• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Privacy-Preserving Quantum Two-Party Geometric Intersection

    2019-11-25 10:22:52WenjieLiuYongXuJamesYangWenbinYuandLianhuaChi
    Computers Materials&Continua 2019年9期

    Wenjie Liu ,Yong XuJames C.N.Yang,Wenbin Yu and Lianhua Chi

    Abstract:Privacy-preserving computational geometry is the research area on the intersection of the domains of secure multi-party computation (SMC) and computational geometry.As an important field,the privacy-preserving geometric intersection (PGI)problem is when each of the multiple parties has a private geometric graph and seeks to determine whether their graphs intersect or not without revealing their private information.In this study,through representing Alice’s (Bob’s) private geometric graph as the set of numbered grids S A (S B ),an efficient privacy-preserving quantum two-party geometric intersection (PQGI) protocol is proposed.In the protocol,the oracle operation O A (O B ) is firstly utilized to encode the private elements of S A = (a 0, a 1,…,a M -1) into the quantum states,and then the oracle operation O f is applied to obtain a new quantum state which includes the XOR results between each element of and S B.Finally,the quantum counting is introduced to get the amount (t ) of the statesequaling to and the intersection result can be obtained by judging t >0 or not.Compared with classical PGI protocols,our proposed protocol not only has higher security,but also holds lower communication complexity.

    Keywords:Privacy-preserving computational geometry,quantum two-party geometric intersection,oracle,quantum counting.

    1 Introduction

    The problem of privacy-preserving computational geometry is an important research area on the intersection of the domains of secure multi-party computation (SMC) [Oleshchuk and Zadorozhny (2007)] and computational geometry [Preparata and Shamos (2012)].It focuses on how cooperative users can use their own private geometric information as inputs in collaborative computing in the distributed systems,and they can obtain the correct results while ensuring their privacy.Since the privacy-preserving computational geometry is firstly proposed by Atallah et al.[Atallah and Du (2001)],the other researchers have drawn extensive attention on some related problems,such as point inclusion [Troncoso-Pastoriza,Katzenbeisser,Celik et al.(2007);Luo,Huang and Zhong (2007)],geometric intersection[Erlebach,Jansen and Seidel (2005);Paw lik,Kozik,Krawczyk et al.(2013)],nearest points or closest pair [Li and Ni (2002);Tao,Yi,Sheng et al.(2010)],and convex hull[Huang,Luo and Wang (2008);L?ffler and van Kreveld (2010);Assarf,Gaw rilow,Herr et al.(2017)],which have been applied to many important military and commercial fields.Consider the following scenario,two countries A and B intend to build a railway in an of fshore area.Before the completion of the railway,the construction route is confidential.In order to prevent future collisionsoftrains,countries A and B hope to determine if there are any two disjoint routes without revealing their own routes,and to negotiate with the location of the intersection.The above problem is a typical application of privacypreserving geometric intersection (PGI).Different from the protocols based on circuit evaluation schemes,recently Qin et al.[Qin,Duan,Zhao et al.(2014)] proposed the Lagrange multiplier method to solve the intersection of the two private curves,and this method is suitable for solving general geometry intersection problems.On the other way,some researchers tried to study the geometric problems in three dimensional space [Li,Wu,Wang et al.(2014)].However,most of these classical solutions are based on computational complexity assumptions,and they cannot ensure the participants’ privacy under the attack of quantum computation.

    Fortunately,quantum cryptography can provide the unconditional security,which is guaranteed by some physical principles of quantum mechanics,to resist against such impact.In additional,quantum parallelism makes it possible to greatly speed up solving some specific computational tasks,such as large-integer factorization [Shor (1994)] and database search [Grover (1996)].With quantum mechanics utilized in the information processing,many important research findings are presented in recent decades,such as quantum key distribution (QKD) [Bennett and Brassard (1984)],quantum key agreement(QKA) [Liu,Chen,Ji et al.(2017);Liu,Xu,Yang et al.(2018)],quantum secure direct communication [Liu,Chen,Ma et al.(2009);Liu,Chen,Liu (2016);Liu and Chen(2016)],quantum private comparison [Liu,Liu,Liu et al.(2014);Liu,Liu,Chen et al.(2014);Liu,Liu,Wang et al.(2014)],and quantum sealed-bid auction (QSBA) [Naseri(2009);Liu,Wang,Ji et al.(2014);Liu,Wang,Yuan et al.(2016)],and deterministic remote state preparation [Liu,Chen,Liu et al.(2015);Qu,Wu,Wang et al.(2017)].These findings have shown the potential power in either the efficiency improvements or the security enhancements.

