王家全 徐良杰 李洋溢
摘要: 為研究加筋土擋墻在動(dòng)荷載作用下的動(dòng)力響應(yīng)規(guī)律,利用自行設(shè)計(jì)的試驗(yàn)箱開展土工格柵加筋土擋墻大比例模型循環(huán)動(dòng)載試驗(yàn),分析加筋土擋墻在不同頻率的循環(huán)動(dòng)載作用下?lián)鯄ψ冃?、?dòng)土壓力以及動(dòng)力加速度等參數(shù)變化規(guī)律,揭示動(dòng)載頻率對(duì)加筋土擋墻動(dòng)力特性的內(nèi)在影響機(jī)理。試驗(yàn)結(jié)果表明:加筋土擋墻累計(jì)(水平及豎向)變形隨動(dòng)載水平及頻率增加基本呈臺(tái)階式線性增長,累計(jì)水平位移沿墻高呈上大下小趨勢,累計(jì)沉降受動(dòng)載水平的影響遠(yuǎn)大于動(dòng)載頻率;加速度峰值受動(dòng)載頻率、動(dòng)載水平影響均較為顯著,隨動(dòng)載頻率增大而明顯增大,隨動(dòng)載水平增大而減小;隨著頻率的增大,加大了動(dòng)載振動(dòng)能量,加速度有較為明顯的增幅但對(duì)土壓力和加筋土擋墻變形的影響微小;而隨著動(dòng)載水平的逐級(jí)增加,加筋土復(fù)合體不斷振動(dòng)壓實(shí)使復(fù)合體的整體結(jié)構(gòu)剛度不斷變大,加筋土復(fù)合體的阻尼作用及由能量擴(kuò)散引起的衰減最終導(dǎo)致加速度動(dòng)響應(yīng)逐漸變小。
關(guān)鍵詞: 土力學(xué); 土工格柵; 動(dòng)力特性; 加筋土擋墻; 加速度
中圖分類號(hào): TU411.8; TU443 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1004-4523(2019)05-0898-10
DOI:10.16385/j.cnki.issn.1004-4523.2019.05.018
引 言
近年來隨著基礎(chǔ)設(shè)施的大量興建,加筋土擋墻依靠其良好受力特性及節(jié)省占地面積等優(yōu)點(diǎn),被廣泛應(yīng)用于實(shí)際工程中。公路及鐵路路基的加筋土擋墻結(jié)構(gòu)承受墻后填土及車輛等靜動(dòng)力載荷的綜合作用,所引起的加筋土結(jié)構(gòu)動(dòng)態(tài)響應(yīng)對(duì)線路運(yùn)營狀況及路基穩(wěn)定具有重要影響,加筋土結(jié)構(gòu)的動(dòng)力特性成為國內(nèi)外學(xué)者們的研究熱點(diǎn)之一[1-4]。Zarnani等[5]基于FLAC數(shù)值模擬建立縮尺模型(長2.4 m×寬1.4 m×高1.0 m)加筋土擋墻振動(dòng)臺(tái)試驗(yàn),研究了加筋土擋墻抗震性能及動(dòng)力特性。蔡曉光等[6]以汶川實(shí)際工程為研究對(duì)象,通過相似比為1∶10的大型振動(dòng)臺(tái)模型試驗(yàn)對(duì)雙級(jí)加筋土擋墻地震荷載作用下的動(dòng)力特性進(jìn)行研究,得出加速度沿墻高的放大倍數(shù)為1.0-1.93。Tatsuoka等[7]、Liu等[8]根據(jù)現(xiàn)場試驗(yàn)及有限元程序,分析了地震荷載作用下單/多級(jí)加筋土擋墻動(dòng)態(tài)響應(yīng)規(guī)律,并指出擋墻共振頻率隨加筋層數(shù)的增加而增大。Guler等[9]通過進(jìn)行室內(nèi)模型試驗(yàn),對(duì)比分析了2種模型在地震荷載下加筋土擋墻內(nèi)加速度和筋材應(yīng)變演化規(guī)律及面板變形力學(xué)特性。以上大部分學(xué)者較多專注于地震荷載下?lián)鯄ψ冃翁匦缘南嚓P(guān)研究,而就頻率對(duì)擋墻動(dòng)力特性影響機(jī)理的分析尚不多見。
