許從峰,艾士奇,申貴男,袁媛,晏磊,王偉東
綜 述
王偉東 黑龍江八一農(nóng)墾大學教授,博士生導師,黑龍江省杰出青年基金獲得者。黑龍江省“寒區(qū)環(huán)境微生物與農(nóng)業(yè)廢棄物資源化利用”重點實驗室主任、黑龍江省“秸稈資源化利用工程技術研發(fā)中心”副主任、黑龍江省高?!昂畢^(qū)農(nóng)業(yè)廢棄物資源化利用科技創(chuàng)新團隊”帶頭人。中國微生物學會環(huán)境微生物專業(yè)委員會委員,中國生態(tài)學會微生物生態(tài)專業(yè)委員會委員,中國植物營養(yǎng)與肥料學會生物與有機肥專業(yè)委員會委員,黑龍江省政府科顧委委員。研究方向為農(nóng)業(yè)與環(huán)境微生物、農(nóng)業(yè)廢棄物資源化利用技術與工程。主持和承擔國家自然科學基金等國家級課題6項,主持黑龍江省重大科技攻關項目、黑龍江省杰出青年科學基金等省部級課題6項;獲省部級科學技術二等獎2項、三等獎3項;發(fā)表SCI收錄論文20多篇,授權(quán)發(fā)明專利5項。
木質(zhì)纖維素的微生物降解
許從峰,艾士奇,申貴男,袁媛,晏磊,王偉東
黑龍江八一農(nóng)墾大學 生命科學技術學院 黑龍江省寒區(qū)環(huán)境微生物與農(nóng)業(yè)廢棄物資源化利用重點實驗室,黑龍江 大慶 163319
木質(zhì)纖維素廣泛存在于自然界中,因結(jié)構(gòu)復雜,其高效降解需要多種微生物的協(xié)同互作,由于參與木質(zhì)纖維素降解的微生物種類繁多,其協(xié)同降解機理尚不完全明確。隨著微生物分子生物學和組學技術的快速發(fā)展,將為微生物協(xié)同降解木質(zhì)纖維素機制的研究提供新的方法和思路。筆者前期研究發(fā)現(xiàn),細菌復合菌系在50 ℃下表現(xiàn)出強大的木質(zhì)纖維素降解能力,菌系由可分離培養(yǎng)和暫時不可分離培養(yǎng)細菌組成,但是可分離培養(yǎng)細菌沒有降解能力。通過宏基因組和宏轉(zhuǎn)錄組研究表明,與木質(zhì)纖維素降解相關的某些基因表達量發(fā)生顯著變化,通過組學方法有可能更加深入解釋微生物協(xié)同降解木質(zhì)纖維素的微生物學和酶學機理。文中從酶、純培養(yǎng)菌株和復合菌群三個方面綜述了木質(zhì)纖維素微生物降解研究進展,著重介紹了組學技術在解析復合菌群作用機理方面的現(xiàn)狀和應用前景,以期為探索微生物群落協(xié)同降解木質(zhì)纖維素的機理提供借鑒。
木質(zhì)纖維素,復合菌群,協(xié)同作用,降解機理
木質(zhì)纖維素是世界上產(chǎn)量最大的可再生生物質(zhì)資源,全世界每年產(chǎn)量達到1 500億t,僅秸稈產(chǎn)量就達到60億t,中國秸稈年產(chǎn)量11.13億t,它的有效處理和資源化利用對于社會可持續(xù)發(fā)展意義重大[1]。木質(zhì)纖維素的生物法利用一直是其主要的資源化利用方式,前提是獲取高效降解木質(zhì)纖維素的微生物,明確微生物個體和群體之間協(xié)同作用規(guī)律。木質(zhì)纖維素結(jié)構(gòu)異常復雜,其降解需要多種微生物的協(xié)同互作,很多微生物分類和代謝類型多樣性等還不明確,以及微生物間協(xié)同降解機制尚未解析,極大地阻礙木質(zhì)纖維素降解微生物資源的開發(fā)與應用[2]。
從早期的真菌纖維素酶開始,研究人員為揭示木質(zhì)纖維素的微生物降解機理一直在不斷努力[3-4],在真菌和細菌的純培養(yǎng)菌株、木質(zhì)纖維素降解酶、纖維素小體 (Cellulosome) 和微生物復合菌群協(xié)同作用等方面的研究取得較大的進展。隨著組學技術的發(fā)展,多維組學分析可準確預測降解木質(zhì)纖維素菌群內(nèi)部的共生或協(xié)同關系,極大地擴展對微生物群落的認知,采用傳統(tǒng)微生物學與多維組學研究方法結(jié)合,有望取得更大的突破。
自然界中存在極其復雜的微生物群落,能夠產(chǎn)生數(shù)量龐大、種類豐富的木質(zhì)纖維素降解酶,它們結(jié)構(gòu)各異,作用方式不同,但是根本原理均在于酶破壞化學鍵致使木質(zhì)纖維素結(jié)構(gòu)裂解[5-6]。