    In this study,we pay attention to the PGI problem:Alice owns a private geometric graphGA,Bob has the other geometric graphGB,and they want to determine whether these two graphs intersect without revealing any private information to each other.By utilizing some specific oracle operations and quantum counting algorithm,we propose an efficient privacy-preserving quantum two-party geometric intersection (PQGI) protocol.The rest of this paper is organized as follows,the PQGI protocol is proposed in Section 2,and the correctness,security and efficiency analysis of PQGI protocol are discussed in Section 3,while the conclusion is drawn in the last section.

    2 Prelim inaries

    Before introducing the procedures of PQGI protocol,we firstly make some definitions of PGI problem and PQGI protocol.Without loss of generality,we suppose there are two parties,i.e.,Alice and Bob,and the formal definitions are given as below.

    2.1 The problems

    Problem 1 (Privacy-preserving point inclusion):There are two parties,Alice has a pointpA,and Bob has a geometric graphGB.They want to decide whetherpA∈GBwithout revealing to each other anything more than what can be inferred from that answer.

    Problem 2 (Privacy-preserving two-party geometric intersection):Two parties Alice,Bob own the private geometric graphsGA,GB,respectively,and decide whetherGA∩GB≠? without disclosing their respective private information.

    As a point can be viewed as a special geometric graph whose area is small enough to be one dot,Problem 1 is a typical case of Problem 2.In the study,we only consider the geometric intersection of Problem 2.

    2.2 The definition of PQGI

    In order to solve Problem 2,the private geometric graph can be represented as the set of grids in the area of the graph (suppose these girds are divided sufficiently),then the intersection of two geometric graphs is transformed into the intersection of two sets.Without loss of generality,we suppose Alice and Bob have a private geometric graphGAandGBon the plane,and they divide and number the whole plane intoRgrids (HereRis a large enough integer),then Alice’s and Bob’s graphs can be denoted asrespectively (shown in Fig.1).

    Figure1:The illustration of partitioning and numbering the plane with R =400.The green(blue) part is Alice’s graph G A (Bob’ graph G B ),respectively,and the yellow part is the intersection area

    Through representing Alice’s and Bob’s private geometric graphsGA,GBas the grid setsSA,SB),the PQGI protocol is defined as follows.

    Definition 1 (the PQGI protocol):Alice and Bob encode their serial numbers of graph grids,i.e.,into two initial statesandrespectively,hereAfter executing this protocol,they can obtain the result of whether the two graphs intersect without revealing their private information.To be specific,the PQGI protocol should guarantee the following privacy:

    ●Alice’s PrivacyBob cannot learn any secret information about Alice’s geometric graph without risking Alice’s detection.

    ●Bob’s PrivacyAlice cannot get any secret information about Bob’s geometric graph without risking Bob’s detection.

    3 The privacy-preserving quantum two-party geometric intersection protocol

    Suppose Alice and Bob’s private geometric graphsGAandGBare located on a unified plane,and the plane is uniformly divided intoRgrids,hereRis a large enough integer that the whole plane can be represented by these grids with sufficient accuracy.Thus Alice’s and Bob’s graphsGA,GBcan be represented as the sets of grids:whereai,bjare unique serial numbers in [1,R],0 ≤i≤M-1,0≤j≤N-1.The detailed protocol is described in detail as follows (shown in Fig.2).

    Figure2:The procedure of the proposed PQGI protocol.The dotted (solid) line denotes the quantum (classic) channel

    1.Alice and Bob prepare the initial statesrespectively,whereanddenote Alice’s(m-qubit) and Bob’s (n-qubit) address qubits,whileDaandDbrepresent Alice’s and Bob’s (r-qubit) data qubits,Then Alice and Bob apply the oracle operationto encode their private elements of(shown in Fig.3 and Fig.4).

    Then Alice and Bob obtain the result statesrespectively,then Alice sends her stateto Bob.

    Figure3:Schematic circuit of the oracle operation O A

    Figure4:Schematic circuit of the oracle operation O B.

    Then he sends the result stateto Alice.

    Figure5:Schematic circuit of the oracle operation O f

    Figure6:Schematic circuit of the oracle operation O A

    4.After the cheating check,Alice executes the quantum counting algorithm [Brassard,H?yer and Tapp (1998)] onto countwheretis the number of states thatequaling toin(i∈[0,M-1],j∈[0,N-1]).After executing the quantum algorithm,Bob obtains the result oft.Then Alice judges whetherGAandGBintersect according to the value oft:ift>0,then it can be deduced that there existsai=bjfor anyiandj,then get the conclusion thatGAintersects withGB,otherwise,GAandGBare not intersect.