除此之外,關(guān)于加筋土擋墻現(xiàn)場試驗(yàn),已有較多學(xué)者對(duì)其做了相關(guān)研究。吳連海等[10]通過不同墻面形式擋墻現(xiàn)場試驗(yàn)研究發(fā)現(xiàn),在墻頂部不到1/3墻高范圍內(nèi),垂直動(dòng)土壓力衰減86%而豎向加速度衰減87%-91%且隨加載次數(shù)增長增量微小。此外張發(fā)春[11]、林宇亮等[12]皆基于加筋土擋墻實(shí)際工程,分別對(duì)格柵/格賓加筋土擋墻墻底壓力、筋材變形及破裂面和擋墻累計(jì)變形展開研究,前者指出墻底土壓力實(shí)測值大于γ·H值,后者認(rèn)為擋墻動(dòng)變形特性受振動(dòng)次數(shù)、動(dòng)載幅值以及格賓籠填充率的影響較明顯而受振動(dòng)頻率影響不顯著。而在室內(nèi)模型試驗(yàn)方面,楊果林等[13-14]基于室內(nèi)模型試驗(yàn),深入分析多類型加筋土擋墻在交通載荷作用下的加速度及動(dòng)土壓力、累計(jì)變形等動(dòng)態(tài)響應(yīng)特性,并指出荷載大小和頻率是加筋土擋墻變形與破壞的重要因素。陳建峰等[15]基于加筋土擋墻離心模型試驗(yàn),建立剛/柔性組合墻面加筋土擋墻FLAC3D有限差分?jǐn)?shù)值模型,分析了上覆荷載下該型擋墻的受力機(jī)制與變形性狀。王賀等[16]根據(jù)格柵加筋土擋墻室內(nèi)模型動(dòng)力加載試驗(yàn)研究結(jié)果,指出擋墻內(nèi)豎向加速度受加載頻率f影響較為顯著,且在f=8 Hz后加速度增幅較大。其他學(xué)者,如肖成志等[17-18]針對(duì)受靜載及循環(huán)荷載作用的基礎(chǔ)下?lián)鯄λ憩F(xiàn)出承載與變形特點(diǎn)進(jìn)行了對(duì)比分析,初步探討了頂部基礎(chǔ)位置、筋材長度、荷載大小和頻率等對(duì)擋墻力學(xué)與變形性能的影響。然而,交通動(dòng)載下加筋土結(jié)構(gòu)受力復(fù)雜且影響因素眾多,上述現(xiàn)場試驗(yàn)或室內(nèi)模型試驗(yàn)和數(shù)值模擬雖已觸及動(dòng)載下加筋土擋墻動(dòng)響應(yīng)影響因素的分析,但動(dòng)載下加筋土擋墻承載性能的研究尚處于起步階段,動(dòng)載下加筋土擋墻動(dòng)力特性影響機(jī)理遠(yuǎn)未研究清楚。
本文利用自行設(shè)計(jì)的大模型箱(長3 m×寬1.6 m×高2 m),采用MTS電液伺服加載系統(tǒng)施加不同頻率動(dòng)荷載,開展模塊面板式加筋土擋墻大模型動(dòng)力加載試驗(yàn),分析動(dòng)荷載頻率變化對(duì)加筋土擋墻動(dòng)土壓力分布、變形特性及加速度響應(yīng)的影響規(guī)律,揭示動(dòng)載頻率對(duì)加筋土擋墻動(dòng)力特性的影響機(jī)理。
1 試驗(yàn)方案
1.1 填料與筋材特性 ?本次試驗(yàn)加筋土擋墻采用柳州市干凈河砂填筑,通過室內(nèi)常規(guī)土工試驗(yàn),測得砂土的基本性能指標(biāo)如下:砂土容重為16.96 kN/m3,含水率為3.9%,內(nèi)摩擦角為34.8°;砂土的不均勻系數(shù)Cu=8.44,曲率系數(shù)Cc=1.15,土粒比重為2.65,為顆粒級(jí)配良好中砂填料,其粒徑累計(jì)曲線如圖1所示。土工格柵選用山東省肥城市某塑料有限公司生產(chǎn)的TGSG-30雙向土工格柵,其具體技術(shù)指標(biāo)如表1所示。
1.2 模型箱、擋墻尺寸及儀器布置
對(duì)于室內(nèi)模型試驗(yàn)而言,應(yīng)盡可能減小尺寸效應(yīng),模擬真實(shí)邊界條件。本次加筋土擋墻試驗(yàn)采用大模型箱,其尺寸為3.00 m×1.60 m ×2.00 m(長×寬×高),加筋土擋墻模型尺寸為3.00 m×1.60 m×1.85 m,主體結(jié)構(gòu)框架是由槽鋼焊接而成,且在縱橫向均焊有等厚度槽鋼,形成牢固的鋼骨架,以防止加載過程中箱體側(cè)壁發(fā)生變形。其中:模型箱頂面用于施加豎向動(dòng)荷載;在墻高為1.85 m、墻后填土寬度為1.60 m的前端面采用砌塊作為加筋土擋墻的面板,對(duì)應(yīng)另一側(cè)面采用鋼板密封;長×寬為3.00 m×2.00 m的側(cè)面采用鋼化玻璃作為觀測面,通過玻璃側(cè)面可以觀察頂部荷載作用下加筋土擋墻的變形與破壞情況,與之對(duì)應(yīng)一側(cè)采用6 mm厚鋼板與模型箱框架焊接,如圖2所示。
在填筑期間,為了保證土工格柵與面板連接牢固,采用返包式埋設(shè)土工格柵,即在擋墻底層進(jìn)行土工格柵布筋,把延伸出面板外的格柵進(jìn)行返包壓在第二層面板下方,據(jù)此方法依次由預(yù)制的砌塊面板砌筑成面墻,其單個(gè)擋墻面板尺寸為0.40 m×0.25 m×0.15 m(長×寬×高)。另外,墻內(nèi)鋪設(shè)有6層筋材,豎向間距為0.3 m(即兩塊面板砌塊高度),筋材鋪設(shè)長度為2.9 m。為了更好地模擬交通荷載對(duì)加筋土結(jié)構(gòu)的影響,本次模型試驗(yàn)加筋土擋墻頂部加載板采用尺寸為0.60 m×0.20 m×0.03 m(長×寬×厚)的鋼板,其位于距擋墻面板內(nèi)側(cè)0.7 m處;而加筋土擋墻頂部沉降是由MTS電液伺服加載系統(tǒng)施加不同頻率動(dòng)載時(shí)進(jìn)行定時(shí)采集測取,測得數(shù)據(jù)則代表加載板沉降值,加筋土擋墻尺寸及試驗(yàn)元器件布置如圖3和圖4所示。