木質(zhì)纖維素主要由纖維素、半纖維素和木質(zhì)素構(gòu)成,各成分差異較大,對應降解酶也不盡相同。纖維素酶包括內(nèi)切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶等,其中內(nèi)切酶作用于纖維素的無定形區(qū),產(chǎn)生纖維素反應末端,外切酶作用于纖維素的結(jié)晶區(qū),產(chǎn)生纖維二糖或葡萄糖,β-葡萄糖苷酶將纖維寡糖水解為葡萄糖是被普遍接受的纖維素降解理論 (圖1),研究表明部分厭氧菌產(chǎn)生的纖維素酶通過錨定結(jié)構(gòu)域與支架蛋白上黏附結(jié)構(gòu)域特異性結(jié)合,組裝成多酶聚合體——纖維素小體,能夠有效縮短細胞與底物的距離,實現(xiàn)酶循環(huán)利用和產(chǎn)物直接礦化[8-9]。
圖1 纖維素降解機理[7]
木聚糖是半纖維素主要成分,是一類復雜多聚五碳糖,其降解酶主要有內(nèi)切β-木聚糖酶 (作用于木聚糖主鏈)、木聚糖外切酶[10](作用于寡聚木糖和木聚糖的非還原端) 和輔酶[11](作用于木聚糖的支鏈)。木質(zhì)素是含有氧代苯丙醇及其衍生物結(jié)構(gòu)單元的、無定形的、具有芳香性的高聚物,很難被微生物降解。木質(zhì)素降解酶主要有漆酶、錳過氧化物酶、木質(zhì)素過氧化物酶及輔酶,木質(zhì)素在微生物解聚過程中形成許多丁香酚基單元、愈創(chuàng)木基單元和p-羥苯基單元,同時也破壞各種連接鍵,從而將木質(zhì)素降解為各種小分子片段,最后進入三羧酸循環(huán) (圖2)。木質(zhì)纖維素降解酶的種類很多,包括各種高溫、高鹽、強堿和高壓等極端環(huán)境降解酶,但單種酶降解能力有限,需要多種酶共同作用。
環(huán)境中存在豐富的降解木質(zhì)纖維素微生物,主要包括細菌和真菌,它們種類繁多,相互協(xié)調(diào),其中大部分難以培養(yǎng),已分離200多種,主要來源于堆肥、瘤胃、厭氧污泥和土壤的微生物菌群[13]。細菌具有繁殖周期短、結(jié)構(gòu)簡單、抗逆性強和耐酸堿等優(yōu)點,在降解木質(zhì)纖維素方面具有巨大應用潛力[14],根據(jù)對氧氣依賴程度可分為好氧菌與厭氧菌,好氧菌如噬纖維菌[15]、假單胞菌[16]、熱酸菌[17]和芽孢桿菌[18]等,厭氧菌有梭菌[19]、熱解纖維素菌[20]和醋弧菌[21]等。大部分好氧細菌分泌纖維素胞外酶,種類單一,降解效率低,實用性弱[22]。厭氧菌具有降解效率高、不易被雜菌污染等優(yōu)點,但是生長速度緩慢,降解中間產(chǎn)物如戊糖、甲酸等對其有抑制作用[23]。
自然環(huán)境中真菌是降解木質(zhì)纖維素的主要微生物,已報道的真菌包括曲霉[24]、木霉[25]和瘤胃真菌[26]等,由于其生產(chǎn)木質(zhì)纖維素酶的效率低、酶活不高和致病性 (曲霉) 等缺點,限制了真菌的大規(guī)模開發(fā)和使用。另外,繁殖緩慢、降解能力弱的放線菌已經(jīng)被發(fā)現(xiàn),如小單胞菌[27]和諾卡氏菌[28]等。隨著基因工程的發(fā)展,菌株穩(wěn)定性和整體酶系的協(xié)同性得到一定的加強,將工程菌以不同比例混合,有望應用到實際生產(chǎn)中[29]。
圖2 木質(zhì)素降解機理[12]
復合菌群是由多種微生物組成的群落,主要來源于自然界篩選和菌株組配,利用復合菌群解決木質(zhì)纖維素降解難的問題是科研工作者密切關注的重點[30-31]。復合菌群形成動態(tài)、多變的微生物環(huán)境,具有極其豐富多樣的生態(tài)適應能力和生理代謝功能,木質(zhì)纖維素降解正需要依靠復合菌群內(nèi)部的協(xié)同互作。
1.3.1 降解木質(zhì)纖維素純培養(yǎng)菌株組合菌群
組合菌群的研究在菌種的篩選和菌群的組裝效果方面報道較多,為了更好地研究菌群降解木質(zhì)纖維素的協(xié)同機制,組合群落需要依據(jù)實驗目的進行嚴格設計,考慮菌群中物種組成和比例、酶的種類、代謝產(chǎn)物以及基因組信息等因素[32-34]。Zhang等[35]將枯草芽孢桿菌(AY881635)和煎盤梭菌(NR026490) 組合,獲得一組兼性厭氧高效降解木質(zhì)纖維素菌群M1,降解能力遠高于純培養(yǎng)菌株;Puentes-Téllez等[36]采用基于分子表型、鑒定和代謝特性的方法從甘蔗渣中篩選出18株木質(zhì)纖維素降解菌,結(jié)合生態(tài)學理論和富集原理,組配出高效降解木質(zhì)纖維素菌群MAMC,根據(jù)MAMC的降解能力和功能多樣性測定結(jié)果,發(fā)現(xiàn)隨著物種組成多樣性的增加,木質(zhì)纖維素的降解率顯著上升。