    5.Alice tells Bob the result of whetherGAintersects withGB.

    3 Correctness,security and efficiency analysis

    3.1 Correctness analysis

    Without loss of generality,we suppose that Alice (Bob) has a private graphGA(GB),which is represented asSA={1,2,5,6}(SB={6,7,10,11}),and thusM=4,N=4,R=16,Alice and Bob want to determine whether there exists an intersection betweenGAandGB(shown in Fig.7).

    Figure7:The example of the two intersecting geometric graphs G A and G B

    In Step 1,Alice and Bob prepare two initial quantum statesin the form ofand then apply oracle operationon them,the two result statesare as follows:

    Then Bob applies the oracle operationOfon stateand obtains the state

    Bob further sends the result stateto Alice.Alice then applies the oracle operationon the data qubitsDaofand obtains the result stateas follow:

    Alice then performs measurement on the data qubitsDaofthe measurement outcome turns to bethen she can conclude that Bob has not cheated.Then Alice executes the quantum counting algorithm on.Since the counting result,thus graphGAintersects with graphGB.

    3.2 Security analysis

    Now we discuss the security of our protocol.To realize such a secure PQGI protocol,two security requirements should be satisfied,that are Alice’s privacy and Bob’s privacy.

    3.2.1 Alice’s privacy

    Suppose Bob wants to extract information about private graphGA(i.e.,aiwithout affecting the final result of the protocol.If Bob performs the projective measurement on statehe can randomly obtain one elementfromThe statecan also be represented by an ensembleis the probability that Bob obtains Alice’s coordinates:

    Here,we get the upper bound of information that Bob can get from Alice's coordinates is determined by the Holevo’s bound [Holevo (2011)]:

    whereS(ρ)denotes the Von Neumann entropy of quantum stateρ,H(A:B)means the information Bob can get about Alice’s secret information,we have:

    Then,Bob can only get coordinate information by measuring the stateρ.If Bob performs measurement on the statethe state will collapse into one basis state,i.e.,and the statewill be changed toIn Step 3 of our protocol,Alice checks whether Bob has cheated by applying oracle operationOAon the data qubitsDainand then performs measurement on them.Since the measured data qubitsdoes not equal toshe can conclude Bob has cheated and aborts the protocol.

    3.2.2 Bob’s privacy

    Suppose Alice wants to extract any information about private graphGB(i.e.biwithout affecting the final result of the protocol.If Bob performs the projective measurement on statehe can randomly obtain one element,i.e.

    However,the state Alice received isand Alice does not know choose which base to measure and obtainbj.On the other hand,the received information is in the form ofai⊕bj,which means he even does not know whichaiencodes thebj,and therefore prevents his cheating on Bob’s privacy.

    3.3 Efficiency analysis

    The communication cost is one of the key indicators of the e efficiency for communication protocols.In order to analyze the efficiency of our PQGI protocol,we choose the classical PGI protocols [Atallah and Du (2001);Qin,Duan,Zhao et al.(2014)] as comparative references.In the Atallah et al.’s protocol,the participants send total 4M2messages to Bob,hereMis the number of divided edges of the e geometric graph,and each message requiresRbits.So the transmitted messages of the eir protocol are 4M2*R,and their communication complexity isO(M2R).While in Qin et al.’s protocol [Qin,Duan,Zhao et al.(2014)],it requires to send 2(M2+N2)messages,and each message requiresRbits.HereMandNare the number of curves from the edges of the e geometry,and its communication complexity is

    In our PQGI protocol,Alice sends a (m+r)-qubit statesto Bob in Step 1,and thenBob sends a (m+n+2r)-qubit state to Alice in Step 3,wherethus the total transmitted messages of our protocol arequbits.Thus our communication complexity isO(l ogMNR).Through the above calculations,we can get the results of the e three protocols’communication complexity (see Tab.1).Obviously,our protocol achieves a great reduction in the communication complexity aspect.

