• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Retinal Vessel Extraction Framework Using Modified Adaboost Extreme Learning Machine

    2019-11-25 10:22:00SanthoshKrishnaandTGnanasekaran
    Computers Materials&Continua 2019年9期

    B.V.SanthoshKrishnaandT.Gnanasekaran

    Abstract:An explicit extraction of the retinal vessel is a standout amongst the most significant errands in the field of medical imaging to analyze both the ophthalmological infections,for example,Glaucoma,Diabetic Retinopathy (DR),Retinopathy of Prematurity (ROP),Age-Related Macular Degeneration (AMD) as well as non retinal sickness such as stroke,hypertension and cardiovascular diseases.The state of the retinal vasculature is a significant indicative element in the field of ophthalmology.Retinal vessel extraction in fundus imaging is a difficult task because of varying size vessels,moderately low distinction,and presence of pathologies such as hemorrhages,microaneurysms etc.Manual vessel extraction is a challenging task due to the complicated nature of the retinal vessel structure,which also needs strong skill set and training.In this paper,a supervised technique for blood vessel extraction in retinal images using Modified Adaboost Extreme Learning Machine (MAD-ELM) is proposed.Firstly,the fundus image preprocessing is done for contrast enhancement and inhomogeneity correction.Then,a set of core features is extracted,and the best features are selected using “minimal Redundancy-maximum Relevance (mRmR).” Later,using MAD-ELM method vessels and non vessels are classified.DRIVE and DR-HAGIS datasets are used for the evaluation of the proposed method.The algorithm’s performance is assessed based on accuracy,sensitivity and specificity.The proposed technique attains accuracy of 0.9619 on the DRIVE database and 0.9519 on DR-HAGIS database,which contains pathological images.Our results show that,in addition to healthy retinal images,the proposed method performs well in extracting blood vessels from pathological images and is therefore comparable with state of the art methods.

    Keywords:Extreme learning machine,ophthalmology,segmentation,adaboost,feature extraction,supervised,contrast enhancement.

    1 Introduction

    Typically,retinal vessels are an exclusive part of an individual’s blood circulation system that can be seen instantly without invasion [Resnik of f,Pascolini and Etyaale (2004)].The retinal vasculature examination can diagnose numerous primary pathologies,such as diabetes,hypertension,AMD,and cardiovascular disease.Furthermore,the characteristics of the retinal vessel,such as width,tortuosity,branching pattern,and angles,play a significant role in earlier disease identification.Also,multiple obsessive retinal vessel abnormalities are instant impressions of eye diseases.For example,consider diabetic retinopathy disease,India is set to evolve as the World’s diabetic capital.According to World Health Organization (WHO),in the year 2000,31.7 million people in India were affected by diabetes mellitus (DM).This number is expected to increase to 79.4 million by 2030,the most significant figure in the world in any Nation.About two-thirds of all type-2 diabetes and almost all type-1 diabetes are forced to develop diabetic retinopathy over a period [Gadkari,Maskati and Nayak (2016)].Automatic extraction of retinal vessels with high accuracy and reliability is highly essential to spare medical resources and decrease physicians’ workload [Winder,Morrow,Mcritchie et al.(2009)].2D color fundus image and 3D optical coherence tomography (OCT) images are widely accepted for clinical markers of retinopathy and are usually used for ophthalmic observations.In most clinical analyzes and larger-scale screening,fundus images are used more frequently due to computational simplicity and low-cost attributes.Furthermore,lesions can be evidently noticed in fundus images [Abram of f,Garvin and Sonka (2010)].Color fundus healthy and pathological image with lesions is shown in Fig.1.This article,therefore,focuses on automated segmentation of retinal vessels in 2D fundus image based on feature selection and modified extreme learning machine with Adaboost classifier.