獲得降解木質(zhì)纖維素菌株是組合菌群的基礎,保證組合菌群能夠高效降解木質(zhì)纖維素是關鍵。在實際操作中,盡管有許多分析的手段,但要構(gòu)建一個理想的組合菌群還是要盡可能從不同生境分離和培養(yǎng)降解能力強的微生物[37]。微流控技術有效降低共生以及互生菌篩選難度,為功能菌株的獲取提供新的途徑[38],同時,最好對獲得可培養(yǎng)新型菌株進行基因組測序,除了考慮單菌基因組,組合菌群基因組信息對于研究不同菌株與木質(zhì)纖維素降解的聯(lián)系也十分必要[39]。構(gòu)建降解木質(zhì)纖維素菌群時有以下問題需要注意:(1) 菌株生長周期長短;(2) 菌株之間是否相互拮抗;(3) 菌株混合比例是否合適;(4) 降解效率是否在傳代過程中衰退。
1.3.2 降解木質(zhì)纖維素天然復合菌群
從環(huán)境中篩選高效降解木質(zhì)纖維素的微生物菌群,通過定向優(yōu)化進一步加強木質(zhì)纖維素降解效率,研究其物種組成及降解功能,獲取木質(zhì)纖維素降解相關基因信息,將為研究菌群降解木質(zhì)纖維素協(xié)同機理提供新的思路和方案。崔宗均等[40]采用酸堿互補原則選育出復合菌群MC1 3 d內(nèi)可降解98%的脫脂棉和94%的濾紙;王偉東等[41]通過限制性培養(yǎng)技術從堆肥中獲得了一組50 ℃靜置條件下3 d可完全降解濾紙的復合菌群WSC-9;Liang等[42]從菌糠中獲得復合菌群OEM2 12 d內(nèi)可降解41.5%的水稻秸稈和85%的半纖維素;Lu 等[43]從厭氧消化污泥中獲得一組高溫降解木質(zhì)纖維素菌群TC-Y 20 d內(nèi)降解49.5%的玉米秸稈,其中纖維素、半纖維素和木質(zhì)素的降解率分別為52.76%、62.45%和42.23%。
降解木質(zhì)纖維素復合菌群中微生物之間具有協(xié)同關系,其木質(zhì)纖維素降解能力、抗逆性及穩(wěn)定性遠遠超過純培養(yǎng)菌株和組合菌群。前期的木質(zhì)纖維素降解理論主要以真菌的研究為基礎,隨后得到不斷的補充和改善,但是木質(zhì)纖維素降解菌群關系復雜多變,協(xié)同作用研究進展緩慢[44],主要有以下幾個原因:1) 物種組成不穩(wěn)定,很難控制;2) 群落組成未明確,協(xié)同關系不清晰;3) 菌群功能多樣性,代謝途徑錯綜復雜;4) 研究理論匱乏,技術手段待完善。
復雜微生物群落降解木質(zhì)纖維素機制的揭示具有挑戰(zhàn)性,利用先進的分析技術,如宏基因組學[45]和宏轉(zhuǎn)錄組學[46]等,將為解析復雜微生物群落降解功能和代謝途徑提供新的切入點[47-48]。
宏基因組學研究方法最早應用于基因序列的分析和功能篩選[49]。近年來,隨著測序技術和分析工具的迅猛發(fā)展,采用新一代測序技術研究降解木質(zhì)纖維素菌群基因,能快速準確獲得海量微生物基因數(shù)據(jù)以及更高的分類學信息,是研究微生物菌群功能的重要途徑[50-51]。
應用于木質(zhì)纖維素降解菌群的研究可發(fā)現(xiàn)新型降解基因以及代謝通路的調(diào)控機制。Dai等[52]利用宏基因組測序與基于人工染色體功能篩選方法相結(jié)合發(fā)現(xiàn)牦牛瘤胃中有150種降解木質(zhì)纖維素的糖苷水解酶基因,大多數(shù)與編碼相關功能的基因聚類較近,其中25個家族來自擬桿菌門、 4個來自厚壁菌門;Thornbury等[53]從北美豪豬體內(nèi)利用宏基因組技術通過與纖維素和半纖維素降解相關的保守催化域識別出4種新型木質(zhì)纖維素降解酶基因,分別是β-葡糖苷酶、β-L-阿拉伯呋喃糖酶、β-木糖苷酶和內(nèi)切4-β-木聚糖酶,并成功在大腸桿菌中表達;Wilhelm等[54]利用宏基因組技術結(jié)合同位素追蹤改良基因組裝方法,發(fā)現(xiàn)7 500多個包含獨特的碳水化合物活性基因簇。
宏基因組測序可以直接獲得微生物功能基因的相對豐度,鑒定分辨率可達種的水平,通過基因分箱技術獲得其中降解木質(zhì)纖維素關鍵菌株較完整的基因組,形成假定的功能通路和模塊,從而挖掘微生物功能和遺傳變異性[55-57]。但是,宏基因組測序技術具有自身局限性,如宏基因組學以DNA為研究對象,并不能區(qū)分其來源于有生命或無生命的生物體,受組裝方式影響,得到的微生物菌群基因組信息往往不夠準確[58]。
宏轉(zhuǎn)錄組學主要研究微生物群落基因轉(zhuǎn)錄情況及調(diào)控規(guī)律,功能基因分析可以說明其是否已經(jīng)表達以及表達量的多少,有效說明菌群活力大小,是分析微生物群落代謝能力的重要手段。宏轉(zhuǎn)錄組是以菌群全部RNA為研究對象,僅鑒別活體生物,排除休眠或死亡微生物對結(jié)果的影響,不僅可以捕捉菌群的動態(tài)變化,還可以估算群落中哪些微生物正在進行高效轉(zhuǎn)錄[59]。
