation,such as in x direction,y axis and Euclidean distance d,and heading deviation θ.As listed in Table 4,when parallel parking(0°lot),the peak error in x direction is less than 0.1 m,while the peak error in y axis is less than 0.1 m when the lot is 30°. In other lots, the peak error in both x direction and y axis is no less than 0.1 m,but no more than 0.2 m.The peak error of Euclidean reaches d maximum value with 0.16 m at 45°lot, which may be related to the large peak errors in both the x and y directions, but the value is always within 0.2 m.However,the heading error θ of the peak value appears at 0°lot,which is 2.91°.The mean value of the peak error indicates that the distance peak error (x,y,d) of the parking system could be kept within 0.2 m and the direction peak error θ within 3°. The indexes from RMSE listed in Table 5 are more aggressive since reducing the error level to less than 0.1 m in the distance(x,y,d)and less than 2°in the direction θ Both of the indexes illustrate that the designed parking system is stable and feasible,which also proves that the OP planner can satisfy the requirements of regular parking scenarios.

    Fig.9 Real trajectory for 0°lot(parallel parking).(a)Trajectory.(b)Heading.

    Fig.10 Real trajectory for 30° lot.(a)Trajectory.(b)Heading.

    Fig.11 Real trajectory for 45° lot.(a)Trajectory.(b)Heading.

    Fig.12 Real trajectory for 60° lot.(a)Trajectory.(b)Heading.

    Fig.13 Real trajectory for 90° lot(vertical parking).(a)Trajectory.(b)Heading.

    Table 4 Peak error.

    Table 5 RMSE.

    5 Conclusion and future work

    A unified optimal planner (OP) is presented to generate optimal trajectory with continuous curvature for keeping the adaptability to park into regular lots. The problem of autonomous parking trajectory planning is unified into a convex optimization problem,and the interior point method is used to solve the problem. The OP method could be competent to regular parking missions since that the generality of OP method is verified due to the success rate being no less than 82%, which tested in 5 kinds of regular parking scenario with 369 different start nodes. Both of evaluation criteria, as the pear error and RMSE,illustrate that the OP planner can satisfy the requirements of regular parking scenarios.

    The future work will focus on improvement on the algorithm success rate. Efforts to study the real-time performance of the algorithm and speed it up will be fruitful.

    Acknowledgements

    The authors thank the assistance from other people of the School of Automotive Studies,Tongji University.