試驗(yàn)使用的測試元件包括位移傳感器、加速度計(jì)、土壓力盒,可分別量測試驗(yàn)過程中擋墻變形、加速度及土壓力等參數(shù)變化規(guī)律。測試元件參數(shù)指標(biāo)如表2所示。
1.3 填筑要求及加載方法
在模型箱內(nèi)采用分層填筑方式填筑等質(zhì)量砂土,利用電動(dòng)平板壓實(shí)機(jī)對(duì)整個(gè)模型內(nèi)填土區(qū)進(jìn)行找平壓實(shí)5遍,以砝碼(20 kg)為單位面積對(duì)填砂進(jìn)行壓實(shí)(每單位面積壓實(shí)6次)并找平,且保持每層填筑厚度為15 cm,保證試驗(yàn)各層填土壓實(shí)度一致,按此填筑方式逐層填砂直至擋墻預(yù)定高度。
? ? ?2 試驗(yàn)結(jié)果與分析
2.1 加筋土擋墻的水平向土壓力分布規(guī)律
? 圖5為動(dòng)載下水平土壓力峰值隨累計(jì)循環(huán)次數(shù)的變化情況。圖中每段臺(tái)階上各點(diǎn)分別對(duì)應(yīng)各荷載水平所加載的頻率值(f=2,4,6,8,10 Hz),同一荷載水平下,水平土壓力峰值隨加載次數(shù)的增加略有增大后漸趨平緩;而隨加載頻率的依次增加,對(duì)水平動(dòng)土壓力峰值的增量雖有貢獻(xiàn),但基本可以忽略。隨荷載水平及累計(jì)循環(huán)次數(shù)的不斷增加,距離面板三個(gè)位置(分別為S=30 cm,S=100 cm,S=170 cm)的水平土壓力都在荷載瞬時(shí)變換處(P2=30±10 kN & 36000次、P3=50±10 kN & 54000次、P4=70±10 kN & 72000次、P5=90±10 kN & 90000次)產(chǎn)生驟變,即呈現(xiàn)為臺(tái)階式非線性的發(fā)展態(tài)勢,荷載水平的影響顯著而循環(huán)次數(shù)的貢獻(xiàn)相對(duì)較小。
具體變化情況表現(xiàn)為:當(dāng)S=30 cm(靠近墻面位置)時(shí)水平動(dòng)土壓力從墻趾至墻頂不斷增長,墻體上部(H≥1.50 m)隨荷載水平的增長增幅較為明顯,而中下部(H≤0.90 m)增幅相對(duì)較小。當(dāng)S=100 cm(加載位置正下方)時(shí),水平土壓力在墻高H=1.50 m位置達(dá)峰值,并且峰值土壓力值(134.2 kPa)分別約是其他兩個(gè)位置(S=30 cm,S=170 cm)情況的4倍及18倍。當(dāng)距離墻面S=170 cm時(shí),水平土壓力在0.30 m高度處雖有增長,但增幅基本小于1 kPa;在0.90 m高度處始終處于臺(tái)階式的增長趨勢,同時(shí)在1.50 m高度處隨荷載的增加幅度增長較為顯著但增幅逐漸趨緩,且水平土壓力峰值略小于中部位置。此外,本文所述各層高(H=0.30,0.90,1.50 m)位置水平動(dòng)土壓力峰值基本出現(xiàn)在筋材中部區(qū)域(S=100 cm)附近。究其緣由:①因模塊式面板的整體剛度較小,在外加荷載及側(cè)向土壓力的作用下墻面會(huì)產(chǎn)生一定的變形并釋放了部分應(yīng)力,從而導(dǎo)致靠近面墻的水平土壓力不同程度減小;②由于筋土間黏滯摩擦作用而伴隨有一定能量損耗,導(dǎo)致傳向面板方向或筋材末端的水平土壓力皆呈衰減態(tài),最終使得加筋區(qū)的水平土壓力沿筋長方向上表現(xiàn)為“中間大兩端小”的分布形態(tài)。
此外結(jié)合上述分析可知,沿墻高方向,水平土壓力從墻頂部到底部呈衰減趨勢,衰減速率逐漸增大。分析原因,主要是由于動(dòng)荷載作用于加筋復(fù)合體引起的側(cè)限作用和“網(wǎng)兜效應(yīng)”使得水平土壓力在復(fù)合土體中逐層擴(kuò)散和衰減。相比非加筋體而言,土體中鋪設(shè)筋材對(duì)土的水平限制及豎向承托作用使其結(jié)構(gòu)性增強(qiáng),參與承載的土體范圍擴(kuò)大,并快速形成穩(wěn)定結(jié)構(gòu),這就較大地弱化了剪切作用效果,顯著提高了對(duì)動(dòng)應(yīng)力的均化作用,使動(dòng)應(yīng)力傳播行程變短,在墻高H≤1.5 m范圍內(nèi),水平動(dòng)土壓力衰減程度約92%,衰減較為迅速。