國內(nèi)外已存在利用宏轉(zhuǎn)錄組高通量測序技術研究木質(zhì)纖維素降解的相關報道[60-61]。Gruninger 等[62]利用宏轉(zhuǎn)錄組技術研究、、和對碳水化合物的消化,發(fā)現(xiàn)所有物種均表達大量編碼碳水化合物活性酶的轉(zhuǎn)錄本,占轉(zhuǎn)錄組的8.3%–11.3%,其中參與半纖維素消化的酶家族數(shù)量最多;Janusz 等[63]對生長在樺木、白蠟樹、楓樹木屑和液體培養(yǎng)基 (對照) 上的真菌的轉(zhuǎn)錄組進行了分析,發(fā)現(xiàn)液體培養(yǎng)基中檢測到真菌的特殊轉(zhuǎn)錄本數(shù)量最高 (107),而在含有楓樹木屑的真菌培養(yǎng)中,檢測到特殊轉(zhuǎn)錄本數(shù)量最低(11),白蠟樹木屑培養(yǎng)基上生長的真菌中,上調(diào)轉(zhuǎn)錄本數(shù)量最多(828),在294個可能參與木質(zhì)纖維素降解的基因中,59個基因表達發(fā)生了顯著變化 (<0.01);Peng等[64]比較分析了22個與木質(zhì)纖維素降解相關的擔子菌轉(zhuǎn)錄組數(shù)據(jù)集,鑒定了328個常見的誘導基因和318個抑制基因,并定義了一組核心的碳水化合物活性酶,該酶被大多數(shù)擔子菌共享。
研究特定環(huán)境下基因的表達譜,能將微生物菌群與其功能聯(lián)系到一起,從而更好地了解微生物群落的代謝活性,但是宏轉(zhuǎn)錄組并不完美,比如費用較高,樣品制備和分析過程復雜,極大地阻礙研究速度。微生物基因轉(zhuǎn)錄率的高低會讓數(shù)據(jù)結(jié)果有偏差,需要與菌群DNA數(shù)據(jù)相結(jié)合,才能獲得準確的微生物豐度變化和轉(zhuǎn)錄情況[65]。另外,RNA不僅含量極低,還容易降解和污染,在指定環(huán)境中提取總RNA時要格外小心[66-67]。
微生物群落協(xié)同關系的變化跟菌群內(nèi)部化學物質(zhì)合成速率、基因轉(zhuǎn)錄表達以及蛋白質(zhì)活性均息息相關[68]。多維組學以菌群為核心,利用宏基因組、宏轉(zhuǎn)錄組、蛋白質(zhì)組和代謝組等技術聯(lián)合空間相關性分析、稀疏典型相關分析、相關網(wǎng)絡分析、代謝活性分析、普氏分析和多重共慣性分析等方法,從多角度、多層次剖析微生物菌群功能,給降解木質(zhì)纖維素菌群研究提供更完整、更系統(tǒng)的生物學分析方法,是非常有前景的研究方向 (圖3)。但是,整合多組學數(shù)據(jù)困難重重,例如微生物降解木質(zhì)纖維素過程中基因表達與代謝物來自不同的降解時期[70],而且代謝底物可能是不同菌種之間協(xié)同作用的結(jié)果[71];宏基因組和代謝組基因分類信息聯(lián)系緊密[72-74];多維組學數(shù)據(jù)的分析工具和方法尚不完善[75]。
分析降解木質(zhì)纖維素菌群組學數(shù)據(jù)只是開始,建立菌群代謝物與組學數(shù)據(jù)之間的聯(lián)系是下一階段的主要目標。微生物代謝物可影響其他共生菌,從而決定整個菌群的功能,然而,鑒定微生物菌群中代謝物來源和收集瞬間代謝產(chǎn)物是非常困難的。在多組學分析中,數(shù)據(jù)集可能包括數(shù)量龐大的微生物和代謝物數(shù)據(jù),分析過程中可能會出現(xiàn)偶然的相關,因此多重比較校正是關鍵,校正顯著性檢驗的方法有假陽性率校正和總體錯誤率校正等[76]。
盡管存在諸多挑戰(zhàn),也有一些成功整合多維組學數(shù)據(jù)的例子,這些研究成果遠超單組學分析。Alessi等[77]以降解麥稈微生物菌群為研究對象,結(jié)合宏轉(zhuǎn)錄組學與以質(zhì)譜為基礎的蛋白質(zhì)組學,鑒定了1 127種蛋白質(zhì),揭示了廣泛的水解纖維素酶、半纖維素酶和參與木質(zhì)纖維素降解的碳水化合物結(jié)合模塊;Hassa等[78]利用多維組學對厭氧發(fā)酵中木質(zhì)纖維素降解菌群進行研究,組裝了數(shù)百個新菌的全基因組,揭示微生物群落遺傳潛力,宏轉(zhuǎn)錄組數(shù)據(jù)為了解群落代謝活性提供視角,蛋白質(zhì)組數(shù)據(jù)揭示木質(zhì)纖維素降解群落成員表達的酶譜,鑒定纖維素和半纖維素降解酶以及其他聚合物的利用。綜上所述,多維組學數(shù)據(jù)可以更全面地解析降解木質(zhì)纖維素菌群基因組數(shù)據(jù)、木質(zhì)纖維素降解酶和代謝物之間的關聯(lián),使研究結(jié)果更具有指導意義。
