吳垚 楊利花 徐騰飛
摘要: 在微納米尺度下工作的氣體薄膜潤滑軸承,氣膜厚度與氣體分子平均自由程較為接近,氣體稀薄效應(yīng)是影響軸承動(dòng)態(tài)特性的關(guān)鍵因素。通過MATLAB的偏微分方程工具箱求解超薄氣膜潤滑動(dòng)態(tài)Reynolds方程得到動(dòng)態(tài)剛度和阻尼系數(shù),探討了不同半徑間隙,稀薄效應(yīng)修正模型以及軸承參數(shù)對(duì)動(dòng)特性系數(shù)的影響。結(jié)果表明,隨軸承間隙減小,氣體稀薄程度增加,氣體徑向軸承的動(dòng)態(tài)剛度系數(shù)顯著降低,動(dòng)態(tài)阻尼系數(shù)有所增加。當(dāng)半徑間隙降低到納米尺度時(shí),動(dòng)態(tài)性能受軸承參數(shù)的影響較小。
關(guān)鍵詞: 動(dòng)壓軸承; 超薄氣膜潤滑; 動(dòng)態(tài)Reynolds方程; 半徑間隙; 動(dòng)態(tài)性能
中圖分類號(hào): TH133.37; O347.6 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1004-4523(2019)05-0908-10
DOI:10.16385/j.cnki.issn.1004-4523.2019.05.019
引 言
隨著旋轉(zhuǎn)機(jī)械向高性能、微型化、低能耗和長壽命的方向發(fā)展,微/納米尺度下轉(zhuǎn)子與軸承的動(dòng)力潤滑問題變得十分突出[1]。相對(duì)于油膜潤滑軸承,氣膜潤滑可實(shí)現(xiàn)軸頸和高速軸承之間的無接觸懸浮,近年來氣體軸承因具有運(yùn)轉(zhuǎn)速度高、旋轉(zhuǎn)精度高、摩擦阻力較低、不會(huì)污染潤滑表面等優(yōu)點(diǎn),在慣導(dǎo)系統(tǒng)的陀螺儀表、高速離心分離器、高速鼓風(fēng)機(jī)和微型燃?xì)廨啓C(jī)等設(shè)備上得到了廣泛的應(yīng)用[2]。氣體軸承的動(dòng)態(tài)特性對(duì)整個(gè)軸承-轉(zhuǎn)子系統(tǒng)的臨界轉(zhuǎn)速和穩(wěn)定性有很大影響,在研究氣體潤滑軸承時(shí),通常用8個(gè)線性化的氣膜剛度和阻尼系數(shù)來表征軸承的動(dòng)態(tài)性能。當(dāng)軸承的氣膜厚度小于氣體分子平均自由程(λ0=65 nm)時(shí),經(jīng)典的氣膜潤滑Reynolds方程已不再適用,必須考慮氣體稀薄效應(yīng)的修正模型。
目前,國內(nèi)外學(xué)者對(duì)微觀尺度甚至是納觀尺度下氣體流動(dòng)表現(xiàn)出的稀薄效應(yīng)進(jìn)行了大量的理論和實(shí)驗(yàn)研究。1959年Burgdorfer[3]首先將Maxwell滑移速度模型引入氣膜潤滑領(lǐng)域,修正了小Knudsen數(shù)下的滑移邊界條件,推導(dǎo)出了考慮氣體稀薄效應(yīng)的Reynolds方程,即一階速度滑移模型。1983年Hsia和Domoto[4]在滑移邊界條件中考慮了二階速度導(dǎo)數(shù)的影響,提出二階速度滑移模型,并通過實(shí)驗(yàn)發(fā)現(xiàn)氣膜厚度小到0.25 μm時(shí),計(jì)算結(jié)果仍與實(shí)驗(yàn)吻合良好。日本學(xué)者Fukui和Kaneko[5]根據(jù)線性Boltzmann方程提出適用于任意Knudsen數(shù)和適應(yīng)系數(shù)的廣義Reynolds方程,并建立了快速計(jì)算大Knudsen數(shù)廣義氣膜潤滑方程的Poiseuille流量數(shù)據(jù)庫[6]。1993年Mitsuya[7]在動(dòng)量中引入調(diào)節(jié)系數(shù),提出1.5階修正Reynolds方程求解超薄氣膜潤滑問題,計(jì)算結(jié)果說明1.5階模型結(jié)果介于1,2階模型之間且與Boltzmann-Reynolds方程的精確解近似。