2.2 擋墻變形特性及動(dòng)載頻率影響分析
2.2.1 擋墻面板累計(jì)水平位移規(guī)律及動(dòng)載頻率影響
本次模型試驗(yàn)由擋墻底至墻頂依次分層Hi(H為墻高,i=1,2,3,…,10)量測了擋墻面板的水平累計(jì)位移,其中擋墻底部H=0.225,0.525 m兩處測點(diǎn)位移傳感器壞掉,數(shù)據(jù)無效,故本文對(duì)此2測點(diǎn)不作分析。圖6為動(dòng)載作用下?lián)鯄γ姘謇塾?jì)水平位移沿墻高方向的發(fā)展曲線。分析可知,動(dòng)載下?lián)鯄Φ乃阶冃沃饕性趽鯄Ω逪5-H10(即約0.53H-0.93H)區(qū)段,墻面累計(jì)變形量隨著動(dòng)載水平及頻率增加而增大,其中振動(dòng)頻率的影響十分有限。在加載初期(即荷載水平<30±10 kN),擋墻水平累計(jì)變形近乎表現(xiàn)為線性發(fā)展趨勢,沿墻高方向累計(jì)變形量較?。╠max=0.15 mm)。隨著動(dòng)載水平及循環(huán)次數(shù)不斷增加直至擋墻破壞停止加載(本次試驗(yàn)加載至90±10 kN & 90000次止),發(fā)現(xiàn)整個(gè)加載過程中擋墻面板累計(jì)水平變形顯現(xiàn)兩次增幅顯著的階段:第一次是加載至P2=30±10 kN(即累計(jì)循環(huán)次數(shù)N=36000次)時(shí),增長幅度為80%;第二次是加載至P4=70±10 kN(即累計(jì)循環(huán)次數(shù)N=72000次)時(shí),增長幅度為42%。分析緣由主要是因荷載突然變換,增加的沖擊力瞬時(shí)施加到原本穩(wěn)定的結(jié)構(gòu),破壞了土體原來的平衡條件,由此改變了土體應(yīng)力場和位移場,而靠近墻面處土體壓實(shí)度相對(duì)較低,迫使靠近墻面處砂粒重新排列,墻面位移突然增大。
定義累計(jì)變形率δi(i=1,2,3,…,9,10)為累計(jì)變形值與加筋土擋墻墻高(H=1850 mm)的比值,表3為加筋土擋墻在振動(dòng)荷載作用下累計(jì)側(cè)向變形率的統(tǒng)計(jì)值。由表3可見,擋墻底層墻面板(H1-H4)的變形沿墻高隨加載頻率及荷載水平逐級(jí)增長變化微小,在H5-H10區(qū)域墻面板累計(jì)側(cè)移隨加載頻率f的增大而增加且增幅趨穩(wěn)。同時(shí)由于填料的阻尼作用,使得外加動(dòng)載不斷向加筋土復(fù)合體中、下部及四周擴(kuò)散和衰減,從而致使墻面累計(jì)水平變形沿墻高基本呈上大下小態(tài)勢。此外,由分析可得墻面最大水平位移為1.57 mm,約為墻高的0.85‰,主要是由于筋土界面的摩擦與嵌固耦合限制及側(cè)限約束作用,使得加筋土擋墻在振動(dòng)荷載作用下累計(jì)側(cè)向變形率隨加載頻率逐級(jí)增大而改變較小(不足1‰)。結(jié)合上述分析可見,動(dòng)載水平是影響面板累計(jì)水平變形變化的主要因素,加載頻率的影響力有限但依然不可忽略。
2.2.2 擋墻頂部累計(jì)豎向沉降規(guī)律及動(dòng)載頻率影響
圖7為動(dòng)載下?lián)鯄敳考虞d板沉降隨動(dòng)荷載水平變化的發(fā)展曲線圖。就整體而言,隨上覆荷載及循環(huán)次數(shù)的不斷增加,加筋土擋墻頂部加載板累計(jì)豎向沉降基本上呈臺(tái)階式發(fā)展,其中沉降曲線臺(tái)階突變處均為各級(jí)動(dòng)載臨界變換處(即P2=30±10 kN & 36000次、P3=50±10 kN & 54000次、P4=70±10 kN & 72000次、P5=90±10 kN & 90000次)。沉降曲線出現(xiàn)多個(gè)臺(tái)階的主要原因是下一級(jí)動(dòng)載的瞬時(shí)施加,改變了加筋土擋墻在上一級(jí)動(dòng)載作用下形成的穩(wěn)定狀態(tài),土體受到更大的瞬時(shí)動(dòng)荷載作用而進(jìn)一步壓密。
