• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of common feature points distribution on uncertainty of 3D coordinate transformation parameter estimation

    2019-11-20 06:20:14ZHUChengguangZHAOJiankangLONGhaihuiXIAXuanWANGHongyu
    中國慣性技術(shù)學(xué)報 2019年4期

    ZHU Chengguang,ZHAO Jiankang,LONG haihui,XIA Xuan,WANG Hongyu

    (1.School of Electronic and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China; 2.Shenzhen Institute of Advanced Technology,Chinese Academy of sciences,Shenzhen 518000,China)

    Abstract: Measurement precision and relative geometric distribution of common feature points are two factors affecting the parameter estimation and then the visual navigation precision.In view that the relative geometric distribution is easier to be adjusted than the measurement precision,the influence of the relative geometric distribution on the estimation accuracy of translation and rotation parameters is only discussed.Firstly,the nonlinear model and the weighted global least square algorithm are used to solve transformation parameters,and Monte Carlo method is used to summarize the influence of different feature points distribution on parameter estimation accuracy.Then,a method of reconstructing cofactor matrix is proposed,which quantifies the dispersion of coordinate point distribution as its weight for engineering application.Finally,comparison tests are carried out based on actual measurement data,which shows that the proposed method can improve the estimation accuracy of parameters without prior knowledge,where the posterior standard deviation of transformation parameters is reduced by at least 6.7%.

    Key words: 3D coordinate transformation; uncertainty; weighted total least square; Monte Carlo method

    Estimating the relative relationship between two coordinate frames based on two sets of points with correspondence is applied widely in such areas as photo- grammetry,robotics,object motion analysis,relating a camera coordinate system to others,as well as estimating the position and orientation of a recognized object (pose estimation)[1-2].What is worth mentioning is that it is the same with the issue above to use two groups of 3D feature points,randomly recognized,extracted and correctly matched with the rapid development of visual navigation technology,to estimate relative pose between two spacecraft.The feasibility of estimating the relative state between a satellite and another object based on stereo vision has been verified as well[3-6].Apparently,analyzing the factors which affect the uncertainty level of estimated parameters is supposed to be given considerable attention.

    It is necessary to assess the precision of algorithms proposed in literatures,but there are few articles to analyze the influence of common points' layout on the precision of parameters estimation.In other words,scant attention was paid to the influence of layout of common points on the uncertainty of estimated parameters[7].Especially,the layout of common points exploited to estimate the relative relationship has an influence on the transformation uncertainty of output coordinates[7-8].The influence of distortions in coordinates on estimation parameters was quantified by a quality measure “reliabi- lity”[9].Two local applications have been also utilized to demonstrate this conclusion.However,general conclu- sion was not exploited to support practical applications further.Despite all this,there are few literatures to study the impact of common points' layout on the uncertainty of estimated parameters.The target of transformation com- putation is to determine the precise parameters so that the users from all related disciplines can utilize them without any doubt or concern.Therefore,this paper primarily focuses on the impact analysis of common points' layout on parameters precision.

    Since the issue to estimate the relative relationship can be regarded as an algorithm to seek optimal solution based on two sets of common points with correspond- dence,seven parameters,consisting of Euler angles,scale factor and translation vector,is used to connect the two sets of common points.In addition,compared with the GMM (Gauss-Markov model),the EIV (errors-in- variables) takes the random errors in coefficient matrix into conside- ration.Hence,the latter is often employed to express this transformation relationship.What's more,the rotation angle of different magnitudes leads to different model algorithms.Aimed at the small rotation angle,the Bursa-Wolf model and the Molodensky model are often applied directly.The combination of interme- diate rotation matrix and Bursa-Wolf model was adopted to build the relation- ship between two sets of common points for rotation angles of arbitrary magnitude.

    The difference between WTLS (weighted total least square) and LS (least square) mainly depends on whether the coefficient matrix connecting the parameters and observation vectors are contaminated by random errors.Since this nonlinear issue is complicated,numerous algorithms are developed.The detailed development of WTLS algorithm can be seen in literature [10].Four major algorithms designed to obtain closed form solution are compared in terms of robustness,accuracy and stability.In order to improve the precision of algorithms above,many literatures have proposed improvements to algorithms[11-12].For analyzing the layout impact on estimated parameters,the WTLS algorithm proposed in the reference will be adopted herein.