    Figure1:Fundus image a.Healthy,b.Glaucoma,c.Diabetic Retinopathy

    2 Prior works

    During the past decade,the problem of computerized retinal vessel segmentation has brought an enormous amount of interest.Researchers have proposed many algorithms[Fraz,Remagnino,Hoppe et al.(2012)].Comprehensively retinal vasculature segmentation methods might be categorized into two,supervised and unsupervised.In the case of unsupervised methods,the structural attributes of vessels are manually hardcoded,and also learning is bound or sometimes absent.Regarding supervised methods,algorithms are generally trained by learning from patches of images annotated by gold standard images.Some of the predominant categories in unsupervised approaches are matched filtering,morphological transformations,and vessel tracking.In Hoover et al.[Hoover,Kouznetsova and Goldbaum (2000)],a matched filter-based method is projected in which a matched filter is applied by convolving a retinal fundus image with twelve kernels.A 2D linear structuring component is used for vessel enhancement by extracting with their derivatives and Gaussian intensity pr of ile of retinal blood vessels.In Rangayyan et al.[Rangayyan,Oloumi,Eshghzadeh-Zanjani et al.(2007)],Gabor filters are designed for the detection and extraction of blood vessels.But this technique struggles from over detection and extraction of blood vessel pixels due to the implementation of a large number of false edges.In Mendonca et al.[Mendonca and Campilho (2006)],morphological transformations with curvature data and matched centerline detection filtering are shown.In another method [Villalobos-Castadldi,Felipe-Riveron and Sanchez-Fernandez (2010)],a co-occurrence matrix is computed from just an image patch,and a decision has to be made by thresholding a feature estimated from that matrix.Vessels are obtained using a mixture of Gaussian filters with co-linear variations in Azzopardi et al.[Azzopardi,Strisciugli,Vento et al.(2015)].Sophisticated active contour model [Zhao,Rada,Chen et al.(2015)] is employed in which both pixel brightness and features are extracted from and image.In Zhu et al.[Zhu,Zou,Zhao et al.(2017)],39 D features are extracted and classified using an extreme learning machine.

    3 Proposed method

    Firstly,the fundus image is preprocessed for contrast enhancement and inhomogeneity correction.A set of 40 core features are extracted and the best features are selected using“minimal Redundancy maximal Relavance” algorithm and trained using modified ELM with adaboost classifier as vessel or non vessel.The output of the classifier is the binary retinal vasculature image.Using ground truth image as reference,accuracy,sensitivity and specificity are measured in the testing stage.The flow diagram of the proposed method is shown in Fig.2.

    Figure2:Flow diagram of proposed method

    3.1 Preprocessing

    Color fundus images tend to low contrast,central reflex light,noise,and therefore preprocessing is inevitable.Preprocessing comprises of the e following steps.(i) Central light reflex removal,(ii) background homogenization,and (iii) Boundary extension.

    3.1.1 Central light reflex removal

    Due to the property of low reflectance of blood vessels,they appear to be darker relative to the background and may contain a light streak (Acknowledged as a light reflex).To remove the light reflex,a green channel of the fundus image is used.A filtering procedure is implemented over the green channel image using a morphological opening as a structuring element with a three-pixel diameter disk to expel the reflex effect.The green channel indicates a gray background level that is higher than the gray vessel level.

    3.1.2 Background homogenization

    Retinal fundus images are connected with a background intensity variation due to nonuniform illumination.Sometimes the background images’ gray level is higher than the pixels of the e vessels.This variation in the background pixel may impair the segmentation quality of the vessel.Contrast limited adaptive histogram equalization (CLAHE)technique is applied across the central light reflex light removal image to prevent this issue.CLAHE avoids excessive noise amplification and evenly distributes the used gray level value,thus improving the visibility of the image’s concealed characteristics.

    3.1.3 Boundary extension

    The artifacts produced near the camera aperture boundary are removed using a boundary expansion method suggested in Azzopardi et al.[Azzopardi,Strisciguli,Vento et al.(2015)].Firstly,each black pixel lying only on the Field of View (FOV) mask’s external boundary is identified.The mean value of their neighbors’ pixels within the region of interest (ROI) replaces each of these pixels.Following the primary iteration,the ROI span is increased by 2.To keep away false discovery of lines around the FOV fringe,this procedure is repeated multiple times,so that the ROI radius is ultimately increased by 50.

    3.2 Extraction of features

    3.2.1 Local features (26)

    The first feature (1D) in the green channel image is considered to be the intensity of each pixel.Next,2D Gaussian filtering will provide four features (4D) using four scales.By emphasizing the edges of retinal vessels,eight features are obtained by using first-order derivatives of 2D Gaussian filtering.Similarly,second-order Gaussian filtering derivatives yield 12 features by addressing zero-crossings [Lindeberg (1998);Wang (2013)].

    3.2.2 Morphological transform features (6)

    Using the Tophat morphological operation,the smallest details in an image is extracted.This tophat function is used on dark background for lighter objects,whereas the bottom hat function is applied to the light background for dark objects.Tophat transform is applied by a closing operation as,

    whereTbt(f)is top hat function,(·) is the closing operation,b is the structuring element,f is the filtered image.In this paper tophat transform is used to extract features with a linear structuring element of multiscale and multi orientation.Using six scales,we get six features [Fraz,Remagnino,Hoppe et al.(2012)].

    3.2.3 Hessian features (2)

    The Hessian matrix can characterize a point on the local shape of the surfaces given by,

    whereSxx,Syx,SxyandSyyis the second order partial derivatives of the e imageI(x).By calculating the vesselness measure (V) and Forbenius norm (S),two features are obtained[Frangi,Niessen,Vincken et al.(1998)].