表4為加筋土擋墻在振動(dòng)荷載作用下累計(jì)豎向變形率統(tǒng)計(jì)值??傮w上,在每一級(jí)動(dòng)載作用歷程中,墻頂沉降隨振動(dòng)頻率的增大呈增加趨勢,但增幅相對(duì)較小。結(jié)合表4和圖7分析,在動(dòng)載10±10 kN作用下,頻率從2 Hz增加至10 Hz,累計(jì)豎向變形從1.6‰增大至3.1‰,頻率增大僅使累計(jì)沉降增加了1.5‰,在下一級(jí)動(dòng)載30±10 kN作用初始,累計(jì)沉降增加2.7‰,遠(yuǎn)大于頻率增加產(chǎn)生的沉降,其他各級(jí)動(dòng)載也有類似的規(guī)律,這表明動(dòng)載頻率相比動(dòng)載水平對(duì)擋墻沉降的影響要小,增大動(dòng)載頻率雖然有助于進(jìn)一步壓密土體從而增大沉降變形,但沉降變形效果遠(yuǎn)不如增大動(dòng)載水平值。當(dāng)加載至90±10 kN時(shí),擋墻墻頂累計(jì)沉降增幅更加顯著(約為32.0%),其在頻率影響下的變化也更為明顯(增幅約為23.1%)。分析認(rèn)為, 在此階段荷載水平與加載頻率作用下,擋墻墻頂出現(xiàn)局部失穩(wěn),具體表現(xiàn)為瞬時(shí)變換至下一級(jí)荷載時(shí),加載板呈現(xiàn)出較為明顯的不均勻沉降,最終墻頂累積豎向沉降最大為43.5 mm,約為2.35%H。
2.3 水平向加速度分布規(guī)律與動(dòng)載頻率影響
圖8為加筋土擋墻在筋材層高H=1.50 m位置處加速度響應(yīng)隨動(dòng)荷載值變化的關(guān)系曲線。總體上,隨著加載頻率的依次增加,水平加速度峰值不斷增大,在加載板位置(S=100 cm)取得最大加速度值(f=10 Hz & P1=10±10 kN), 相比f=2 Hz & P1=10±10 kN時(shí),增幅約為94%,說明在加載初期動(dòng)載頻率對(duì)加速度影響較大;此外,加速度峰值從加載位置向筋材末端(S=170 cm)和墻面(S=30 cm)兩個(gè)方向減小。產(chǎn)生上述現(xiàn)象主要有以下原因:①加載初期,加筋復(fù)合體處于由疏松轉(zhuǎn)為擠密過程,從低到高(f=2-10 Hz)依次變換振動(dòng)頻率,使得加筋土擋墻動(dòng)響應(yīng)增幅較快;②擋墻在動(dòng)荷載激勵(lì)作用下墻面板向臨空一側(cè)產(chǎn)生水平位移,導(dǎo)致該處土體密實(shí)度低,很難形成更大剛度,而筋材末端區(qū)域經(jīng)不斷壓實(shí)擠密后更容易穩(wěn)定,從而形成“中間大兩端小”的現(xiàn)象;③由于振動(dòng)荷載傳遞到面板處后無法繼續(xù)向臨空面?zhèn)鬟f,振動(dòng)能量的耗散相對(duì)有限,而對(duì)于遠(yuǎn)離面板方向的筋材末端,能量傳遞過程中筋土的應(yīng)力擴(kuò)散作用和阻尼耗能作用,加速度擴(kuò)散效果要好于臨近面板位置。
圖9為不同頻率條件下水平加速度峰值隨動(dòng)荷載水平逐級(jí)增加在振源位置的變化情況。結(jié)合圖8分析可知,動(dòng)荷載水平及動(dòng)載頻率對(duì)加筋土擋墻的加速度動(dòng)響應(yīng)影響均較為明顯:①水平向加速度峰值隨動(dòng)載頻率的增加逐漸增大且前期(f由2 Hz增至6 Hz時(shí))增幅較緩,當(dāng)動(dòng)載頻率f由6 Hz變換至10 Hz時(shí),曲線P2至P5走向仍較為一致,但增長態(tài)勢較前期略明顯,而曲線P1增幅顯著(約為84.1%)并遠(yuǎn)大于其他4種曲線。②在相同動(dòng)載頻率的情況下,隨動(dòng)荷載水平逐級(jí)增長,水平向加速度值不增反減,且在動(dòng)荷載水平由10±10 kN增至30±10 kN時(shí)此現(xiàn)象最為顯著,而荷載由50±10 kN加至90±10 kN時(shí)加速度峰值變化大體上趨于平緩,說明水平向加速度在低動(dòng)載下變化顯著,而高動(dòng)載下變化不明顯,本文工況下其低與高動(dòng)載的臨界為30±10 kN。出現(xiàn)以上現(xiàn)象是由于隨動(dòng)載水平的逐級(jí)增加,加筋土復(fù)合體逐漸趨于密實(shí),使得加筋土復(fù)合體剛度變大,最終導(dǎo)致加速度動(dòng)響應(yīng)有變小趨勢。在實(shí)際加筋工程施工時(shí),應(yīng)保證加筋土復(fù)合體足夠的壓實(shí)度,有利于振動(dòng)荷載的傳遞,進(jìn)而可有效減弱加速度響應(yīng),控制不均勻沉降。