    The covariance matrix of the estimated parameters is derived to express the uncertainty level of the esti- mated parameters based on the algorithm[12].A series of simulation experiments will be designed based on the Monte Carlo method[13-14].These experiments show that the layout of a set of common points has an influence on the parameters uncertainty.The standardized distance is regarded as weights of 3D coordinate points.In order to verify the effectiveness and feasibility of this theory,two contrast experiments are conducted.The results indicate that the novel method to rebuild the covariance matrix can improve the estimation precision.

    1 Algorithm for parameter estimation

    For the sake of integrity and convenience,some preconditions and notations will be introduced in advance.The source and target coordinate frames are denoted byandrespectively,both of which are of the Cartesian coordinates.The seven parameters,forging the relationship between them,consist of Euler anglesφ,θ,ψ,scale factorμ,and translation vectorτ=[ Δx,Δy,Δz]T.T denotes the transpose operation of a matrix or vector,andRis the rotation matrix with rotation order 1-2-3[15].

    1.1 Weighted total least square algorithm

    Since observation data are inevitably contaminated by random errors,the EIV model is selected to character- rize the connection between estimated parameters and observation vector conceptually as follows.

    Obviously,Eq.(1) is the non-linear vector function,refined with implicit function as follows:

    whereξ=[ Δx,Δy,Δz,μ,φ,θ,ψ]Tmeans the 7 parameters estimated based onNcommon points (i.e.,Nis no less than three),andisthe implicit vector function with dimensionm.The constraint Eq.(2) can be rewritten as follows:

    According to the WTLS algorithm,the target func- tion can be represented by Eq.(5):

    For clarity,the iterative process of algorithm is briefly introduced below.Let's do Taylor series expansion for the right-hand members of Eq.(3) at

    Therefore,Eq.(5) will be reorganized further based on Lagrange objective function as follows:

    To solve the target function above,the partial derivative of Eq.(5) with respect tois set as zero.The detailed procedure to solve it,which can be referred to in the reference [12],needn't be repeated herein.It is worth noting that the matrices should be updated at each step,and an appropriate threshold value is selected and set to stop the iteration,e.g.,

    The posterior variance factor and the covariance ma- trix of the estimated parameters can be estimated as follows:

    1.2 Uncertainty analysis

    From the Eq.(8) and Eq.(9),the covariance matrix ofdepends not only on the measurement precision of common points,but also on coordinates (layout) thereof.

    The overall uncertainty of estimated parameters is represented numerically in Eq.(10) by the trace of covari- ance matrix of estimated parameters[7,16],which indicates the same conclusion above as well.In other words,the uncertainty level in the whole measurement volume is not homogeneous.In practice,the measurement uncer- tainty is inevitable in obtaining observation points.However,the layout of common points might be adjusted or selected based on individual influence on the esti- mated parameters.It is of vital importance to study the layout to seek the optimal solution.Hence,the issue that layouts of points improve the uncertainty of parameters will be discussed hereafter.

    2 Simulation for influence of layout

    According to the analysis in the section above,the posterior variance component,which contains the random errors of coordinates in bothand,measure- ment uncertainty of coordinates,and the derivative ofφwith respect toe,is a scalar.What's more,the deriva- tive ofφwith respect toξcontains common points viewed from the.In practical application,the uncertainty of common points can't be reduced once the observation data are obtained.Clearly,it is meaningful to pay sufficient attention to the layout influence on the uncertainty of estimated parameters herein.Hence,four schemes will be designed to study it.

    In general,it is recommended to select 6 to 10 common points to estimate parameters in practical appli- cation.Without losing generality,6 common coordinates with varying layout are set to solve them based on Eq.(7).It is also assumed that the random errors of common points are subject to the normal distribution as follows:

    whereσe=0.0001 m.

    The complexity to analyze the issue in theory makes it necessary for the Monte Carlo method with 105runs to be utilized to guarantee the reliability of experimental results.The layouts to scatter the common points in the coordinate framefor three schemes are represented in Fig.1(a).Correspondingly,common points resolved inare transformed by the true 7 parametersT(ξ) repre- sented in the last row of Table 1.