圖3 利用多維組學分析菌群降解木質(zhì)纖維素的過程[69](A:空間相關性分析;B:稀疏典型相關分析;C:相關網(wǎng)絡分析;D:代謝活性網(wǎng)絡分析;E:普氏分析;F:多重共慣性分析)
復合菌群協(xié)同作用在木質(zhì)纖維素降解方面具有優(yōu)勢已經(jīng)成為共識,尤其是在開放環(huán)境中。從自然界富集菌群中定向篩選特定功能的純培養(yǎng)菌株,根據(jù)他們各自的特點結(jié)合目標功能,有目的地進行菌群重構(gòu),雖然組配菌群木質(zhì)纖維素降解能力比天然菌群有所下降,但是組配群體組成明確,便于分析研究。隨著組學技術的發(fā)展,多組學分析將廣泛應用于組配菌群,組配菌群的簡易性加上多維組學分析的全面性,菌與菌之間、菌與環(huán)境之間的協(xié)同機制將會更加清晰。
深入理解組配菌群降解機制后,就可以人工調(diào)控菌群功能,更好地讓組配菌群應用于實際生產(chǎn)。組配菌群在秸稈能源化、肥料化、飼料化、原料化和基質(zhì)化,以及其他農(nóng)林有機廢棄物的資源化利用方面起到重要的作用,實現(xiàn)木質(zhì)纖維素基礎研究與應用研究的完美結(jié)合。
[1] 中華人民共和國國家統(tǒng)計局[EB/OL]. [2019-07-13]. http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0D0F&sj=2018.
[2] Gro?kopf T, Soyer OS. Synthetic microbial communities. Curr Opin Microbiol, 2014, 18: 72–77.
[3] van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology. Trends Genet, 2014, 30(9): 418–426.
[4] Callahan BJ, Mcmurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J, 2017, 11(12): 2639–2643.
[5] Wang Q, Awasthi MK, Zhao J, et al. Improvement of pig manure compost lignocellulose degradation, organic matter humification and compost quality with medical stone. Bioresour Technol, 2017, 243: 771–777.
[6] Cragg SM, Beckham GT, Bruce NC, et al. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol, 2015, 29: 108–119.
[7] Lynd LR, Weimer PJ, van Zyl WH, et al. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 2002, 66(3): 506–577.
[8] Artzi L, Bayer EA, Mora?s S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol, 2016, 15(2): 83–95.
[9] Smith SP, Bayer EA, Czjzek M. Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex. Curr Opin Struct Biol, 2017, 44: 151–160.
[10] Ahmed AAQ, Babalola OO, Mckay T. Cellulase- and xylanase-producing bacterial isolates with the ability to saccharify wheat straw and their potential use in the production of pharmaceuticals and chemicals from lignocellulosic materials. Waste Biomass Valoriz, 2017, 9(5): 765–775.