2.4 動(dòng)載頻率對(duì)加筋土擋墻動(dòng)載特性影響的內(nèi)在機(jī)理
?綜合以上分析,關(guān)于動(dòng)載頻率對(duì)加筋土擋墻動(dòng)力特性影響的內(nèi)在機(jī)理,現(xiàn)作以下2點(diǎn)闡述:
1)加筋土擋墻在反復(fù)振動(dòng)荷載作用下,隨振動(dòng)頻率逐漸增加,使得加筋土復(fù)合體逐漸由中密轉(zhuǎn)為密實(shí)穩(wěn)定,整體剛度增大,導(dǎo)致墻內(nèi)水平加速度峰值在加載初期(動(dòng)載值小)增幅較大,而加載后期(動(dòng)載值大)變化不明顯;同時(shí)振動(dòng)頻率的逐漸增大,伴隨振動(dòng)能量的不斷增加,但由于筋土界面黏滯摩擦作用而有一定的能量損耗,此時(shí)加載的振動(dòng)能量以波的形式向四周擴(kuò)散,表現(xiàn)為筋土復(fù)合體加速度動(dòng)響應(yīng)沿筋長方向向兩側(cè)衰減(中間大兩端?。?,且沿墻高方向(從上至下)不斷衰減,但土壓力和擋墻變形受動(dòng)載頻率變化的影響較為微小。
2)加載初期(低荷載水平),加筋土復(fù)合體處于由中密轉(zhuǎn)為振動(dòng)密實(shí)的過程,結(jié)構(gòu)剛度小,荷載傳遞擴(kuò)散較慢,表現(xiàn)為復(fù)合體動(dòng)響應(yīng)大,加速度峰值增幅明顯,而復(fù)合體豎向/側(cè)向變形較小。隨動(dòng)載水平的逐級(jí)增加(動(dòng)載頻率不變),加筋土復(fù)合體不斷振動(dòng)壓實(shí)擠密使擋墻的整體剛度不斷變大,同時(shí)伴隨能量的蓄增,但由于擋墻內(nèi)筋土界面摩擦與材料阻尼作用及由能量擴(kuò)散引起的衰減,最終導(dǎo)致加速度動(dòng)響應(yīng)逐漸變小,表現(xiàn)為加筋土復(fù)合體豎向及側(cè)向累計(jì)變形主要發(fā)生在擋墻墻體上部(上部大下部?。邑Q向累計(jì)變形遠(yuǎn)大于側(cè)向。在高荷載水平下,加筋土復(fù)合體變得更加密實(shí)(剛度更大),更有利于荷載的傳遞擴(kuò)散,表現(xiàn)為復(fù)合體動(dòng)響應(yīng)小,加速度峰值增幅較小,且復(fù)合體土壓力及變形皆在頂層達(dá)到峰值,最終加至90±10 kN&10 Hz時(shí)擋墻破壞。
3 結(jié) 論
(1)加筋土擋墻累計(jì)水平位移和頂部累計(jì)豎向沉降隨著動(dòng)載水平及頻率的增加基本上呈臺(tái)階式增長,其中累計(jì)水平位移沿墻高呈上大下小趨勢,累計(jì)沉降受動(dòng)載水平的影響遠(yuǎn)大于動(dòng)載頻率;
(2)加筋土擋墻的土壓力受動(dòng)載頻率變化影響較小,而動(dòng)載水平變換時(shí)土壓力出現(xiàn)臺(tái)階式驟增,加筋土擋墻的水平土壓力在筋材水平方向上呈“中間大兩端小”的分布形態(tài);動(dòng)載下加筋土復(fù)合體引起的側(cè)限作用和“網(wǎng)兜效應(yīng)”使得水平土壓力在復(fù)合土體中逐層擴(kuò)散和衰減,沿墻高方向的水平土壓力從墻頂部到底部呈衰減趨勢,衰減速率逐漸增大;
(3)加速度峰值受動(dòng)載頻率、動(dòng)載水平影響均較為顯著,隨動(dòng)載頻率增大而明顯增大,隨動(dòng)載水平增大而減小,且在低動(dòng)載階段(≤30±10 kN)加速度隨荷載增大而快速減小,隨著荷載的進(jìn)一步增大(≥30±10 kN),加速度衰減趨于平緩。
(4)隨著頻率的增大,加大了動(dòng)載振動(dòng)能量,對(duì)加速度有較為明顯的增幅作用,但對(duì)土壓力和加筋土擋墻變形的影響微小;而隨動(dòng)載水平逐級(jí)增加,加筋土復(fù)合體不斷振動(dòng)壓實(shí)使復(fù)合體的整體結(jié)構(gòu)剛度不斷變大,加筋土復(fù)合體的阻尼作用及由能量擴(kuò)散引起的衰減最終導(dǎo)致加速度動(dòng)響應(yīng)逐漸變小。
參考文獻(xiàn):
[1] 王家全,王宇帆,黃世斌,等.循環(huán)荷載作用下土工格柵剪切特性的顆粒流細(xì)觀分析[J].水利學(xué)報(bào),2014,45(09):1082-1090.
WANG Jiaquan, WANG Yufan, HUANG Shibin, et al. The particle flow mesoscopic analysis of geogrid shear properties under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2014,45(09):1082-1090.