    Table1:Comparison among our protocol and the other PGI protocols

    4 Conclusion and discussion

    In this paper,we present a novel quantum solution to two-party geometric intersection based on oracle and the quantum counting algorithm.The security of them is based on the quantum cryptography instead of difficulty assumptions of mathematical problem.Compared with the classical related protocols,our solution has the advantage of higher security and lower communication complexity.In addition,our proposed protocol can also be extended to some other complicated privacy-preserving computation problems,such as privacy-preserving database queries over cloud data [Cao,Wang,Li et al.(2014);Shen,Li,Li et al.(2017)],privacy-preserving set operations in cloud computing [Cao,Li,Dang et al.(2017);Zhuo,Jia,Guo et al.(2017)],and privacy-preserving reversible data hiding over encrypted image [Cao,Du,Wei et al.(2016)].

    Furthermore,the method of the oracle operation applied in the presented protocols is general and can be employed to solve other similar privacy-preserving computation geometry problems,such as convex hull,polygon inclusion,etc.However,how to extend our two party scenarios to the multi-party scenario,and the more complex situations such as geometric union is another problem.We would like to investigate the applications of quantum technologies in more kinds of privacy-preserving computational geometric protocols in the future.

    Acknowledgement:The authors would like to thank the anonymous reviewers and editors for their comments that improved the quality of this paper.This work is supported by the Nature Science Foundation of China (Grant Nos.61502101 and 61501247),the Natural Science Foundation of Jiangsu Province,China (Grant No.BK20171458),the Six Talent Peaks Project of Jiangsu Province,China (Grant No.2015-XXRJ-013),the Natural science Foundation for colleges and universities of Jiangsu Province,China (Grant No.16KJB520030),the Research Innovation Program for College Graduates of Jiangsu Province,China (Grant No.KYCX17_0902),the Practice Innovation Training Program Projects for the Jiangsu College Students (Grant No.201810300016Z),and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