    3.2.4 HoG features (2)

    Histogram of Gradients (HoG) is a feature descriptor frequently used for retinal vessel segmentation.This method requires the occurance of portions of the e image into consideration.The image is fragmented into tiny connected cells and thus the pixels within each cell are plotted with a histogram of gradients.Here we have considered two features:Energy and Entropy,if X is any value,energy is E=X2and entropy,Ent=-sum(p*log(2)),where ‘p’ is the number of histogram [Zhu,Zou,Zhao et al.(2017)] is entropy.

    3.2.5 HLAC feature (1)

    The local high order autocorrelation (HLAC) feature is computed from the higher auto correlation of the following order using a reference pixel and its adjacent pixels as given by,

    D is the target image region for feature extraction,r is the reference pixel position,I(r) is the brightness value of the reference pixel r and anwhere (n=1,2,3..) is the space between the reference and adjacent pixel.All displacements are measured around a reference pixel in a 3*3 pixel area in our method.Here we can extract one HLAC feature [Thangaraj,Periyasamy and Balaji (2018)].

    3.3 Feature Selection using mRmR method

    We used the minimal Redundancy maximal Relevance (mRmR) method proposed by Peng et al.[Peng,Long and Ding (2005)] to select the most discriminatory features from the extracted features.Using the maximum relevance criterion based on mutual information,the mRmR technique selects the most informative features while minimizing redundancy between features and has gained significant prominence,particularly in biomedical data analysis.Features chosen according to max relevance are probable to have rich redundancy.If two features are extremely mutually dependent,the dependency between these features could be large.If one of them were removed,the respective class discriminative power would not change.

    3.4 Feature selection using mRmR method

    An Extreme Learning Machine (ELM) is a single hidden layer feed-forward neural network (SLFN) type containing later hidden node in which the minimum square regression addresses the hidden input weights.The algorithm tends to deliver the best performance in generalization at extremely fast learning speed.The main idea in basic ELMinvolves the weights of the e hidden layer.Besides,biases are the least square solution [Huang,Wang and Lan (2011)].With the impression of the multiclass method[Shen,Jiang and Liu (2014)],the proposed process takes the ELMas primary classifier[Jiuwen,Lin,Huang et al.(2012)] and uses Adaboost as a binary classification problem to resolve the retinal segmentation with the proposed Modified Adaboost Extreme Learning Machine (MAD-ELM).

    Given that N training samples,

    wherexiis the ithtraining sample,andyiis the corresponding class label,

    a.Initially,the weights of each training sample are to be set as per the class frequency

    b.For every iteration,q=1- Q,where Q is the total number of weak classifiers.Then,

    i.Fit a weighted ELM classifierWELMq(x)to the training samples with sample weightwi

    ii.Next the corresponding weighted error ofWELMq(x)is calculated.

    iii.Weight of qthclassifier is calculated as

    iv.Update the weight of sample data for all i=1,2,3…,N

    v.Renormalize the sample weight

    Note:The algorithm repeats steps (i) to (v) till for ‘T’ times

    c.Finally,the corresponding number of weak classifiers will be developed efficiently after T times,resulting in a powerful classifier being generated.Using the voting system,the weak classifiers are mixed linearly with their respective weight and a powerful classifier is acquired.

    4 Evaluation and experimental results

    After the above steps.The fundus image pixels are divided into two classifications:vessels and background.To determine whether a proposed algorithm is effective or not,known standard performance measurement is required.The results of the e segmentation of the fundus image vessel are compared with the gold standard image segmented by manually by an expert.Classification results of all the pixels in Tab.1 that belongs to one of the four results.The true positive (TP) is the number of pixels properly categorized as vessels.False Positive (FP) is the number of pixels wrongly classified as vessels.True Negative (TN) is the number of pixels properly categorized as backgrounds,with False Negative (FN) being the number of pixels wrongly classified as backgrounds.

    Accuracy (Acc),Sensitivity (Se),and Specificity (Sp) are used to evaluate vessel segmentation quality as shown in Tab.2.

    Table1:Pixel based classification

    Table2:Performance Measures for vessel segmentation evaluation

    We evaluated the proposed algorithm on two publicly available databases DRIVE and DR-HAGIS.All experiments are conducted on Matlab 2015 intel core i5 8 GB DDR4-2400 RAM 3.4 GHz.

    4.1 Database

    4.1.1 DRIVE

    To evaluate our proposed algorithm,we used a publicly available dataset DRIVE (Digital Retinal Images for Vessel Extraction) [Stall,Abram of f,Niemeijr et al.(2004)].DRIVE dataset contains 40 color fundus images.These images have been taken with a Field of View (FOV) and 768*584 pixels CCD camera.The dataset was separated into two sets,namely the training and testing with 20 images in each set.For the images in the test set,there are two manual segmentations of retinal vasculature,whereas for the images in the training set,there is a single manual segmentation result.