[11] Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev, 2005, 29(1): 3–23.
[12] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Ann Rev Plant Biol, 2003, 54(1): 519–546.
[13] Tsapekos P, Kougias PG, Vasileiou SA, et al. Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues. Bioresour Technol, 2017, 234: 350–359.
[14] Hasunuma T, Okazaki F, Okai N, et al. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol, 2013, 135: 513–522.
[15] Zhu YT, Han LL, Hefferon KL, et al. Periplasmichutchinsonii endoglucanases are required for use of crystalline cellulose as the sole source of carbon and energy. Appl Environ Microbiol, 2016, 82(15): 4835–4845.
[16] Xu ZX, Qin L, Cai MF, et al. Biodegradation of kraft lignin by newly isolated,, andstrains. Environ Sci Pollut Res, 2018, 25(14): 14171–14181.
[17] Shahid S, Tajwar R, Akhtar MW. A novel trifunctional, family GH10 enzyme from11B, exhibiting endo-xylanase, arabinofuranosidase and acetyl xylan esterase activities. Extremophiles, 2018, 22(1): 109–119.
[18] Rastogi G, Bhalla A, Adhikari A, et al. Characterization of thermostable cellulases produced byandstrains. Bioresour Technol, 2010, 101(22): 8798–8806.
[19] Kothari N, Holwerda EK, Cai CM, et al. Biomass augmentation through thermochemical pretreatments greatly enhances digestion of switchgrass by. Biotechnol Biofuels, 2018, 11: 219.
[20] Brunecky R, Donohoe BS, Yarbrough JM, et al. The multi domainCelA cellulase excels at the hydrolysis of crystalline cellulose. Sci Rep, 2017, 7: 9622.
[21] Khan AW, Murray WD. Influence ofon cellulose degradation by. J Appl Microbiol, 2010, 53(3): 379–383.
[22] J?rgensen H, Pinelo M. Enzyme recycling in lignocellulosic biorefineries. Biofuel Bioprod Bior, 2016, 11(1): 150–167.
[23] Qing Q, Yang B, Wyman C E. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol, 2010, 101(24): 9624–9630.
[24] Ahmad R, Khare SK. Immobilization ofCellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresour Technol, 2018, 252: 72–75.
[25] Du J, Zhang X, Li XZ, et al. The cellulose binding region incellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of. Bioresour Technol, 2018, 266: 19–25.
[26] Dollhofer V, Dandikas V, Dorn-In S, et al. Accelerated biogas production from lignocellulosic biomass after pre-treatment with. Bioresour Technol, 2018, 264: 219–227.
[27] Lee HJ, Whang KS.sp. nov., isolated from forest soil. Int J Systemat Evolut Microbiol, 2017, 67(6): 1746–1751.
[28] Bu?ko M, Vikartovská A, Gemeiner P, et al.cells immobilized in sodium alginate-cellulose sulfate-poly (methylene--guanidine) capsules: mechanical resistance and operational stability. J Chem Technol Biotechnol Biotechnol, 2010, 81(4): 500–504.
[29] Zhang HF. Construction of cellulase recombinant strains andsaccharification and fermentation of rice straw for ethanol production[D]. Hefei: Hefei University of Technology, 2017 (in Chinese).
張海峰. 纖維素酶基因工程菌構(gòu)建及水稻秸稈原位糖化發(fā)酵產(chǎn)乙醇[D]. 合肥: 合肥工業(yè)大學, 2017.
[30] Yuan XF, Ma L, Wen BT, et al. Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). Bioresour Technol, 2016, 207: 293–301.
[31] Carpio IEM, Franco DC, Sato MIZ, et al. Biostimulation of metal-resistant microbial consortium to remove zinc from contaminated environments. Sci Total Environ, 2016, 550: 670–675.
[32] Busby PE, Soman C, Wagner MR, et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol, 2017, 15(3): e2001793.
[33] Chang C, Bowman JL, Meyerowitz EM. Field guide to plant model systems. Cell, 2016, 167(2): 325–339.
[34] Jiménez DJ, Dini-Andreote F, DeAngelis KM, et al. Ecological insights into the dynamics of plant biomass-degrading microbial consortia. Trends Microbiol, 2017, 25(10): 788–796.
[35] Zhang DD, Wang Y, Zheng D, et al. New combination of xylanolytic bacteria isolated from the lignocellulose degradation microbial consortium XDC-2 with enhanced xylanase activity. Bioresour Technol, 2016, 221: 686–690.
[36] Puentes-Téllez PE, Salles JF. Construction of effective minimal active microbial consortia for lignocellulose degradation. Microb Ecol, 2018, 76(2): 419–429.
[37] Bai Y, Müller DB, Srinivas G, et al. Functional overlap of theleaf and root microbiota. Nature, 2015, 528(7582): 364–369.
[38] Park J, Kerner A, Burns MA, et al. Microdroplet-enabled highly parallel Co-cultivation of microbial communities. PLoS ONE, 2011, 6(2): e17019.