    免费观看a级毛片全部| 一个人免费看片子| av一本久久久久| 首页视频小说图片口味搜索 | 两个人看的免费小视频| 国产高清国产精品国产三级| 人人澡人人妻人| 精品欧美一区二区三区在线| 啦啦啦在线观看免费高清www| 成人手机av| 在线看a的网站| 国产福利在线免费观看视频| 国产伦人伦偷精品视频| 免费女性裸体啪啪无遮挡网站| 老鸭窝网址在线观看| 日韩大片免费观看网站| 老司机深夜福利视频在线观看 | 久久鲁丝午夜福利片| 这个男人来自地球电影免费观看| 国产精品 欧美亚洲| 色婷婷久久久亚洲欧美| videos熟女内射| 国产精品九九99| 1024视频免费在线观看| 久久人人爽av亚洲精品天堂| 超碰97精品在线观看| 赤兔流量卡办理| 高清黄色对白视频在线免费看| 少妇人妻久久综合中文| 女人爽到高潮嗷嗷叫在线视频| 成年av动漫网址| 亚洲精品美女久久久久99蜜臀 | 美女福利国产在线| 亚洲精品中文字幕在线视频| 晚上一个人看的免费电影| 亚洲视频免费观看视频| 久久久久久久久久久久大奶| 男女国产视频网站| 啦啦啦啦在线视频资源| 久久鲁丝午夜福利片| 欧美日韩视频精品一区| 一区二区三区四区激情视频| 在线亚洲精品国产二区图片欧美| 亚洲人成77777在线视频| 国产极品粉嫩免费观看在线| 精品卡一卡二卡四卡免费| 久久久久久人人人人人| 精品久久久久久久毛片微露脸 | 亚洲精品乱久久久久久| 国产精品久久久久久精品电影小说| 国产日韩欧美在线精品| 亚洲七黄色美女视频| 欧美黄色淫秽网站| 欧美国产精品va在线观看不卡| 久久久国产欧美日韩av| 在线看a的网站| 亚洲国产欧美在线一区| 狂野欧美激情性bbbbbb| 一区二区日韩欧美中文字幕| 免费人妻精品一区二区三区视频| 亚洲欧美日韩高清在线视频 | 日韩av免费高清视频| 真人做人爱边吃奶动态| 99久久人妻综合| 亚洲av日韩精品久久久久久密 | 韩国高清视频一区二区三区| 久久av网站| 国产精品偷伦视频观看了| 久久午夜综合久久蜜桃| 亚洲熟女毛片儿| 久久天堂一区二区三区四区| 十八禁人妻一区二区| 国产视频首页在线观看| 蜜桃国产av成人99| 高清视频免费观看一区二区| 日本av免费视频播放| 欧美日韩视频高清一区二区三区二| 午夜两性在线视频| 国产精品二区激情视频| 久久这里只有精品19| 中文字幕高清在线视频| 国产精品久久久av美女十八| 交换朋友夫妻互换小说| 9色porny在线观看| 国产一级毛片在线| 国产成人精品在线电影| 七月丁香在线播放| 最近手机中文字幕大全| 久热这里只有精品99| 一级片免费观看大全| 欧美中文综合在线视频| 国产亚洲一区二区精品| 中文字幕人妻丝袜一区二区| 性少妇av在线| 午夜激情av网站| 国产精品国产av在线观看| 这个男人来自地球电影免费观看| 日日摸夜夜添夜夜爱| 成人国产一区最新在线观看 | 国产高清国产精品国产三级| 妹子高潮喷水视频| 在线精品无人区一区二区三| 免费不卡黄色视频| 亚洲成人手机| 妹子高潮喷水视频| 大陆偷拍与自拍| 色精品久久人妻99蜜桃| 久久久国产一区二区| 9热在线视频观看99| 人妻 亚洲 视频| 免费高清在线观看视频在线观看| 久久 成人 亚洲| 成人国产一区最新在线观看 | 一级a爱视频在线免费观看| 成人午夜精彩视频在线观看| 久久精品亚洲av国产电影网| 99国产精品99久久久久| 丁香六月天网| 亚洲av国产av综合av卡| 真人做人爱边吃奶动态| 精品亚洲成国产av| 久久天躁狠狠躁夜夜2o2o | 亚洲中文av在线| 精品国产一区二区久久| 成年人午夜在线观看视频| 午夜福利乱码中文字幕| av福利片在线| 超碰成人久久| 亚洲人成网站在线观看播放| 少妇人妻 视频| 美国免费a级毛片| tube8黄色片| 一级片免费观看大全| 国产一区二区 视频在线| 热re99久久精品国产66热6| 人人妻人人爽人人添夜夜欢视频| 91国产中文字幕| 亚洲精品av麻豆狂野| 自线自在国产av| 国产熟女欧美一区二区| 欧美中文综合在线视频| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 欧美日韩视频高清一区二区三区二| 纯流量卡能插随身wifi吗| 大香蕉久久网| 日韩大片免费观看网站| 久热爱精品视频在线9| 免费在线观看完整版高清| 亚洲人成电影免费在线| 五月天丁香电影| 一区福利在线观看| 亚洲色图 男人天堂 中文字幕| 91精品伊人久久大香线蕉| 日本91视频免费播放| 久久人妻熟女aⅴ| 免费av中文字幕在线| 亚洲精品第二区| 