    4.1.2 DR-HAGIS

    DR-HAGIS database [Holm,Russell,Nourrit et al.(2017)] comprises of four subgroups of co-morbidity consisting of glaucoma (1-10),hypertension (11-20),diabetic retinopathy(21-30),age-related macular degeneration (31-40) pathology images.The fundus images are photographed using Topcon TRC-NW 6s,Topcon TRC-NW 8 or a canon CR DGI fundus camera.The images are 4752×1880 pixels.Besides,all images are provided with manually segmented images.

    4.2 Experiments using proposed method on DRIVE database

    Experiments are performed on DRIVE dataset.20 test images are used for the evaluation of the proposed algorithm.Classifier training took 230 in our experimentation.The DRIVE dataset experimental results are shown in Tab.3.Our method achieved sensitivity,specificity,and accuracy of 0.7432,0.9836,0.9616 respectively.

    Table3:Segmentation results of our method (DRIVE)

    Figure3:a.Fundus image,b.Mask image,c.Ground Truth,d.enhanced image,e.segmented output,f.segmented image overlapped on fundus image

    4.3 Experiments using proposed method on DR-HAGIS database

    Classifier took around 550 seconds for training on DR-HAGIS database.The DR-HAGIS dataset experimental results are shown in the Tab.4-Tab.8.Our method achieved sensitivity,specificity and accuracy of 0.7331,0.9586 and 0.9519 respectively.

    Table4:Segmentation results (HAGIS-Glaucoma group)

    Table5:Segmentation results (HAGIS-Hypertension group)

    Table6:Segmentation results (HAGIS- Diabetic Retinopathy group)

    Table7:Segmentation results (HAGIS-AMD group)

    Table8:Performance evaluation on DR-HAGIS

    4.4 Comparison with other supervised methods

    Tab.9 demonstrates the comparison results on the DRIVE database between the proposed technique and other states of the e art methods.Experimental results show that the proposed approach works better than many other supervised methods.To our know ledge,evaluation on DR-HAGIS database by supervised methods is not available in the literature.Hence,the comparison was not made on DR-HAGIS database,but we believe that the results obtained are better on a pathological database.

    5 Conclusion

    In this article,we proposed a supervised technique for retinal blood vessel segmentation based on the extraction of features,selection of features,and a modified AdaBoost ELM classification.The supervised method of learning performs better in retinal vessel segmentation than unsupervised methods.Although supervised methods are notoriously expensive in training,they provide better results.Experimental results from the proposed method have shown that they are best suited for automated retinal disease screening and diagnosis.