[39] Müller DB, Schubert OT, R?st H, et al. Systems-level proteomics of two ubiquitous leaf commensals reveals complementary adaptive traits for phyllosphere colonization. Mol Cell Proteom, 2016, 15(10): 3256–3269.
[40] Cui ZJ, Li MD, Piao Z, et al. Selection of a composite microbial system MC1 with efficient and stability cellulose degradation bacteria and its function. Chin J Environ Sci, 2002, 23(3): 36–39 (in Chinese).
崔宗均, 李美丹, 樸哲, 等. 一組高效穩(wěn)定纖維素分解菌復合系MC1的篩選及功能. 環(huán)境科學, 2002, 23(3): 36–39.
[41] Wang WD, Cui ZJ, Yang HY, et al. Stability of a composite microbial system WSC-6 with efficient cellulose degrading. China Environ Sci, 2005, 25(5): 567–571 (in Chinese).
王偉東, 崔宗均, 楊洪巖, 等. 高效穩(wěn)定纖維素分解菌復合系WSC-6的穩(wěn)定性. 中國環(huán)境科學, 2005, 25(5): 567–571.
[42] Liang JJ, Fang XX, Lin YQ, et al. A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification. J Hazard Mater, 2018, 347: 341–348.
[43] Lu J, Yang ZM, Xu WY, et al. Enrichment of thermophilic and mesophilic microbial consortia for efficient degradation of corn stalk. J Environ Sci, 2019, 78(4): 118–126.
[44] Ai SQ, Zhao YQ, Sun ZY, et al. Change of bacterial community structure during cellulose degradation by the microbial consortium. Chin J Biotech, 2018, 34(11): 1794–1808 (in Chinese). 艾士奇, 趙一全, 孫志遠, 等. 復合菌系降解纖維素過程中微生物群落結(jié)構(gòu)的變化. 生物工程學報, 2018, 34(11): 1794–1808.
[45] Qin JJ, Lin YR, Cai ZM, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490(7418): 55–60.
[46] Garza DR, Dutilh BE. From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cell Mol Life Sci, 2015, 72(22): 4287–4308.
[47] Singh J, Behal A, Singla N, et al. Metagenomics: Concept, methodology, ecological inference and recent advances. Biotechnol J, 2009, 4(4): 480–494.
[48] Xu B, Xu WJ, Li JJ, et al. Metagenomic analysis of thefecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genom, 2015, 16: 174.
[49] Ilmberger N, Güllert S, Dannenberg J, et al. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzyme. PLoS ONE, 2014, 9(9): e106707.
[50] Gilbert JA, Dupont CL. Microbial metagenomics: beyond the genome. Ann Rev Mar Sci, 2011, 3(3): 347–371.
[51] Demaneche S, David MM, Navarro E, et al. Evaluation of functional gene enrichment in a soil metagenomic clone library. J Microbiol Methods, 2009, 76(1): 105–107.
[52] Dai X, Zhu YX, Luo YF, et al. Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS ONE, 2012, 7(7): e40430.
[53] Thornbury M, Sicheri J, Slaine P, et al. Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics. PLoS ONE, 2019, 14(1): e0209221.
[54] Wilhelm RC, Singh R, Eltis LD, et al. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J, 2019, 13(2): 413–429.
[55] Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 2011, 331(6016): 463–467.
[56] Mukherjee S, Seshadri R, Varghese NJ, et al. 1, 003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol, 2017, 35(7): 676–683.
[57] Bashiardes S, Zilberman-Schapira G, Elinav E. Use of metatranscriptomics in microbiome research. Bioinform Biol Insights, 2016, 10: 19–25.
[58] Mallick H, Ma SY, Franzosa EA, et al. Experimental design and quantitative analysis of microbial community multiomics. Genome Biol, 2017, 18: 228.
[59] Carini P, Marsden PJ, Leff JW, et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol, 2016, 2: 16242.
[60] Sim M, Kim J. Metagenome assembly through clustering of next-generation sequencing data using protein sequences. J Microbiol Methods, 2015, 109: 180–187.
[61] Ferrer M, Beloqui A, Golyshin PN. Microbial metagenomes: moving forward industrial biotechnology. Journal of Chemical Technol Biotechnol, 2007, 82(5): 421–423.
[62] Gruninger RJ, Nguyen TTM, Reid ID, et al. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front Microbiol, 2018, 9: 1581.
[63] Janusz G, Mazur A, Wielbo J, et al. Comparative transcriptomic analysis ofrevealed differential expression of genes engaged in degradation of various kinds of wood. Microbiol Res, 2018, 207: 256–268.
[64] Peng M, Aguilar-Pontes MV, Hainaut M, et al. Comparative analysis of basidiomycete transcriptomes reveals a core set of expressed genes encoding plant biomass degrading enzymes. Fungal Genet Biol, 2018, 112: 40–46.