    Tab.1 Monte Carlo simulations for three schemes

    Fig.1(a) Distribution of common points in three schemes.The black cross denotes the points in scheme I,and green circles the points in scheme II

    Fig.1(c) The standard deviation of scale factor varied with the radius,ranging from 0.5 m to 2 m

    Fig.1(b) The standard deviation of Euler angles varied with the radius,ranging from 0.5 m to 2 m

    Fig.1(d) The standard deviation of components of translation vector varied with the radius,ranging from 0.5 m to 2 m

    Six common points are distributed on the circle with a radius 1 m in scheme I,with the coordinates of starting point being [1,0,0]T,and just on the first quadrant of circle with a radius 0.5 m in scheme II.It is the combina- tion of scheme I and scheme II that is adopted in scheme III,but this scheme contains only 10 common points without repeated points.All schemes are shown in Fig.1(a).

    In Table 1,E(ξ)denotes the expectation ofξ,namely,the mean value of all the simulation results; std(ξ) represents the standard deviation ofξ.

    The simulation results have been shown in Table 1,and three conclusions are reached as follows:

    1) While the same number is used to solve the optimal parameters,more dispersed distribution of points will lead to smaller uncertainty by comparing scheme I and scheme II;

    2) If scheme I is regarded as the reference,scheme III fails to improve the precision obviously.In other words,the points defined in scheme I contribute more than those in scheme II in terms of estimation precision;

    3) When the uncertainty level of coordinates is fixed,the increase in the number of common points leads to the reduction of uncertainty to some extent.

    Tab.2 Procedure of generating weights of common points

    In order to dig deeper,scheme IV is designed based on scheme I.Six common points are uniformly distributed in a series of circles,the radius of which varies from 0.5 m to 2 m,with an interval of 0.1 m.In particular,the common points distributed in circles with radius 0.5 m,1 m,and 2 m are shown concisely in Fig.1(a).The simulation conditions for this scheme are the same as those for simulation experiments above except forσe=0.01 m.The experimental results are represented in Fig.1(b)~(d).

    Obviously,the standard deviations of Euler angles and scale factor decrease with the increase of radius.In other words,when the uncertainty level of random errors does not change with the increase of radius,bigger disper- sion of common points will lead to smaller uncertainty of the estimated parameters.However,there is no trend to demonstrate the impact of dispersion of common points on the uncertainty level of translation parameters in Fig.1(d).

    Tab.3 Data for contrast experiments

    Tab.4 Results for contrast experiments

    3 Contrast experiments

    To utilize the above conclusion in practical applica- tion,the dispersion of common points should be quan- tified.In other words,a certain standard is supposed to be further exploited to assign the weight to each common point.A method is to be introduced about how the dispersion is quantified as the weight of the common points to rebuild the cofactor matrix in Eq.(4),which is of vital significance.

    The steps to quantify the dispersion of common points can be described in Table 2.Meanwhile,Eq.(12) represents mathematically the method about how to calculate the weights of common points.To be brief,the possible values of variableαconsist ofx,y,zlike Eq.(11).αmeanexpresses the C.M.(center of mass) of some set of common points,αstdthe standard deviation of these common points,pinewtheith newly standardized common point,andpiwthe weight ofit hcommon point.

    To verify the effectiveness and feasibility of the method,two contrast experiments will be carried out.The set of data stems from the literature [12] as shown in Table 3,which are also utilized to estimate the seven parameters based on the WTLS algorithm.The perfor- mances of two algorithms are listed in Table 4 with and without their newly rebuilt cofactor matrix.

    According to the results shown in Table 4,the advantage of the new method is self-evident.For one thing,compared with the original algorithm,the uncer- tainty level of all estimated parameters is decreased ob- viously by more than 6.7% from 7thto 12thcolumn.For another,3thcolumn compared with 5thcolumn,7thcolumn with 9thcolumn,the errors of Euler angles and scale factor are smaller than those of the original algorithm,but the tr anslation vector fails to improve,for Δyin particular,which coincides with the conclusion in Section 3.