    亚洲五月天丁香| 欧美激情高清一区二区三区| 久久久久九九精品影院| www.精华液| 99国产精品99久久久久| 亚洲欧美精品综合一区二区三区| 村上凉子中文字幕在线| videosex国产| 99精品久久久久人妻精品| 99热这里只有精品一区 | 免费女性裸体啪啪无遮挡网站| 桃红色精品国产亚洲av| 亚洲欧洲精品一区二区精品久久久| 不卡av一区二区三区| 国内少妇人妻偷人精品xxx网站 | 亚洲国产毛片av蜜桃av| 嫩草影院精品99| 久久性视频一级片| 正在播放国产对白刺激| 亚洲成人免费电影在线观看| 免费av毛片视频| 国产又黄又爽又无遮挡在线| 一级a爱视频在线免费观看| 国产真人三级小视频在线观看| a级毛片a级免费在线| 欧美人与性动交α欧美精品济南到| 国产片内射在线| 岛国在线观看网站| 午夜福利欧美成人| 欧美日韩乱码在线| 91麻豆av在线| 成年版毛片免费区| 国内揄拍国产精品人妻在线 | 啦啦啦观看免费观看视频高清| 国产黄片美女视频| 午夜福利一区二区在线看| 51午夜福利影视在线观看| 在线看三级毛片| 黄色毛片三级朝国网站| 嫩草影视91久久| 亚洲av成人av| 可以在线观看的亚洲视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人免费电影在线观看| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 精品久久久久久成人av| 一级a爱视频在线免费观看| 一区福利在线观看| 亚洲精品中文字幕一二三四区| 97超级碰碰碰精品色视频在线观看| 男女那种视频在线观看| 色播在线永久视频| 国产99久久九九免费精品| 国产午夜精品久久久久久| 琪琪午夜伦伦电影理论片6080| 日韩欧美免费精品| 久久九九热精品免费| 亚洲人成电影免费在线| 成熟少妇高潮喷水视频| 久久青草综合色| 亚洲av熟女| 国产精品亚洲一级av第二区| 香蕉久久夜色| 欧美久久黑人一区二区| 桃色一区二区三区在线观看| 50天的宝宝边吃奶边哭怎么回事| 香蕉久久夜色| 老熟妇乱子伦视频在线观看| 免费在线观看视频国产中文字幕亚洲| 丁香六月欧美| 怎么达到女性高潮| 搡老熟女国产l中国老女人| 亚洲精品一卡2卡三卡4卡5卡| 国产爱豆传媒在线观看 | 亚洲国产欧美日韩在线播放| 精品乱码久久久久久99久播| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 国产高清视频在线播放一区| 午夜福利免费观看在线| 精品久久蜜臀av无| 精品少妇一区二区三区视频日本电影| www.999成人在线观看| 国产亚洲av嫩草精品影院| 中文字幕最新亚洲高清| 黄网站色视频无遮挡免费观看| 精品乱码久久久久久99久播| 人人妻人人澡人人看| 一区二区三区国产精品乱码| 好男人电影高清在线观看| 美女高潮到喷水免费观看| 后天国语完整版免费观看| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 亚洲熟妇熟女久久| 中文字幕精品亚洲无线码一区 | 国产欧美日韩精品亚洲av| 成年人黄色毛片网站| 欧美久久黑人一区二区| 成人av一区二区三区在线看| 视频区欧美日本亚洲| 精品无人区乱码1区二区| 中文字幕高清在线视频| 日韩成人在线观看一区二区三区| 欧美在线一区亚洲| 亚洲av电影不卡..在线观看| 成人国产综合亚洲| 香蕉av资源在线| 最近最新免费中文字幕在线| 伦理电影免费视频| 少妇粗大呻吟视频| 国产亚洲精品久久久久5区| 可以免费在线观看a视频的电影网站| 国产伦一二天堂av在线观看| 午夜a级毛片| 欧美黑人巨大hd| 在线播放国产精品三级| 日韩欧美 国产精品| 国产一区二区在线av高清观看| 在线观看日韩欧美| 老司机深夜福利视频在线观看| 欧美av亚洲av综合av国产av| 国产高清有码在线观看视频 | 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产区一区二| 嫩草影院精品99| 久久久国产成人精品二区| 女性被躁到高潮视频| 国内揄拍国产精品人妻在线 | 亚洲午夜精品一区,二区,三区| 在线永久观看黄色视频| 大香蕉久久成人网| 人妻久久中文字幕网| 最新在线观看一区二区三区| 母亲3免费完整高清在线观看| 国产亚洲精品久久久久5区| 69av精品久久久久久| 美女 人体艺术 gogo| 成人精品一区二区免费| 男人舔女人的私密视频| 亚洲精品国产精品久久久不卡| 亚洲狠狠婷婷综合久久图片| 99riav亚洲国产免费| 久久精品国产99精品国产亚洲性色| 