国产不卡av网站在线观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲伊人色综图| 黄频高清免费视频| 亚洲国产中文字幕在线视频| 国产精品久久久久久精品古装| 夫妻性生交免费视频一级片| av一本久久久久| 亚洲av综合色区一区| 久久女婷五月综合色啪小说| 伦理电影免费视频| 伊人久久大香线蕉亚洲五| 国产一区二区激情短视频 | 国产精品熟女久久久久浪| 在线观看免费视频网站a站| 亚洲一区二区三区欧美精品| 男男h啪啪无遮挡| 国产精品久久久av美女十八| 后天国语完整版免费观看| 久久国产亚洲av麻豆专区| 国产在线观看jvid| 国产色视频综合| 亚洲色图综合在线观看| 国产在线观看jvid| 香蕉国产在线看| 国产免费视频播放在线视频| 一个人免费看片子| 99香蕉大伊视频| 国语对白做爰xxxⅹ性视频网站| 在线观看免费视频网站a站| 青草久久国产| 美女国产高潮福利片在线看| 高清视频免费观看一区二区| 亚洲伊人久久精品综合| 麻豆乱淫一区二区| 老司机影院毛片| 自拍欧美九色日韩亚洲蝌蚪91| 777久久人妻少妇嫩草av网站| 亚洲久久久国产精品| 国产成人av教育| 久久久久网色| 性高湖久久久久久久久免费观看| 色94色欧美一区二区| 久久这里只有精品19| 老司机在亚洲福利影院| 成在线人永久免费视频| 中文字幕最新亚洲高清| 波多野结衣av一区二区av| 又大又爽又粗| 午夜91福利影院| 亚洲精品久久成人aⅴ小说| 亚洲人成电影观看| 老司机深夜福利视频在线观看 | 国产精品国产三级专区第一集| 午夜福利视频精品| h视频一区二区三区| 久久性视频一级片| 在线观看免费高清a一片| 亚洲精品一卡2卡三卡4卡5卡 | 国产激情久久老熟女| 久久精品国产综合久久久| 丝袜在线中文字幕| 国产又色又爽无遮挡免| 男女免费视频国产| 久久久精品国产亚洲av高清涩受| 国产成人免费观看mmmm| 美女福利国产在线| 嫩草影视91久久| 亚洲国产日韩一区二区| 国产精品偷伦视频观看了| 中国国产av一级| 国产亚洲av高清不卡| 成年动漫av网址| 大型av网站在线播放| 精品欧美一区二区三区在线| 热99国产精品久久久久久7| 天天躁狠狠躁夜夜躁狠狠躁| 高清欧美精品videossex| 老司机在亚洲福利影院| 少妇被粗大的猛进出69影院| 亚洲国产精品一区二区三区在线| 国产精品一区二区免费欧美 | 亚洲av日韩精品久久久久久密 | 亚洲国产毛片av蜜桃av| 99精品久久久久人妻精品| 99九九在线精品视频| 欧美老熟妇乱子伦牲交| 国产男人的电影天堂91| 亚洲图色成人| 青草久久国产| 亚洲精品一卡2卡三卡4卡5卡 | 国产福利在线免费观看视频| 一级毛片女人18水好多 | 国产片内射在线| 女人被躁到高潮嗷嗷叫费观| 母亲3免费完整高清在线观看| 亚洲色图综合在线观看| 亚洲男人天堂网一区| 精品国产一区二区久久| 国产精品国产三级国产专区5o| 波野结衣二区三区在线| av天堂久久9| 久久久国产欧美日韩av| 日本wwww免费看| 亚洲午夜精品一区,二区,三区| 大香蕉久久网| 精品少妇久久久久久888优播| 日本91视频免费播放| 成人手机av| 曰老女人黄片| 人体艺术视频欧美日本| 免费一级毛片在线播放高清视频 | 啦啦啦啦在线视频资源| 久久久亚洲精品成人影院| 咕卡用的链子| 亚洲精品美女久久av网站| 免费久久久久久久精品成人欧美视频| 新久久久久国产一级毛片| 亚洲精品久久久久久婷婷小说| 久久精品国产综合久久久| 亚洲av美国av| 男女边吃奶边做爰视频| 欧美97在线视频| 少妇人妻 视频| 欧美成人午夜精品| 最近最新中文字幕大全免费视频 | 精品国产乱码久久久久久男人| 精品一区二区三区av网在线观看 | 日日爽夜夜爽网站| 亚洲av美国av| 欧美精品av麻豆av| 精品亚洲成a人片在线观看| 国产精品一国产av| 亚洲一区中文字幕在线| 国产av精品麻豆| 50天的宝宝边吃奶边哭怎么回事| 精品一品国产午夜福利视频| 欧美黄色淫秽网站| 91成人精品电影| 如日韩欧美国产精品一区二区三区| 美女国产高潮福利片在线看| 看十八女毛片水多多多| 久久久久久久精品精品| 精品国产一区二区三区四区第35| 日本vs欧美在线观看视频| 妹子高潮喷水视频| 国产色视频综合| 97人妻天天添夜夜摸| 国产亚洲欧美在线一区二区| 日日爽夜夜爽网站| 精品人妻熟女毛片av久久网站| av网站在线播放免费| 午夜免费成人在线视频| 午夜老司机福利片| 久久久精品区二区三区| 久久天躁狠狠躁夜夜2o2o | www.av在线官网国产| 99热网站在线观看| 女人高潮潮喷娇喘18禁视频| 