    亚洲色图 男人天堂 中文字幕| 老熟妇仑乱视频hdxx| 美女福利国产在线| 午夜激情久久久久久久| 69av精品久久久久久 | 另类亚洲欧美激情| 妹子高潮喷水视频| 免费在线观看日本一区| 精品一区二区三区四区五区乱码| 免费女性裸体啪啪无遮挡网站| 国产真人三级小视频在线观看| 50天的宝宝边吃奶边哭怎么回事| www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区精品| 日韩欧美三级三区| 久久久精品区二区三区| 99国产精品99久久久久| 欧美成狂野欧美在线观看| 捣出白浆h1v1| 久久精品熟女亚洲av麻豆精品| 一二三四在线观看免费中文在| 欧美久久黑人一区二区| 亚洲精品乱久久久久久| 青草久久国产| 91av网站免费观看| 一二三四社区在线视频社区8| 亚洲,欧美精品.| 91麻豆精品激情在线观看国产 | 国产高清国产精品国产三级| 狂野欧美激情性xxxx| 一区二区av电影网| 69精品国产乱码久久久| 亚洲av国产av综合av卡| 满18在线观看网站| 亚洲九九香蕉| 性高湖久久久久久久久免费观看| 99国产精品免费福利视频| 两个人免费观看高清视频| 亚洲国产毛片av蜜桃av| 新久久久久国产一级毛片| 老司机靠b影院| 另类精品久久| 在线观看66精品国产| 欧美性长视频在线观看| 99九九在线精品视频| 窝窝影院91人妻| 精品一区二区三区av网在线观看 | 在线十欧美十亚洲十日本专区| 男男h啪啪无遮挡| 丝袜美足系列| 国产成+人综合+亚洲专区| 多毛熟女@视频| 老司机午夜十八禁免费视频| 超色免费av| 亚洲一码二码三码区别大吗| 国产精品.久久久| 热99久久久久精品小说推荐| 波多野结衣av一区二区av| 嫩草影视91久久| 久久久久久免费高清国产稀缺| 欧美日韩av久久| 亚洲va日本ⅴa欧美va伊人久久| 精品高清国产在线一区| 高潮久久久久久久久久久不卡| 99久久精品国产亚洲精品| 大香蕉久久成人网| 黑丝袜美女国产一区| 一本一本久久a久久精品综合妖精| 精品亚洲成a人片在线观看| 黄网站色视频无遮挡免费观看| 老司机深夜福利视频在线观看| 看免费av毛片| 国产单亲对白刺激| 美女主播在线视频| 99国产精品一区二区蜜桃av | 深夜精品福利| 日韩欧美一区视频在线观看| 久久久国产欧美日韩av| 亚洲av成人不卡在线观看播放网| 在线观看免费视频日本深夜| 老司机在亚洲福利影院| 真人做人爱边吃奶动态| 制服人妻中文乱码| 一级毛片电影观看| √禁漫天堂资源中文www| 色综合欧美亚洲国产小说| 日韩一卡2卡3卡4卡2021年| 99香蕉大伊视频| 99香蕉大伊视频| 麻豆国产av国片精品| 18在线观看网站| 男女之事视频高清在线观看| 亚洲成av片中文字幕在线观看| 日本欧美视频一区| 亚洲精品在线观看二区| 亚洲精品中文字幕在线视频| 老熟妇乱子伦视频在线观看| 欧美日韩国产mv在线观看视频| 久久国产精品人妻蜜桃| 多毛熟女@视频| av网站在线播放免费| 精品久久蜜臀av无| 婷婷丁香在线五月| 国产成人欧美在线观看 | 香蕉国产在线看| 国产成人影院久久av| 性色av乱码一区二区三区2| 最近最新中文字幕大全免费视频| 成人亚洲精品一区在线观看| 亚洲久久久国产精品| 人人妻人人爽人人添夜夜欢视频| 午夜福利欧美成人| 国产主播在线观看一区二区| 欧美黑人精品巨大| 久久精品aⅴ一区二区三区四区| 国产成人系列免费观看| 韩国精品一区二区三区| 亚洲精品成人av观看孕妇| 午夜福利影视在线免费观看| 精品高清国产在线一区| 天堂8中文在线网| 久久ye,这里只有精品| 国产精品久久电影中文字幕 | 亚洲性夜色夜夜综合| 