Hwang等[8]在潤滑氣膜邊界速度條件加入了含3個(gè)可調(diào)系數(shù)的附加修正項(xiàng),提出一種求解超薄氣膜潤滑的修正Reynolds方程,該模型克服了求解Boltzmann方程的復(fù)雜和耗時(shí)難題,結(jié)果表明該模型在較寬的Knudsen數(shù)范圍內(nèi),對(duì)Boltzmann模型的近似性最佳。Rao等[9]利用修正分子氣體潤滑方程研究了任意Knudsen數(shù)和非對(duì)稱界面條件下氣體稀薄效應(yīng)對(duì)微軸承性能的影響,首次討論了Poiseuille流量和Couette流量對(duì)微氣體徑向滑動(dòng)軸承性能的耦合作用,結(jié)果表明隨Knudsen數(shù)的增加,Poiseuille流量和Couette流量的增強(qiáng)效應(yīng)會(huì)使軸承無量綱承載力顯著上升。張海軍等[10-11]基于Burgdorfer 1階速度滑移邊界條件,提出了稀薄氣體條件下考慮有效黏度的微氣體軸承修正Reynolds方程,分析了不同參考Knudsen數(shù)、軸承數(shù)以及偏心率對(duì)軸承壓力分布、承載力及偏位角的影響,并與FK模型結(jié)果進(jìn)行了對(duì)比。張文明等[12-13]利用Weierstrass-Mandelbrot分形函數(shù)表征隨機(jī)軸承粗糙表面,建立了考慮表面粗糙度的超薄膜氣體潤滑修正Reynolds方程,研究了滑移邊界條件下微軸承內(nèi)的復(fù)雜氣體流動(dòng),說明軸承表面粗糙形貌對(duì)微機(jī)電器件中微氣體軸承性能有顯著影響。Shen等[14]通過求解Boltzmann方程的近似Krook方程推導(dǎo)了新的1階滑移模型,由于沿流動(dòng)方向具有壓力梯度,新的滑移模型具有一個(gè)附加項(xiàng),即新的1階滑移速度模型不僅和膜厚方向速度梯度有關(guān)還和流動(dòng)方向的壓力梯度有關(guān),數(shù)值結(jié)果表明與高Knudsen數(shù)條件下線性化Boltzmann方程的精確解非常吻合。賈晨輝等[15]將氣膜壓力表示為關(guān)于軸心偏離靜平衡位置的瞬時(shí)位移和軸心瞬時(shí)速度的泰勒級(jí)數(shù)展開式,采用有限差分法求解錐面螺旋槽動(dòng)壓軸承的氣體潤滑Reynolds方程,研究了不同軸承轉(zhuǎn)速和偏心率對(duì)動(dòng)態(tài)系數(shù)的影響規(guī)律。Sun等[16]結(jié)合分子動(dòng)力學(xué),考慮分子碰撞在分子與固體表面的相互作用中的重要影響,研究了磁頭/磁盤間隙為25 nm硬盤驅(qū)動(dòng)器中的滑移氣體流動(dòng),建立了新的滑移速度模型,推導(dǎo)并求解了相應(yīng)的修正Reynolds方程,得到考慮無量綱平面Poiseuille流量及坡面流的壓力分布及承載力,并與1階、2階及1.5階滑移模型相比,新滑移模型與線性化Boltzmann方程的結(jié)果趨于一致。
本文作者考慮氣體稀薄效應(yīng)中不同流量因子及軸承半徑間隙的影響,采用有限元法求解氣體薄膜潤滑動(dòng)態(tài)Reynolds方程,研究了超?。?0 nm-12 μm)氣膜動(dòng)態(tài)剛度和動(dòng)態(tài)阻尼系數(shù)隨不同修正模型和軸承結(jié)構(gòu)參數(shù)的變化規(guī)律。
3.1 擾動(dòng)頻率對(duì)動(dòng)態(tài)性能的影響
圖3和4分別給出了360°圓軸承(ε=0.5,L/D=0.8,Λ=3)在軸承半徑間隙Cb=100 nm時(shí),各模型的動(dòng)態(tài)剛度和動(dòng)態(tài)阻尼系數(shù)隨軸頸擾動(dòng)頻率的變化曲線??梢钥闯?,軸頸擾動(dòng)頻率對(duì)動(dòng)壓氣體軸承的動(dòng)態(tài)剛度和動(dòng)態(tài)阻尼系數(shù)具有重要影響。