日本wwww免费看| 欧美日韩亚洲高清精品| 波多野结衣一区麻豆| 久久久久国产精品人妻一区二区| 交换朋友夫妻互换小说| 中文乱码字字幕精品一区二区三区| 国产精品一区二区在线观看99| 青春草亚洲视频在线观看| 国产xxxxx性猛交| 一级毛片 在线播放| 国产欧美日韩一区二区三区在线| 日本午夜av视频| 99热全是精品| 日韩av不卡免费在线播放| 欧美性长视频在线观看| 波野结衣二区三区在线| 久久精品国产综合久久久| 黄色一级大片看看| 亚洲精品久久午夜乱码| 精品少妇黑人巨大在线播放| 午夜免费鲁丝| 日韩,欧美,国产一区二区三区| 成人影院久久| 久久天堂一区二区三区四区| 国产精品 欧美亚洲| 免费少妇av软件| 精品视频人人做人人爽| 亚洲欧美成人综合另类久久久| 免费在线观看影片大全网站 | 女性被躁到高潮视频| 亚洲av电影在线进入| 久久久久久久精品精品| 捣出白浆h1v1| 亚洲,一卡二卡三卡| 欧美激情 高清一区二区三区| svipshipincom国产片| tube8黄色片| 成人国语在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲综合色网址| 97在线人人人人妻| 爱豆传媒免费全集在线观看| 国产一区有黄有色的免费视频| 色婷婷av一区二区三区视频| 人人妻,人人澡人人爽秒播 | 久久久精品区二区三区| 久久精品亚洲av国产电影网| 欧美日韩黄片免| 欧美精品一区二区免费开放| 国产日韩欧美视频二区| 国产黄色免费在线视频| 97精品久久久久久久久久精品| 成年美女黄网站色视频大全免费| 亚洲自偷自拍图片 自拍| 国产av精品麻豆| 色播在线永久视频| 夫妻性生交免费视频一级片| 欧美乱码精品一区二区三区| 美女脱内裤让男人舔精品视频| 国产成人精品久久二区二区免费| 欧美日韩综合久久久久久| 亚洲,一卡二卡三卡| 捣出白浆h1v1| 午夜日韩欧美国产| 叶爱在线成人免费视频播放| 老司机影院成人| 免费高清在线观看日韩| 一本久久精品| cao死你这个sao货| 亚洲国产精品成人久久小说| 日韩一本色道免费dvd| 老司机在亚洲福利影院| 国产精品国产三级专区第一集| 精品少妇一区二区三区视频日本电影| 欧美成狂野欧美在线观看| 久久人人爽人人片av| 国产黄色免费在线视频| 亚洲精品在线美女| 69精品国产乱码久久久| 天天躁夜夜躁狠狠躁躁| 国产成人一区二区三区免费视频网站 | 欧美日韩精品网址| 日韩一本色道免费dvd| 狂野欧美激情性bbbbbb| 两性夫妻黄色片| 亚洲精品国产区一区二| 18禁黄网站禁片午夜丰满| 欧美成人精品欧美一级黄| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区蜜桃| 欧美黄色淫秽网站| 欧美97在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人精品欧美一级黄| 亚洲精品日韩在线中文字幕| 亚洲午夜精品一区,二区,三区| 国产女主播在线喷水免费视频网站| 手机成人av网站| 国产精品久久久久久人妻精品电影 | 天天添夜夜摸| 久久综合国产亚洲精品| 国产精品久久久人人做人人爽| 免费久久久久久久精品成人欧美视频| 午夜免费男女啪啪视频观看| 国产精品一区二区在线不卡| 欧美激情 高清一区二区三区| 午夜免费鲁丝| videosex国产| 人妻人人澡人人爽人人| 日本a在线网址| 手机成人av网站| 色精品久久人妻99蜜桃| 999精品在线视频| 中文字幕人妻熟女乱码| 国产在线一区二区三区精| 国产成人91sexporn| 男女午夜视频在线观看| 久久久久国产一级毛片高清牌| 美女中出高潮动态图| 国产精品 欧美亚洲| 蜜桃在线观看..| 中文字幕最新亚洲高清| 国产在线免费精品| 欧美日韩国产mv在线观看视频| 精品免费久久久久久久清纯 | 亚洲激情五月婷婷啪啪| 妹子高潮喷水视频| 人人妻人人澡人人看| 日本91视频免费播放| 91字幕亚洲| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美日韩在线播放| 日本一区二区免费在线视频| 久久精品国产a三级三级三级| 一本色道久久久久久精品综合| 精品人妻一区二区三区麻豆| 色综合欧美亚洲国产小说| 欧美黑人精品巨大| 久久久久久久精品精品| 精品久久久久久久毛片微露脸 | 黄色视频在线播放观看不卡| 大香蕉久久成人网| 中文字幕亚洲精品专区| 在线观看免费午夜福利视频| 国产一区有黄有色的免费视频| 2018国产大陆天天弄谢| 欧美在线黄色| 丰满迷人的少妇在线观看| 美女高潮到喷水免费观看| 