99re6热这里在线精品视频| 人人妻人人爽人人添夜夜欢视频| 国产精品免费一区二区三区在线 | 一边摸一边抽搐一进一出视频| 色播在线永久视频| 精品久久久精品久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品熟女亚洲av麻豆精品| 亚洲欧美色中文字幕在线| 亚洲国产毛片av蜜桃av| 巨乳人妻的诱惑在线观看| 国产一区有黄有色的免费视频| 欧美精品高潮呻吟av久久| 久久亚洲精品不卡| 考比视频在线观看| 亚洲男人天堂网一区| 欧美黄色片欧美黄色片| 精品人妻1区二区| 久久人人97超碰香蕉20202| 欧美日韩亚洲高清精品| 在线观看www视频免费| 亚洲专区国产一区二区| 亚洲专区国产一区二区| 变态另类成人亚洲欧美熟女 | 亚洲自偷自拍图片 自拍| 免费在线观看视频国产中文字幕亚洲| 久久久久网色| 久热爱精品视频在线9| 亚洲五月色婷婷综合| 亚洲国产欧美日韩在线播放| 三上悠亚av全集在线观看| 好男人电影高清在线观看| 丝袜喷水一区| 国产免费av片在线观看野外av| 人妻一区二区av| 大香蕉久久网| 老鸭窝网址在线观看| 亚洲人成电影免费在线| 国产亚洲欧美精品永久| 男男h啪啪无遮挡| 两性午夜刺激爽爽歪歪视频在线观看 | 热re99久久国产66热| 女性被躁到高潮视频| 热re99久久精品国产66热6| 亚洲 国产 在线| 久久精品熟女亚洲av麻豆精品| 亚洲成av片中文字幕在线观看| 国产av精品麻豆| 1024视频免费在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| av片东京热男人的天堂| 国产精品 欧美亚洲| 91精品国产国语对白视频| 一边摸一边抽搐一进一出视频| 黄色 视频免费看| 波多野结衣av一区二区av| 国产91精品成人一区二区三区 | 国产成人av激情在线播放| 香蕉久久夜色| 精品国产超薄肉色丝袜足j| videos熟女内射| 日韩欧美三级三区| 免费女性裸体啪啪无遮挡网站| 久久久久国内视频| 久久久精品国产亚洲av高清涩受| 婷婷丁香在线五月| 午夜免费鲁丝| 超碰成人久久| 丰满饥渴人妻一区二区三| 老熟女久久久| 久久久欧美国产精品| 国产在线免费精品| 久久精品人人爽人人爽视色| 日韩视频一区二区在线观看| 51午夜福利影视在线观看| 国产av一区二区精品久久| 在线永久观看黄色视频| 天堂动漫精品| 黑丝袜美女国产一区| 国产福利在线免费观看视频| 又大又爽又粗| 女警被强在线播放| 大片电影免费在线观看免费| 久久午夜综合久久蜜桃| 大片免费播放器 马上看| 在线 av 中文字幕| 999精品在线视频| 午夜福利视频在线观看免费| 欧美激情 高清一区二区三区| 国产男女超爽视频在线观看| 母亲3免费完整高清在线观看| 美女主播在线视频| 精品午夜福利视频在线观看一区 | 五月天丁香电影| 妹子高潮喷水视频| 亚洲欧美色中文字幕在线| 99国产精品免费福利视频| 国产亚洲精品久久久久5区| 中文欧美无线码| 可以免费在线观看a视频的电影网站| 亚洲情色 制服丝袜| 欧美 亚洲 国产 日韩一| 999精品在线视频| 伊人久久大香线蕉亚洲五| 美女午夜性视频免费| 深夜精品福利| 亚洲九九香蕉| 亚洲人成电影观看| 国产一区二区在线观看av| 自拍欧美九色日韩亚洲蝌蚪91| 国产高清国产精品国产三级| 男男h啪啪无遮挡| 下体分泌物呈黄色| 亚洲五月色婷婷综合| 国产男靠女视频免费网站| 久久中文看片网| 如日韩欧美国产精品一区二区三区| 亚洲五月婷婷丁香| 夜夜夜夜夜久久久久| 淫妇啪啪啪对白视频| a级毛片黄视频| 欧美+亚洲+日韩+国产| 国产91精品成人一区二区三区 | 久久99热这里只频精品6学生| 