[2] Won M S, Kim Y S. Internal deformation behavior of geosynthetic-reinforced soil walls[J]. Geotextiles and Geomembranes, 2007, 25(1): 10-22.
[3] Huang C C, Horng J C, Charng J J. Seismic stability of reinforced slopes: Effects of reinforcement properties and facing rigidity[J]. Geosynthetics International, 2008, 15(2): 107-118.
[4] Krishna A M, Latha G M. Container boundary effects in shaking table tests on reinforced soil wall models[J]. International Journal of Physical Modelling in Geotechnics, 2009, 9(4): 1-14.
[5] Zarnani S, El-Emam M M, Bathurst R J. Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests[J]. Geomechanics and Engineering, 2011, 3(4): 291-321.
[6] 蔡曉光, 李思漢, 黃 鑫. 雙級(jí)加筋土擋墻動(dòng)力特性振動(dòng)臺(tái)試驗(yàn)[J]. 中國公路學(xué)報(bào), 2018,31(2): 200-207.
CAI Xiaoguang, LI Sihan, HUANG Xin. Shaking table tests on dynamic characteristics of two-stage reinforced soil-retaining wall [J]. China Journal of Highway and Transport, 2018, 31(2): 200-207.
[7] Tatsuoka F, Tateyama M, Koseki J, et al. Geosynthetic-reinforced soil structures for railways in Japan[J]. Transportation Infrastructure Geotechnology, 2014, 1(1): 3-53.
[8] Liu H, Yang G, Ling H I. Seismic response of multi-tiered reinforced soil retaining walls[J]. Soil Dynamics and Earthquake Engineering, 2014, 61: 1-12.
[9] Guler E, Enunlu A K. Investigation of dynamic behavior of geosynthetic reinforced soil retaining structures under earthquake loads[J]. Bulletin of Earthquake Engineering, 2009, 7(3): 737-777.
[10] 吳連海, 楊廣慶, 張青波, 等. 高速鐵路加筋土擋墻動(dòng)響應(yīng)規(guī)律現(xiàn)場試驗(yàn)[J]. 西南交通大學(xué)學(xué)報(bào), 2017, 52(3): 546-553.
WU Lianhai, YANG Guangqing, ZHANG Qingbo, et al. In-situ test on dynamic responses of reinforced soil retaining walls for high-speed railways [J]. Journal of Southwest Jiaotong University, 2017, 52(3): 546-553.
[11] 張發(fā)春. 土工格柵加筋土高擋墻的現(xiàn)場試驗(yàn)研究[J]. 中國鐵道科學(xué), 2008, 29(4):1-7.