欧美日韩国产mv在线观看视频| 久久99一区二区三区| a级毛片黄视频| 国产精品偷伦视频观看了| 女人被躁到高潮嗷嗷叫费观| 桃花免费在线播放| 日韩精品免费视频一区二区三区| 久久国产精品人妻蜜桃| 亚洲av日韩精品久久久久久密 | 久久鲁丝午夜福利片| 美女福利国产在线| 99国产综合亚洲精品| 中文乱码字字幕精品一区二区三区| 亚洲精品自拍成人| 飞空精品影院首页| 成人国语在线视频| 亚洲人成网站在线观看播放| 国产1区2区3区精品| 国产男女超爽视频在线观看| 国产精品一区二区精品视频观看| 在线观看免费日韩欧美大片| 成年av动漫网址| 国产成人欧美在线观看 | 久久精品久久精品一区二区三区| videosex国产| 中文乱码字字幕精品一区二区三区| 超色免费av| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美精品永久| 欧美老熟妇乱子伦牲交| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av高清一级| 亚洲三区欧美一区| 日本wwww免费看| 在线观看免费视频网站a站| 精品第一国产精品| 99国产综合亚洲精品| 亚洲欧美中文字幕日韩二区| 如日韩欧美国产精品一区二区三区| 亚洲图色成人| 欧美少妇被猛烈插入视频| 高清视频免费观看一区二区| 日韩免费高清中文字幕av| 满18在线观看网站| 久久精品久久久久久久性| 老司机午夜十八禁免费视频| 国产主播在线观看一区二区 | 久久人妻熟女aⅴ| 亚洲精品第二区| 亚洲欧洲国产日韩| 美女中出高潮动态图| 精品少妇久久久久久888优播| 成人亚洲欧美一区二区av| 另类亚洲欧美激情| 国产1区2区3区精品| 亚洲欧美一区二区三区黑人| 啦啦啦啦在线视频资源| av片东京热男人的天堂| 成人午夜精彩视频在线观看| 日日摸夜夜添夜夜爱| 国产女主播在线喷水免费视频网站| 性色av一级| 成人国产av品久久久| 亚洲精品第二区| 免费在线观看黄色视频的| 男人添女人高潮全过程视频| 人人澡人人妻人| 一级毛片黄色毛片免费观看视频| 秋霞在线观看毛片| 亚洲国产av影院在线观看| 欧美精品高潮呻吟av久久| www.精华液| 国产又色又爽无遮挡免| 青青草视频在线视频观看| 天堂俺去俺来也www色官网| 自线自在国产av| 人人妻人人澡人人看| 欧美日韩亚洲高清精品| 一区在线观看完整版| 侵犯人妻中文字幕一二三四区| 男女免费视频国产| 欧美日韩av久久| 男女免费视频国产| 国产片特级美女逼逼视频| 亚洲激情五月婷婷啪啪| 一边摸一边做爽爽视频免费| 十八禁人妻一区二区| 水蜜桃什么品种好| 日韩av在线免费看完整版不卡| 9191精品国产免费久久| 精品人妻在线不人妻| 午夜久久久在线观看| 国产淫语在线视频| 国产人伦9x9x在线观看| 亚洲成人国产一区在线观看 | 国产亚洲精品第一综合不卡| 少妇的丰满在线观看| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频| 1024香蕉在线观看| 91老司机精品| 欧美黑人精品巨大| 亚洲成色77777| 久久综合国产亚洲精品| 十八禁网站网址无遮挡| 99国产精品99久久久久| 夫妻性生交免费视频一级片| 丰满少妇做爰视频| 51午夜福利影视在线观看| 日本欧美国产在线视频| 一级,二级,三级黄色视频| 久久久精品区二区三区| 欧美日韩视频精品一区| 亚洲av成人不卡在线观看播放网 | 亚洲人成电影免费在线| 天天躁夜夜躁狠狠躁躁| 国产国语露脸激情在线看| www.自偷自拍.com| 久久久久视频综合| av线在线观看网站| 免费看不卡的av| 男女高潮啪啪啪动态图| 男女无遮挡免费网站观看| 亚洲欧洲精品一区二区精品久久久| 国产xxxxx性猛交| 国产在线免费精品| 久久久久久久久免费视频了| 日韩,欧美,国产一区二区三区| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 一本久久精品| 亚洲欧美激情在线| 美女大奶头黄色视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲久久久国产精品| 男男h啪啪无遮挡| 日韩av不卡免费在线播放| 亚洲专区国产一区二区| 成人手机av| 亚洲 国产 在线| xxx大片免费视频| 亚洲,欧美,日韩| 国产成人a∨麻豆精品| 亚洲国产欧美一区二区综合| 免费在线观看影片大全网站 | av国产久精品久网站免费入址| 国产女主播在线喷水免费视频网站| 欧美日韩亚洲高清精品| xxx大片免费视频|