亚洲午夜精品一区,二区,三区| 好男人电影高清在线观看| 午夜福利一区二区在线看| 国产精品自产拍在线观看55亚洲 | cao死你这个sao货| 精品一区二区三区四区五区乱码| 国产一区二区 视频在线| 在线 av 中文字幕| 国产精品影院久久| 久久久久精品人妻al黑| 一边摸一边抽搐一进一小说 | 亚洲伊人久久精品综合| 欧美一级毛片孕妇| 色视频在线一区二区三区| 高清欧美精品videossex| 超碰97精品在线观看| 99re在线观看精品视频| 岛国毛片在线播放| 国产精品 国内视频| 热99re8久久精品国产| 国产精品欧美亚洲77777| 日日爽夜夜爽网站| 亚洲色图av天堂| 国产男靠女视频免费网站| 精品人妻熟女毛片av久久网站| 久久99一区二区三区| 精品国产乱码久久久久久小说| 欧美精品av麻豆av| 在线 av 中文字幕| 涩涩av久久男人的天堂| 国产三级黄色录像| 汤姆久久久久久久影院中文字幕| 大片电影免费在线观看免费| 精品久久久精品久久久| 国产欧美日韩一区二区三区在线| 国产欧美日韩一区二区三| 狠狠狠狠99中文字幕| 国产麻豆69| 一级毛片女人18水好多| 中文亚洲av片在线观看爽 | 午夜免费成人在线视频| 99在线人妻在线中文字幕 | 久久久久国内视频| 菩萨蛮人人尽说江南好唐韦庄| 免费在线观看日本一区| 亚洲熟女毛片儿| 99在线人妻在线中文字幕 | 老鸭窝网址在线观看| 中文字幕色久视频| 久久 成人 亚洲| 成年版毛片免费区| 日韩 欧美 亚洲 中文字幕| 十八禁网站免费在线| 久久亚洲精品不卡| 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区精品91| 亚洲国产欧美在线一区| 国产成人精品久久二区二区免费| 在线观看www视频免费| h视频一区二区三区| 十八禁网站网址无遮挡| 亚洲av欧美aⅴ国产| 18禁裸乳无遮挡动漫免费视频| 窝窝影院91人妻| 亚洲精品国产区一区二| 亚洲,欧美精品.| 免费看十八禁软件| √禁漫天堂资源中文www| 欧美性长视频在线观看| 波多野结衣av一区二区av| 亚洲性夜色夜夜综合| 亚洲国产av影院在线观看| 啦啦啦在线免费观看视频4| 丰满饥渴人妻一区二区三| 国产av一区二区精品久久| 久久亚洲真实| 国产亚洲欧美精品永久| 不卡av一区二区三区| 亚洲欧美色中文字幕在线| 免费女性裸体啪啪无遮挡网站| 国产97色在线日韩免费| 高清欧美精品videossex| 久久狼人影院| 最新的欧美精品一区二区| 久久人妻av系列| 好男人电影高清在线观看| 国产av精品麻豆| 中文字幕色久视频| 亚洲一区中文字幕在线| 午夜福利乱码中文字幕| 久久精品成人免费网站| 国产人伦9x9x在线观看| 国产日韩欧美视频二区| 一本一本久久a久久精品综合妖精| 久久九九热精品免费| 国产精品电影一区二区三区 | 纯流量卡能插随身wifi吗| 亚洲av日韩精品久久久久久密| 精品一区二区三区四区五区乱码| 咕卡用的链子| 啦啦啦免费观看视频1| cao死你这个sao货| 欧美大码av| 亚洲国产欧美日韩在线播放| 女性生殖器流出的白浆| 国产成人免费观看mmmm| 757午夜福利合集在线观看| 久热这里只有精品99| 国产精品偷伦视频观看了| 一级毛片精品| 日韩免费av在线播放| 露出奶头的视频| 日本vs欧美在线观看视频| 久久精品亚洲精品国产色婷小说| 日韩 欧美 亚洲 中文字幕| 一级,二级,三级黄色视频| 国产在线精品亚洲第一网站| 亚洲国产欧美日韩在线播放| 久久久国产精品麻豆| www.熟女人妻精品国产| 亚洲熟女毛片儿| 欧美日本中文国产一区发布| 99久久国产精品久久久| 一区二区三区乱码不卡18| 国产成人系列免费观看| cao死你这个sao货| 搡老乐熟女国产| 丝袜美足系列| www.