    4 Conclusion

    Aimed at the issue regarding the analysis of the uncertainty of estimated parameters in 3D coordinate transformation,the WTLS algorithm is adopted to solve the complicated problem.The covariance matrix of estimated parameters is derived to analyze the factors which impact the level of uncertainty.In order to analyze the impact of common points' layout on the uncertainty,the Monte Carlo method is exploited to generalize the conclusion conceptually.These simulation experiments show that bigger dispersion will lead to smaller uncer- tainty of parameters.In addition,taking into account the application of this theory to practice,it is necessary to quantify this standard used for the weights of common points.A novel method to rebuild the cofactor matrix of common points based on the new weights is proposed in this paper.Two kinds of algorithms are employed to verify this new algorithm,and contrast experiments show that this novel method for quantifying the weights and rebuilding the corresponding cofactor matrix can im- prove the performance of the algorithm.

    欧美激情 高清一区二区三区| 日韩av不卡免费在线播放| 国精品久久久久久国模美| 永久网站在线| 黑人巨大精品欧美一区二区蜜桃 | 欧美日韩一区二区视频在线观看视频在线| 蜜桃久久精品国产亚洲av| 熟女人妻精品中文字幕| 免费大片18禁| 少妇人妻久久综合中文| 成人亚洲欧美一区二区av| 日本91视频免费播放| 能在线免费看毛片的网站| av福利片在线| 一二三四中文在线观看免费高清| 亚洲,一卡二卡三卡| 国产熟女午夜一区二区三区 | 伦理电影免费视频| 人成视频在线观看免费观看| av黄色大香蕉| 久久午夜福利片| 欧美精品一区二区免费开放| 国产一区有黄有色的免费视频| 在现免费观看毛片| 啦啦啦在线观看免费高清www| 久久久久国产网址| 国产视频内射| 久久影院123| 久久99精品国语久久久| 精品视频人人做人人爽| 日韩免费高清中文字幕av| 亚洲av男天堂| 午夜福利在线观看免费完整高清在| 男女无遮挡免费网站观看| 在线观看免费高清a一片| 久久久精品94久久精品| 97超视频在线观看视频| 99国产综合亚洲精品| 晚上一个人看的免费电影| 精品一区在线观看国产| 最新的欧美精品一区二区| 免费看不卡的av| 成人二区视频| 啦啦啦中文免费视频观看日本| 欧美精品一区二区大全| 国产成人午夜福利电影在线观看| 99热全是精品| av国产精品久久久久影院| 久久久午夜欧美精品| 黄色欧美视频在线观看| 嫩草影院入口| 中国三级夫妇交换| 最新中文字幕久久久久| 精品人妻偷拍中文字幕| 在线亚洲精品国产二区图片欧美 | 国产精品国产三级国产专区5o| 免费人妻精品一区二区三区视频| 极品人妻少妇av视频| 日韩欧美精品免费久久| 久久免费观看电影| 日韩精品免费视频一区二区三区 | 一级毛片aaaaaa免费看小| 中文字幕av电影在线播放| 精品人妻偷拍中文字幕| 蜜桃在线观看..