隨著擾動(dòng)頻率的增大,不考慮氣體稀薄效應(yīng)時(shí)動(dòng)態(tài)剛度的直接項(xiàng)Kxx和Kyy均增大,動(dòng)態(tài)阻尼系數(shù)的直接項(xiàng)Dxx和Dyy則減小,考慮氣體稀薄效應(yīng)的影響,各修正模型剛度系數(shù)的直接項(xiàng)遠(yuǎn)小于不考慮氣體稀薄效應(yīng)的值,且Kxx和Kyy隨無量綱軸頸擾動(dòng)頻率的增大接近線性增大,而無量綱動(dòng)態(tài)剛度系數(shù)的交叉項(xiàng)隨擾動(dòng)頻率的增加趨于定值;各修正模型動(dòng)態(tài)阻尼系數(shù)的交叉項(xiàng)幾乎不受軸頸擾動(dòng)頻率的影響,當(dāng)無量綱軸頸擾動(dòng)頻率大于2.5時(shí),其動(dòng)態(tài)阻尼系數(shù)的交叉項(xiàng)接近于零。Boltzmann模型與Fukui模型的動(dòng)態(tài)系數(shù)近乎重合,1階滑移模型的計(jì)算結(jié)果較大,2階滑移模型的計(jì)算結(jié)果偏小。
3.2 軸承半徑間隙和偏心率對(duì)動(dòng)態(tài)性能的影響 ?圖5和6分別反映了軸承數(shù)Λ=3,長徑比L/D=0.5,無量綱軸頸擾動(dòng)頻率Ω=2時(shí)Boltzmann修正模型在不同半徑間隙下軸承動(dòng)態(tài)剛度和阻尼系數(shù)隨偏心率ε的變化情況。從圖中曲線可知,動(dòng)態(tài)剛度系數(shù)隨偏心率的增加均呈加速上升的趨勢,隨半徑間隙減小,無量綱剛度系數(shù)幅值顯著下降。動(dòng)態(tài)阻尼系數(shù)Dxx,Dxy和Dyy隨ε增加略有減小,當(dāng)半徑間隙降低到納米尺度時(shí),無量綱阻尼系數(shù)的直接項(xiàng)Dxx和Dxy及其交叉項(xiàng)Dxy隨偏心率的增加而增加,動(dòng)態(tài)阻尼系數(shù)Dyx幾乎不受偏心率的影響。值得注意的是,當(dāng)ε>0.4時(shí),剛度系數(shù)的直接項(xiàng)Kyy和交叉項(xiàng)Kxy,Kyx隨偏心率增大上升幅度較大。當(dāng)半徑間隙在氣體分子平均自由程以下,軸承的動(dòng)態(tài)系數(shù)隨偏心率的增加變化不明顯。
3.3 軸承半徑間隙和長徑比對(duì)動(dòng)態(tài)性能的影響
圖7和8分別表示偏心率ε=0.5,軸承數(shù)Λ=3,擾動(dòng)頻率Ω=2時(shí)不同長徑比L/D對(duì)軸承正交動(dòng)態(tài)剛度和阻尼系數(shù)的影響??梢钥吹剑紤]氣體稀薄效應(yīng)對(duì)軸承動(dòng)態(tài)系數(shù)的影響前后,各模型無量綱動(dòng)態(tài)剛度系數(shù)的直接項(xiàng)均隨長徑比增大而增大,且隨軸承半徑間隙減小,氣體稀薄效應(yīng)增強(qiáng),Kxx和Kyy顯著降低,當(dāng)徑向間隙小于100 nm(接近或低于平均分子自由程λ0=65 nm)時(shí),各修正模型的Kxx和Kyy隨長徑比的增大趨近于線性增大;隨長徑比增加,無量綱動(dòng)態(tài)阻尼系數(shù)Dxx和Dyy在半徑間隙Cb=12 μm和2 μm時(shí)均逐漸減小,當(dāng)軸承半徑間隙降低到納米尺度,各修正模型的Dxx和Dyy隨長徑比增加則呈現(xiàn)出減速增長趨勢,氣體稀薄效應(yīng)提高了軸承動(dòng)態(tài)阻尼系數(shù)的直接項(xiàng)。此時(shí)Boltzmann模型與Fukui模型的動(dòng)態(tài)系數(shù)曲線也趨于一致,且介于1,2階滑移模型之間。
4 結(jié) 論
(1)隨半徑間隙的減小,氣體稀薄效應(yīng)對(duì)動(dòng)壓氣體徑向軸承的動(dòng)態(tài)特性有很大影響,動(dòng)態(tài)剛度系數(shù)均有減小的趨勢,動(dòng)態(tài)阻尼系數(shù)有所增加。
(2)隨軸頸擾動(dòng)頻率的增大,考慮氣體稀薄效應(yīng)后動(dòng)態(tài)剛度系數(shù)的直接項(xiàng)比不考慮氣體稀薄效應(yīng)時(shí)有所降低,而動(dòng)態(tài)阻尼系數(shù)的直接項(xiàng)略有增加,當(dāng)擾動(dòng)頻率大于1.5時(shí),動(dòng)態(tài)阻尼系數(shù)的交叉項(xiàng)隨擾動(dòng)頻率的增加沒有明顯變化。當(dāng)徑向間隙接近或低于平均分子自由程時(shí),偏心率對(duì)軸承動(dòng)態(tài)剛度系數(shù)影響甚小,動(dòng)態(tài)剛度和阻尼系數(shù)隨長徑比的增加均接近線性增大。