久久人妻av系列| 人妻丰满熟妇av一区二区三区| 国产精品乱码一区二三区的特点| 亚洲电影在线观看av| 国产不卡一卡二| 国产亚洲精品久久久久久毛片| 2021天堂中文幕一二区在线观 | 麻豆国产av国片精品| 国产久久久一区二区三区| 国产又黄又爽又无遮挡在线| 久久久久国产精品人妻aⅴ院| 久久国产精品影院| 国产午夜福利久久久久久| av欧美777| av欧美777| 国产精品二区激情视频| 国产亚洲欧美在线一区二区| 久久精品国产亚洲av高清一级| 婷婷六月久久综合丁香| 超碰成人久久| 人人妻,人人澡人人爽秒播| 草草在线视频免费看| 亚洲精品久久成人aⅴ小说| 亚洲av美国av| av有码第一页| 中文字幕人妻丝袜一区二区| 久久久水蜜桃国产精品网| 国产精品精品国产色婷婷| 久久精品91无色码中文字幕| 99在线视频只有这里精品首页| 老司机午夜福利在线观看视频| 一级毛片精品| 国产99久久九九免费精品| 麻豆成人av在线观看| 天天躁夜夜躁狠狠躁躁| 19禁男女啪啪无遮挡网站| 欧美成狂野欧美在线观看| 国产av一区在线观看免费| 亚洲午夜精品一区,二区,三区| 成人三级黄色视频| 欧美性猛交黑人性爽| 在线观看免费午夜福利视频| 看免费av毛片| 黄色 视频免费看| 亚洲精品色激情综合| 一本久久中文字幕| 欧美一级a爱片免费观看看 | 亚洲在线自拍视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲中文日韩欧美视频| 国产蜜桃级精品一区二区三区| 最近在线观看免费完整版| 亚洲一区二区三区不卡视频| 国产91精品成人一区二区三区| 99精品久久久久人妻精品| 熟妇人妻久久中文字幕3abv| 免费高清视频大片| 婷婷丁香在线五月| 亚洲精品在线美女| 极品教师在线免费播放| 国产片内射在线| 91字幕亚洲| 成在线人永久免费视频| 人人澡人人妻人| 亚洲av成人不卡在线观看播放网| 国产成人精品无人区| 精品一区二区三区av网在线观看| 亚洲精品在线观看二区| 黄片大片在线免费观看| 国产精品乱码一区二三区的特点| 国产欧美日韩精品亚洲av| 91麻豆av在线| 国产精品久久久久久亚洲av鲁大| 亚洲成av人片免费观看| 国产成+人综合+亚洲专区| 免费在线观看完整版高清| 亚洲一区高清亚洲精品| 18禁观看日本| 丝袜人妻中文字幕| 日韩国内少妇激情av| 亚洲成人国产一区在线观看| 色综合婷婷激情| 12—13女人毛片做爰片一| 亚洲欧美一区二区三区黑人| 免费在线观看日本一区| 久久精品夜夜夜夜夜久久蜜豆 | 日本一区二区免费在线视频| 欧美日韩精品网址| 国产精品av久久久久免费| 国内揄拍国产精品人妻在线 | 亚洲 欧美 日韩 在线 免费| 久久精品国产亚洲av高清一级| 两个人看的免费小视频| 亚洲第一av免费看| 日本一区二区免费在线视频| 黄色成人免费大全| 少妇裸体淫交视频免费看高清 | 国产熟女xx| 精品乱码久久久久久99久播| 亚洲精品国产一区二区精华液| ponron亚洲| 亚洲aⅴ乱码一区二区在线播放 | 波多野结衣av一区二区av| 俺也久久电影网| 亚洲av中文字字幕乱码综合 | 久久久久免费精品人妻一区二区 | 欧美zozozo另类| 午夜久久久在线观看| 国产伦在线观看视频一区| 午夜福利18| 嫩草影院精品99| 国产成人一区二区三区免费视频网站| 亚洲精品av麻豆狂野| 午夜视频精品福利| 日韩三级视频一区二区三区| 午夜精品久久久久久毛片777| 国产成人av激情在线播放| 亚洲专区中文字幕在线| 一边摸一边抽搐一进一小说| 超碰成人久久| 成人亚洲精品一区在线观看| 人妻丰满熟妇av一区二区三区| 国产真人三级小视频在线观看| 精品熟女少妇八av免费久了| 黄网站色视频无遮挡免费观看| 欧美日韩乱码在线| 窝窝影院91人妻| 午夜福利一区二区在线看| 欧美色欧美亚洲另类二区| 亚洲国产高清在线一区二区三 | 在线国产一区二区在线| 免费高清视频大片| 久久人妻av系列| 巨乳人妻的诱惑在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 黄频高清免费视频| 久久久久久久久中文| 香蕉av资源在线| 国产单亲对白刺激| 亚洲精品在线观看二区| 可以在线观看的亚洲视频| 在线观看66精品国产| 久久中文字幕人妻熟女| 成人精品一区二区免费| 变态另类丝袜制服| 久久国产精品人妻蜜桃| 国产高清激情床上av| 亚洲成a人片在线一区二区| 悠悠久久av| www.www免费av| 欧美精品啪啪一区二区三区| 日本a在线网址| 欧美日本视频| 久久久久久大精品| 