自偷自拍.com| 国产精品一区二区在线观看99| 亚洲人成伊人成综合网2020| 咕卡用的链子| 国产精品麻豆人妻色哟哟久久| 久久精品国产亚洲av高清一级| 欧美日韩亚洲国产一区二区在线观看 | 免费在线观看完整版高清| 亚洲人成电影观看| 色视频在线一区二区三区| 亚洲全国av大片| 免费观看人在逋| www.熟女人妻精品国产| 亚洲精品在线美女| 亚洲中文av在线| 女人精品久久久久毛片| 老熟妇乱子伦视频在线观看| 久久天堂一区二区三区四区| 汤姆久久久久久久影院中文字幕| 久久热在线av| 亚洲全国av大片| 俄罗斯特黄特色一大片| 亚洲综合色网址| 激情视频va一区二区三区| 捣出白浆h1v1| bbb黄色大片| 免费在线观看视频国产中文字幕亚洲| 日本欧美视频一区| a级毛片在线看网站| 人人澡人人妻人| 国产在线一区二区三区精| 高清黄色对白视频在线免费看| 亚洲欧洲精品一区二区精品久久久| 精品一区二区三区视频在线观看免费 | 丝袜在线中文字幕| 亚洲av日韩精品久久久久久密| 国产麻豆69| 亚洲va日本ⅴa欧美va伊人久久| 人妻 亚洲 视频| 18在线观看网站| 免费在线观看日本一区| 亚洲伊人色综图| 男女免费视频国产| 国产aⅴ精品一区二区三区波| 悠悠久久av| 人人妻人人澡人人爽人人夜夜| 国产97色在线日韩免费| 9热在线视频观看99| www.999成人在线观看| 日本撒尿小便嘘嘘汇集6| 国产免费视频播放在线视频| 亚洲国产看品久久| 大香蕉久久成人网| 天天躁日日躁夜夜躁夜夜| 欧美黑人精品巨大| 午夜精品久久久久久毛片777| 欧美乱码精品一区二区三区| 国产精品久久久人人做人人爽| 最黄视频免费看| 欧美人与性动交α欧美软件| h视频一区二区三区| 精品熟女少妇八av免费久了| 国产老妇伦熟女老妇高清| 国产伦理片在线播放av一区| 桃花免费在线播放| 中文亚洲av片在线观看爽 | 怎么达到女性高潮| 国产亚洲精品第一综合不卡| 国产黄色免费在线视频| 国产免费视频播放在线视频| 久久精品熟女亚洲av麻豆精品| 久久久国产成人免费| 成年人午夜在线观看视频| 精品高清国产在线一区| 国产野战对白在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲欧洲日产国产| 男人舔女人的私密视频| 日韩人妻精品一区2区三区| 成人精品一区二区免费| 久久久精品免费免费高清| 国产成人av教育| 变态另类成人亚洲欧美熟女 | 亚洲性夜色夜夜综合| 欧美大码av| 久久久国产欧美日韩av| 久久性视频一级片| 又黄又粗又硬又大视频| 一二三四社区在线视频社区8| 欧美一级毛片孕妇| 老熟妇仑乱视频hdxx| av超薄肉色丝袜交足视频| 亚洲av成人一区二区三| 国产伦理片在线播放av一区| 一本—道久久a久久精品蜜桃钙片| 精品一区二区三区视频在线观看免费 | 日本黄色日本黄色录像| 亚洲avbb在线观看| 国产在线一区二区三区精| 超色免费av| 热99国产精品久久久久久7| 国产精品一区二区在线观看99| 精品第一国产精品| 在线观看一区二区三区激情| 欧美人与性动交α欧美精品济南到| 亚洲午夜精品一区,二区,三区| 俄罗斯特黄特色一大片| 啦啦啦在线免费观看视频4| tube8黄色片| 久9热在线精品视频| 激情在线观看视频在线高清 | 欧美黄色片欧美黄色片| 久久久久国产一级毛片高清牌| 每晚都被弄得嗷嗷叫到高潮| 18禁美女被吸乳视频| 日日爽夜夜爽网站| 午夜福利一区二区在线看| 无人区码免费观看不卡 | 国产精品久久久久久人妻精品电影 | 一级a爱视频在线免费观看| 