(3)隨半徑間隙減小,氣體稀薄程度增加,表征氣體稀薄效應(yīng)的滑移邊界條件不同,即氣體分子與固體壁面碰撞的動(dòng)量傳遞率也不同,各修正模型動(dòng)態(tài)系數(shù)會(huì)產(chǎn)生較大偏差,結(jié)果表明Boltzmann模型與Fukui模型的計(jì)算結(jié)果趨于重合且介于1,2階滑移模型之間。
參考文獻(xiàn):
[1] 樊 菁,沈 青. 微尺度氣體流動(dòng)[J]. 力學(xué)進(jìn)展,2002(03):321-336.
FAN Jing, SHEN Qing. Micro-scale gas flow[J]. Advances in Mechanics, 2002(03):321-336.
[2] 虞 烈,戚社苗,耿海鵬. 可壓縮氣體潤滑與彈性箔片氣體軸承技術(shù)[M]. 北京:科學(xué)出版社, 2011: 50-51.
[3] Burgdorfer A. The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings[J].Journal of Basic Engineering,1959,81(1): 94-100.
[4] Hsia Y T, Domoto G A. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances[J]. Journal of Lubrication Technology,1983,105(1):120-130.
[5] Fukui S, Kaneko R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation (1st Report, Derivation of Generalized Lubrication Equation)[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1987,53(487):829-838.
[6] Fukui S, Kaneko R. A database for interpolation of Poiseuille fow rates for high Knudsen number lubrication problems[J]. Journal of Tribology,1990,112(1):78-83.
[7] Mitsuya Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient[J]. Journal of Tribology,1993,115:289-294.
[8] Chi-Chuan Hwang, Rong-Fong Fung, Rong-Fu Yang, et al. A new modified Reynolds equation for ultra-thin film gas lubrication[J]. IEEE Transaction on Magnetics,1996,32(2):344-347.
[9] Xiang-Jin Rao, Kuo-Ming Chang, Wang-Long Li. Characteristics of micro-gas journal bearings based on kinetic theory[J]. Tribology International, 2011(44):241-247.
[10] Haijun Zhang, Changsheng Zhu, Qin Yang. Characteristics of micro gas journal bearings based on effective viscosity[J]. Journal of Tribology, 2009,131(4):041707-1-041707-5.