ZHANG Fachun. Field test research on geogrid reinforced earth high retaining wall[J]. China Railway Science, 2008, 29(4):1-7.
[12] 林宇亮, 楊果林, 李 昀,等. 加筋格賓擋墻在重復(fù)荷載作用下動(dòng)變形特性試驗(yàn)研究[J]. 巖石力學(xué)與工程學(xué)報(bào), 2009, 28(S2): 4027-4033.
LIN Yuliang, YANG Guolin, LI Yun, et al. Test study on dynamic deformation behavior of reinforced gabion retaining wall under cyclic load[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 4027-4033.
[13] 楊果林, 肖宏彬, 王永和. 加筋土擋墻動(dòng)變形特性試驗(yàn)與疲勞損傷分析[J]. 振動(dòng)工程學(xué)報(bào), 2002, 15(2): 173-177.
YANG Guolin, Xiao Hongbin, WANG Yonghe. Experiment dynamic behaviour and analysis of fatigue damnify of reinforced earth wall[J]. Journal of Vibration Engineering, 2002, 15(2): 173-177.
[14] 楊果林, 林宇亮, 李 昀, 等. 新型加筋土擋墻動(dòng)變形特性試驗(yàn)研究[J]. 振動(dòng)與沖擊, 2010, 29(1): 223-227.
YANG Guolin, LIN Yuliang, LI Yun, et al. Test study on dynamic deformation behavior of new reinforced earth retaining walls [J]. Journal of Vibration and Shock, 2010, 29 (1): 223-227.
[15] 陳建峰, 柳軍修, 石振明. 軟弱地基剛/柔性組合墻面加筋土擋墻數(shù)值模擬[J]. 巖石力學(xué)與工程學(xué)報(bào), 2016, 35(2):422-432.
CHEN Jianfeng, LIU Junxiu, SHI Zhenming. Numerical simulation of reinforced soil walls with flexible/rigid facings on yielding foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 422-432.
[16] 王 賀, 楊廣慶, 劉華北, 等. 模塊面板式土工格柵加筋土擋墻動(dòng)態(tài)特性試驗(yàn)研究[J]. 振動(dòng)與沖擊, 2016, 35(7): 1-9.
WANG He, YANG Guangqing, LIU Huabei, et al. Test for dynamic characteristics of a geogrid reinforced soil retaining wall with concrete-block panels[J]. Journal of Vibration and Shock, 2016, 35(7): 1-9.
[17] Xiao C, Han J, Zhang Z. Experimental study on performance of geosynthetic-reinforced soil model walls on rigid foundations subjected to static footing loading[J]. Geotextiles and Geomembranes, 2016, 44(1): 81-94.
[18] 肖成志, 王嘉勇, 周 霞. 受靜載和循環(huán)荷載作用的基礎(chǔ)下加筋擋墻工作性能分析[J]. 巖石力學(xué)與工程學(xué)報(bào), 2017, 36(6): 1542-1550.
Xiao Chengzhi, Wang Jiayong, Zhou Xia. Performance study of geogrid-reinforced soil retaining walls subjected to static and cyclic footing loading [J]. Journal of Rock Mechanics and Engineering, 2017, 36 (6): 1542-1550.
Abstract: In order to study the dynamic response of reinforced soil retaining walls under dynamic load, the large scale model test of geogrid reinforced soil retaining walls is carried out under cyclic dynamic load by the self-designed experiment box. The variation rules of the parameters such as the retaining wall deformation, dynamic earth pressure and dynamic acceleration of the reinforced soil retaining wall under cyclic dynamic load of different frequencies are analyzed. The inner influence mechanism of the dynamic load frequency on the dynamic characteristics is revealed. The experimental results show that reinforced soil retaining wall cumulative (horizontal and vertical) deformation at the top increase basically linearly with the increase of the dynamic load level and frequency. The cumulative horizontal displacement shows the trend that the upper larger and the lower smaller along the high direction of the wall, and the influence of the dynamic load level on the cumulative settlement is far greater than that of the dynamic load frequency. Acceleration peaks are significantly increased with the increase of the dynamic load frequency, and decreased with the increase of the dynamic load level. With the increase of frequency, the vibration energy of the dynamic load is increased, and the acceleration has a more obvious increase. But the dynamic load frequency has little effect on the earth pressure and the deformation of the reinforced soil retaining wall. With the increase of the dynamic load, the reinforced soil structure is continuously vibrated and compacted to increase the overall structural rigidity of the reinforced soil structure. The damping effect of the reinforced soil structure and the attenuation caused by energy diffusion eventually result in the decrease of acceleration response.
Key words: soil mechanics; geogrid; dynamic characteristics; reinforced soil retaining wall; acceleration
作者簡介: 王家全(1981-),男,博士,教授。電話: (0772)2686631; E-mail: wjquan1999@163.com