[65] Emerson JB, Adams RI, Román CMB, et al. Schr?dinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome, 2017, 5: 86.
[66] Sorek R, Cossart P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet, 2010, 11(1): 9–16.
[67] Giannoukos G, Ciulla DM, Huang K, et al. Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol, 2012, 13: R23.
[68] Roume H, Muller EEL, Cordes T, et al. A biomolecular isolation framework for eco-systems biology. ISME J, 2013, 7(1): 110–121.
[69] Knight R, Vrbanac A, Taylor BC, et al. Best practices for analysing microbiomes. Nat Rev Microbiol, 2018, 16(7): 410–422.
[70] Wang RR, Seyedsayamdost MR. Opinion: Hijacking exogenous signals to generate new secondary metabolites during symbiotic interactions. Nat Rev Chem, 2017, 1(3): 0021.
[71] Mayall P, Pilbrow V. Generalized Procrustes analysis of an ontogenetic series of modified crania: Evaluating the technique of modification in the Migration Period of Europe (4th–7th century AD). Am J Phys Anthropol, 2018, 166(1): 156–169.
[72] Boulesteix AL, Strimmer K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief Bioinformat, 2007, 8(1): 32–44.
[73] Witten DM, Tibshirani RJ. Extensions of sparse canonical correlation analysis with applications to genomic data. Stat Appl Genet Mol Biol, 2009, 8(1): 28.
[74] Wilms I, Croux C. Robust sparse canonical correlation analysis. BMC Syst Biol, 2016, 10(1): 72.
[75] Mchardy IH, Goudarzi M, Tong MM, et al. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome, 2013, 1: 17.
[76] Weiss S, van Treuren W, Lozupone C, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J, 2016, 10(7): 1669–1681.
[77] Alessi AM, Bird SM, Oates NC, et al. Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies. Biotechnol Biofuels, 2018, 11: 166.
[78] Hassa J, Maus I, Off S, et al. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol, 2018, 102(12): 5045–5063.
Microbial degradation of lignocellulose
Congfeng Xu, Shiqi Ai, Guinan Shen, Yuan Yuan, Lei Yan, and Weidong Wang
,,,163319,,
Lignocellulose is widely found in the nature. The highly efficient degradation of lignocellulose requires synergistic interactions of varieties of microorganisms. The mechanism of synergistic interaction relationship is not entirely clear because it needs multitudinous microorganisms to participate in the process of lignocellulose degradation. With the development of microbial molecular biology and omics technology, some new methods will be provided for the research on the mechanism of microbial synergistic degradation of lignocellulose. Our previous research found that the bacterial composite microbial system shows strong degradation ability of lignocellulose at 50 °C. The consortium is composed of cultured and uncultured bacteria, but the former has no degradation ability. Metagenomics and metatranscriptomics show that the expression levels of some genes related to lignocellulosic degradation change significantly. It is possible to explain the microbiological and enzymatic mechanisms of lignocellulosic degradation by microorganisms through omics in the future. The research progress of lignocellulose microbial degradation is reviewed from the aspects of enzyme, pure culture strain, and microbial consortium. The current situation and application prospect of omics technology in analyzing the function mechanism of microbial consortium are also introduced, to provide reference for exploring synergistic interactions of lignocellulose microbial degradation.
lignocellulose, microbial consortium, synergy, mechanism of degradation
June12, 2019;
July31, 2019
National Key Research Program and Development Plan (No. 2018YFD0800906-03), Key Project of Heilongjiang Natural Science Foundation (No. ZD2018005), The Local Science and Technology Development Program Supported by the Central Government (No. ZY16A06-02), Program of Science and Technology Innovation Team in Heilongjiang Province (No. 2012TD006), Research and Development Plan of Heilongjiang Agricultural Company (No. HNK135-04-08), Support Program of Scientific Research Team and Platform of HBAU (No. TDJH201809).
Weidong Wang. Tel/Fax: +86-459-6819298; E-mail: wwdcyy@126.com
國家重點研發(fā)計劃 (No. 2018YFD0800906-03), 黑龍江省自然科學基金重點項目(No. ZD2018005),中央財政支持地方發(fā)展科技項目(No. ZY16A06-02),黑龍江省高校科技創(chuàng)新團隊項目(No. 2012TD006), 黑龍江農(nóng)墾總局科技攻關項目(No. HNK135-04-08),黑龍江八一農(nóng)墾大學科技創(chuàng)新團隊項目(No. TDJH201809) 資助。
2019-08-06
http://kns.cnki.net/kcms/detail/11.1998.Q.20190805.1058.002.html
許從峰, 艾士奇, 申貴男, 等. 木質(zhì)纖維素的微生物降解. 生物工程學報, 2019, 35(11): 2081–2091.
Xu CF, Ai SQ, Shen GN, et al. Microbial degradation of lignocellulose. Chin J Biotech, 2019, 35(11): 2081–2091.
(本文責編 郝麗芳)