国产精品野战在线观看| 美女高潮到喷水免费观看| 国产又黄又爽又无遮挡在线| 久热这里只有精品99| 首页视频小说图片口味搜索| 久久精品人妻少妇| 女警被强在线播放| 伊人久久大香线蕉亚洲五| 1024手机看黄色片| 亚洲一区二区三区色噜噜| 视频在线观看一区二区三区| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 白带黄色成豆腐渣| 夜夜爽天天搞| 欧美日韩精品网址| 色精品久久人妻99蜜桃| 少妇 在线观看| 99久久无色码亚洲精品果冻| 婷婷亚洲欧美| 69av精品久久久久久| 超碰成人久久| 满18在线观看网站| 婷婷亚洲欧美| 最近最新免费中文字幕在线| 又紧又爽又黄一区二区| 中国美女看黄片| 亚洲一区中文字幕在线| 久久久久久久精品吃奶| 老熟妇乱子伦视频在线观看| 日本 欧美在线| 成年版毛片免费区| 午夜福利在线观看吧| 亚洲色图av天堂| 日日干狠狠操夜夜爽| 又黄又粗又硬又大视频| 最近最新中文字幕大全免费视频| 日韩精品中文字幕看吧| 国产精品 国内视频| 免费无遮挡裸体视频| 亚洲av第一区精品v没综合| 一本综合久久免费| 午夜亚洲福利在线播放| 又黄又爽又免费观看的视频| 老鸭窝网址在线观看| 757午夜福利合集在线观看| 一夜夜www| 老司机深夜福利视频在线观看| 叶爱在线成人免费视频播放| 亚洲va日本ⅴa欧美va伊人久久| 天天添夜夜摸| 好看av亚洲va欧美ⅴa在| 黑丝袜美女国产一区| 99国产精品99久久久久| 琪琪午夜伦伦电影理论片6080| 可以在线观看毛片的网站| 亚洲精品美女久久av网站| 久久久久久久久免费视频了| 天堂动漫精品| 看片在线看免费视频| 日韩三级视频一区二区三区| 国产成人精品久久二区二区免费| 久久中文字幕一级| 欧美性长视频在线观看| 欧美黑人巨大hd| 国产精品1区2区在线观看.| 亚洲国产欧美一区二区综合| 久热爱精品视频在线9| av超薄肉色丝袜交足视频| 一级a爱视频在线免费观看| 中亚洲国语对白在线视频| 老司机在亚洲福利影院| 高清毛片免费观看视频网站| 亚洲一区二区三区色噜噜| 给我免费播放毛片高清在线观看| 午夜两性在线视频| 国产成人精品久久二区二区91| 99国产精品99久久久久| 久久99热这里只有精品18| 国产野战对白在线观看| 麻豆久久精品国产亚洲av| 一本久久中文字幕| 白带黄色成豆腐渣| 波多野结衣高清作品| 欧美黄色淫秽网站| 亚洲欧美精品综合一区二区三区| 成人免费观看视频高清| 可以免费在线观看a视频的电影网站| 国产伦一二天堂av在线观看| 国产又爽黄色视频| 一级作爱视频免费观看| 久久人妻av系列| 亚洲美女黄片视频| 免费看美女性在线毛片视频| 久久热在线av| 欧美亚洲日本最大视频资源| 国产一区二区激情短视频| 特大巨黑吊av在线直播 | 久久精品国产清高在天天线| 久久精品91无色码中文字幕| 国产真实乱freesex| 亚洲中文日韩欧美视频| 麻豆久久精品国产亚洲av| 国产黄色小视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成人av一区二区三区在线看| 90打野战视频偷拍视频| 性欧美人与动物交配| 99久久精品国产亚洲精品| 听说在线观看完整版免费高清| а√天堂www在线а√下载| 制服人妻中文乱码| 国产成人欧美| 天天添夜夜摸| 欧美色视频一区免费| 黄色a级毛片大全视频| 日韩国内少妇激情av| 91成人精品电影| 色综合站精品国产| tocl精华| 国产激情欧美一区二区| 午夜视频精品福利| 黄色视频,在线免费观看| 欧美丝袜亚洲另类 | 午夜精品在线福利| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 99精品欧美一区二区三区四区| 桃红色精品国产亚洲av| 精品国产国语对白av| 日本五十路高清| av视频在线观看入口| 久久久久精品国产欧美久久久| 久久久久国产精品人妻aⅴ院| 日韩三级视频一区二区三区| 三级毛片av免费| 亚洲中文日韩欧美视频| 久久久久亚洲av毛片大全| 亚洲成av人片免费观看| 亚洲色图av天堂| 女性生殖器流出的白浆| 中文字幕最新亚洲高清| 日韩欧美国产一区二区入口| 91成人精品电影| 久久天堂一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 久久午夜亚洲精品久久| 正在播放国产对白刺激| 欧美国产精品va在线观看不卡| 老熟妇仑乱视频hdxx| 亚洲成人国产一区在线观看| 人成视频在线观看免费观看| 成年女人毛片免费观看观看9| 