黄色视频,在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 久久狼人影院| e午夜精品久久久久久久| 丝袜在线中文字幕| 一边摸一边抽搐一进一小说 | 99国产精品99久久久久| 1024香蕉在线观看| 欧美黄色淫秽网站| 久久人人97超碰香蕉20202| 青草久久国产| 一二三四在线观看免费中文在| 狠狠婷婷综合久久久久久88av| 久久国产亚洲av麻豆专区| 欧美黄色片欧美黄色片| 午夜久久久在线观看| 在线观看人妻少妇| 日本一区二区免费在线视频| 国产亚洲一区二区精品| 一级片免费观看大全| 欧美人与性动交α欧美软件| 国产免费现黄频在线看| 青青草视频在线视频观看| 日韩欧美一区视频在线观看| 久久久久国产一级毛片高清牌| 亚洲成人免费av在线播放| 国产成人免费观看mmmm| 午夜免费成人在线视频| 日本一区二区免费在线视频| 老熟妇仑乱视频hdxx| 女警被强在线播放| 纯流量卡能插随身wifi吗| 香蕉国产在线看| 天堂俺去俺来也www色官网| 久久精品91无色码中文字幕| 一边摸一边抽搐一进一出视频| 18禁美女被吸乳视频| 夜夜骑夜夜射夜夜干| 俄罗斯特黄特色一大片| netflix在线观看网站| 国产成人精品在线电影| 啦啦啦在线免费观看视频4| 捣出白浆h1v1| 一级毛片女人18水好多| 亚洲精品美女久久久久99蜜臀| 两个人看的免费小视频| 精品乱码久久久久久99久播| 成人影院久久| a级片在线免费高清观看视频| 国产成人啪精品午夜网站| 国产淫语在线视频| 桃花免费在线播放| 精品亚洲成a人片在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲伊人色综图| av片东京热男人的天堂| 97在线人人人人妻| 桃花免费在线播放| 亚洲成人免费av在线播放| 十分钟在线观看高清视频www| 精品亚洲成a人片在线观看| 两人在一起打扑克的视频| 国产日韩欧美亚洲二区| 十分钟在线观看高清视频www| 久久久国产欧美日韩av| 一本—道久久a久久精品蜜桃钙片| 丝袜喷水一区| 精品欧美一区二区三区在线| 美女午夜性视频免费| 美女扒开内裤让男人捅视频| 国产主播在线观看一区二区| 多毛熟女@视频| 久热这里只有精品99| 国产高清videossex| 欧美激情 高清一区二区三区| 两个人看的免费小视频| 99国产精品免费福利视频| 99精品在免费线老司机午夜| 在线天堂中文资源库| 日日摸夜夜添夜夜添小说| 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 日韩熟女老妇一区二区性免费视频| 一级毛片精品| 一个人免费在线观看的高清视频| 亚洲av片天天在线观看| 大陆偷拍与自拍| 免费在线观看视频国产中文字幕亚洲| 黄频高清免费视频| 我要看黄色一级片免费的| 天堂中文最新版在线下载| 欧美精品啪啪一区二区三区| 国产精品免费大片| 午夜福利视频在线观看免费| av又黄又爽大尺度在线免费看| 国产xxxxx性猛交| 欧美一级毛片孕妇| 欧美黑人精品巨大| 丰满人妻熟妇乱又伦精品不卡| 热99久久久久精品小说推荐| 成人18禁高潮啪啪吃奶动态图| 人人妻人人爽人人添夜夜欢视频| 50天的宝宝边吃奶边哭怎么回事| 国产在线视频一区二区| 91精品国产国语对白视频| 露出奶头的视频| 一本大道久久a久久精品| 男女免费视频国产| 国产精品99久久99久久久不卡| 这个男人来自地球电影免费观看| 日本黄色视频三级网站网址 | 99riav亚洲国产免费| 国产无遮挡羞羞视频在线观看| 99精品久久久久人妻精品| 人人妻,人人澡人人爽秒播| 一本色道久久久久久精品综合| 美女午夜性视频免费| 黄色丝袜av网址大全|