[11] 張海軍,祝長生,楊 琴. 基于稀薄效應(yīng)的微氣體徑向軸承穩(wěn)態(tài)性能[J]. 力學(xué)學(xué)報(bào),2009,6:941-946.
ZHANG Hai-jun, ZHU Chang-sheng, YANG Qin. Steady characteristics of micro gas journal bearings based on rarefaction effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009,6:941-946.
[12] Wenming Zhang, Guang Meng, Zhike Peng, et al. Coupled nonlinear effects of random surface roughness and rarefaction on slip flow in ultra-thin film gas bearing lubrication[J]. Journal of Tribology, 2012,(134):024502-1-024502-8.
[13] Wenming Zhang, Guang Meng, Kexiang Wei. Numerical prediction of surface roughness effect on slip flow in gas-lubricated journal microbearings[J]. Tribology Transactions, 2012,(55):71-76.
[14] Sheng Shen, Gang Chen, Robert M Crone, et al. A kinetic-theory based first order slip boundary condition for gas flow[J]. Physics of Fluids, 2007,19(8):086101-1-086101-6.
[15] 賈晨輝,楊 偉,邱 明.氣體動(dòng)壓軸承轉(zhuǎn)子系統(tǒng)動(dòng)態(tài)穩(wěn)定性數(shù)值仿真[J].系統(tǒng)仿真學(xué)報(bào),2014,26(08):1763-1768.
JIA Chen-hui, YANG Wei, QIU Ming. Numerical simulated of dynamic stability of aerodynamic bearing rotor system[J]. Journal of System Simulation, 2014,26(08):1763-1768.
[16] Yuhong Sun, Weng Kong Chan, Ningyu Liu. A slip model with molecular dynamics[J]. Journal of Micromechanics and Microengineering, 2002,12(3):316-322.
[17] Duwensee M. Numerical and experimental investigation of the head disk interface[D]. San Diego, CA, USA:University of California, 2007.
[18] 楊利花.可傾瓦與彈性箔片動(dòng)壓氣體軸承的性能研究[D].西安:西安交通大學(xué),2009.
YANG Li-hua. Study on the performance of aerodynamic tilting-pad and compliant foil bearings[D]. Xi′an: Xi′an Jiaotong University,2009.
[19] 戚社苗,耿海鵬,虞 烈.動(dòng)壓氣體軸承的動(dòng)態(tài)剛度和動(dòng)態(tài)阻尼系數(shù)[J].機(jī)械工程學(xué)報(bào),2007,(05):91-98.
QI She-miao, GENG Hai-peng, YU Lie. Dynamic stiffness and dynamic damping coefficients of aerodynamic bearings[J]. Chinese Journal of Mechanical Engineering,2007,(05):91-98.
Abstract: In micro-nano-scale, the gas-film thickness of aerodynamic gas-lubricated bearings is close to the mean free-path of gaseous molecules. The gas rarefied effect is a key influence factor to the dynamic performance of self-acting gas bearings. In this paper, the dynamic gas film pressure and film thickness are expressed as the complex form with periodic disturbance of the journal. The dynamic Reynolds equation for the ultra-thin film lubrication is solved in virtue of the toolbox of partial derivative equation (PDE) of MATLAB. Then the dynamic stiffness and dynamic damping coefficients of hydrodynamic gas bearings can be obtained. The effects of different radius clearance, the modified models of gas rarefied effect and different bearing parameters on the dynamic characteristic coefficients of gas bearings are analyzed. The results show that the dynamic stiffness coefficient of aerodynamic journal bearings is significantly reduced and the dynamic damping coefficient is increased as the increase of gas rarefied effect and decrease of radius clearance. Moreover, the parameter of the aerodynamic pressured bearing has a little influence on the dynamic characteristics when the radium of clearances is reduced to nanometer scale.
Key words: aerodynamic bearing; ultra-thin gas film lubrication; dynamic Reynolds equation; radius clearance; dynamic characteristics
作者簡介: 吳 垚(1989-),男,博士研究生。電話: 15129023411; E-mail: 1696199213@qq.com