午夜久久久久精精品| 欧美绝顶高潮抽搐喷水| 少妇熟女aⅴ在线视频| 人人妻人人澡欧美一区二区| 亚洲精品久久成人aⅴ小说| 老鸭窝网址在线观看| 欧美大码av| 999久久久国产精品视频| 黄频高清免费视频| 丁香六月欧美| 村上凉子中文字幕在线| 日本 欧美在线| 淫妇啪啪啪对白视频| 两人在一起打扑克的视频| 热re99久久国产66热| 午夜福利欧美成人| 1024手机看黄色片| 人人妻人人看人人澡| 99re在线观看精品视频| 国内毛片毛片毛片毛片毛片| 一区二区三区精品91| √禁漫天堂资源中文www| 搞女人的毛片| 999久久久国产精品视频| 日本精品一区二区三区蜜桃| 在线观看日韩欧美| 久久久久国产精品人妻aⅴ院| 国产成人系列免费观看| 黄频高清免费视频| 成人午夜高清在线视频 | 欧美一级毛片孕妇| 欧美 亚洲 国产 日韩一| 长腿黑丝高跟| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 黄色 视频免费看| 啪啪无遮挡十八禁网站| 欧美亚洲日本最大视频资源| 国产色视频综合| 少妇 在线观看| 久99久视频精品免费| 成人特级黄色片久久久久久久| 一本久久中文字幕| 亚洲成人免费电影在线观看| 99国产精品一区二区蜜桃av| 国产精品免费视频内射| 久99久视频精品免费| 亚洲中文字幕一区二区三区有码在线看 | 中文在线观看免费www的网站 | 啦啦啦 在线观看视频| 日韩大尺度精品在线看网址| 日本a在线网址| 亚洲国产精品合色在线| 久久香蕉激情| 亚洲国产看品久久| 国内精品久久久久久久电影| 国产三级在线视频| 欧美丝袜亚洲另类 | 国产亚洲精品第一综合不卡| 国产成人影院久久av| 变态另类成人亚洲欧美熟女| 丝袜美腿诱惑在线| 亚洲午夜理论影院| 哪里可以看免费的av片| 香蕉久久夜色| 色精品久久人妻99蜜桃| 免费无遮挡裸体视频| 亚洲精华国产精华精| 免费在线观看视频国产中文字幕亚洲| 身体一侧抽搐| 亚洲专区国产一区二区| 亚洲精品久久成人aⅴ小说| 久久这里只有精品19| 看黄色毛片网站| 日本五十路高清| 三级毛片av免费| 亚洲欧美日韩无卡精品| 欧美成狂野欧美在线观看| 一区二区三区激情视频| 欧美激情高清一区二区三区| 9191精品国产免费久久| 亚洲成人国产一区在线观看| 国产v大片淫在线免费观看| 999久久久精品免费观看国产| 99国产精品一区二区蜜桃av| 精品福利观看| 亚洲性夜色夜夜综合| 女人爽到高潮嗷嗷叫在线视频| 免费看美女性在线毛片视频| 妹子高潮喷水视频| 亚洲成av人片免费观看| 欧美在线黄色| 九色国产91popny在线| 亚洲久久久国产精品| 少妇熟女aⅴ在线视频| 夜夜爽天天搞| 亚洲 国产 在线| √禁漫天堂资源中文www| 美女高潮喷水抽搐中文字幕| 国产免费男女视频| 最近最新中文字幕大全免费视频| 午夜福利高清视频| 亚洲成a人片在线一区二区| 久久久久久久久久黄片| 欧美国产精品va在线观看不卡| 亚洲aⅴ乱码一区二区在线播放 | 欧美亚洲日本最大视频资源| 国产精品美女特级片免费视频播放器 | 在线观看免费午夜福利视频| 欧美又色又爽又黄视频| 国产成人欧美在线观看| 亚洲精品久久成人aⅴ小说| 日本在线视频免费播放| 成在线人永久免费视频| 女人爽到高潮嗷嗷叫在线视频| 成年人黄色毛片网站| 中文字幕人成人乱码亚洲影| 精品久久久久久久久久久久久 | 女人被狂操c到高潮| 99精品欧美一区二区三区四区| 亚洲人成网站高清观看| 69av精品久久久久久| 韩国精品一区二区三区| 国产精品亚洲av一区麻豆| 亚洲av成人av| 免费一级毛片在线播放高清视频| 1024视频免费在线观看| 女人高潮潮喷娇喘18禁视频| 国产亚洲欧美精品永久| 精品久久久久久久毛片微露脸| 午夜激情av网站| 午夜精品在线福利| 久久精品夜夜夜夜夜久久蜜豆 | 日本三级黄在线观看| 久久久久久久午夜电影| 国产视频一区二区在线看| 别揉我奶头~嗯~啊~动态视频| avwww免费| 亚洲国产精品久久男人天堂| 天堂动漫精品| av免费在线观看网站| 亚洲七黄色美女视频| 日本免费一区二区三区高清不卡| 正在播放国产对白刺激| 黄色视频不卡| 国产亚洲精品久久久久久毛片| 精品欧美一区二区三区在线| 欧美午夜高清在线| 色婷婷久久久亚洲欧美| 国产麻豆成人av免费视频| 丁香欧美五月| 亚洲av中文字字幕乱码综合 | 国产精品国产高清国产av| 99久久国产精品久久久| 久久国产乱子伦精品免费另类| 亚洲精品av麻豆狂野| 日韩三级视频一区二区三区| 精品不卡国产一区二区三区| 男人操女人黄网站| 丰满的人妻完整版|