| 国产视频内射| 9色porny在线观看| 人成视频在线观看免费观看| 免费黄频网站在线观看国产| xxx大片免费视频| 日本免费在线观看一区| av线在线观看网站| 18禁在线播放成人免费| 美女主播在线视频| 岛国毛片在线播放| 在线亚洲精品国产二区图片欧美 | 日日爽夜夜爽网站| 久久精品国产自在天天线| 成人亚洲欧美一区二区av| 欧美精品高潮呻吟av久久| 热99国产精品久久久久久7| 丰满乱子伦码专区| 国产毛片在线视频| 九色亚洲精品在线播放| 黑人欧美特级aaaaaa片| 亚洲精品日韩av片在线观看| 人人妻人人澡人人爽人人夜夜| av在线老鸭窝| 国产在视频线精品| 亚洲av.av天堂| 涩涩av久久男人的天堂| 丝袜美足系列| 亚洲国产av新网站| av有码第一页| 亚洲精品乱码久久久v下载方式| 免费久久久久久久精品成人欧美视频 | 老司机亚洲免费影院| 欧美日韩在线观看h| 国产精品麻豆人妻色哟哟久久| 婷婷色综合www| 草草在线视频免费看| 国产免费又黄又爽又色| 免费日韩欧美在线观看| 国产成人免费观看mmmm| 亚洲欧美一区二区三区黑人 | 久久99一区二区三区| 亚洲精品国产av蜜桃| 日本猛色少妇xxxxx猛交久久| 日日摸夜夜添夜夜添av毛片| 丝袜美足系列| 少妇人妻 视频| 午夜福利在线观看免费完整高清在| 成人综合一区亚洲| av不卡在线播放| 久久人人爽av亚洲精品天堂| 狂野欧美激情性xxxx在线观看| 久久久国产一区二区| 久久久久久伊人网av| 欧美精品国产亚洲| 夫妻午夜视频| 夫妻午夜视频| 成人影院久久| 大片电影免费在线观看免费| 桃花免费在线播放| www.色视频.com| 少妇被粗大猛烈的视频| 如日韩欧美国产精品一区二区三区 | 国产色爽女视频免费观看| 男人添女人高潮全过程视频| 国产69精品久久久久777片| 大香蕉久久成人网| 99视频精品全部免费 在线| 最近中文字幕2019免费版| 国产在线免费精品| 国产白丝娇喘喷水9色精品| 人妻制服诱惑在线中文字幕| 午夜福利,免费看| 欧美+日韩+精品| 97超碰精品成人国产| 成人午夜精彩视频在线观看| 在线播放无遮挡| 精品少妇黑人巨大在线播放| 女性生殖器流出的白浆| 久久精品国产亚洲av涩爱| 亚洲精品美女久久av网站| 成人亚洲欧美一区二区av| 一级毛片黄色毛片免费观看视频| 美女大奶头黄色视频| 久久久午夜欧美精品| 中文欧美无线码| 婷婷色综合大香蕉| 久久久久视频综合| 欧美另类一区| 青青草视频在线视频观看| 午夜福利视频精品| 精品人妻熟女av久视频| 少妇熟女欧美另类| 久久精品国产亚洲av天美| 少妇精品久久久久久久| 久久精品熟女亚洲av麻豆精品| 午夜免费观看性视频| 国产毛片在线视频| 亚洲成人av在线免费| 男女边摸边吃奶| 少妇人妻久久综合中文| 国产精品欧美亚洲77777| 免费大片18禁| 国产免费一区二区三区四区乱码| 亚洲国产精品成人久久小说| 999精品在线视频| 伊人久久国产一区二区| 免费看不卡的av| 夫妻性生交免费视频一级片| 国产女主播在线喷水免费视频网站| 91国产中文字幕| 精品一区二区免费观看| 各种免费的搞黄视频| 男女高潮啪啪啪动态图| 黄色毛片三级朝国网站| 亚洲综合精品二区| 免费黄色在线免费观看| 老司机影院成人| 少妇 在线观看| 亚洲精品第二区| 国产日韩欧美亚洲二区| 91精品一卡2卡3卡4卡| 亚洲成人av在线免费| 只有这里有精品99| 亚洲欧美成人综合另类久久久| 各种免费的搞黄视频| 成人影院久久| 国产成人a∨麻豆精品| 国产精品99久久99久久久不卡 | 国产精品嫩草影院av在线观看| 天堂俺去俺来也www色官网| 丝袜喷水一区| 99国产精品免费福利视频| 满18在线观看网站| 99热国产这里只有精品6| 欧美国产精品一级二级三级| 毛片一级片免费看久久久久| 亚洲精品成人av观看孕妇| 国产欧美日韩一区二区三区在线 | 日韩大片免费观看网站| 中文字幕最新亚洲高清| 欧美 亚洲 国产 日韩一| 亚洲国产成人一精品久久久| 两个人免费观看高清视频| 性高湖久久久久久久久免费观看| 国产永久视频网站| 国产国拍精品亚洲av在线观看| 在线观看美女被高潮喷水网站| 亚洲av免费高清在线观看| 亚洲欧美日韩另类电影网站| 亚洲图色成人| 久久久欧美国产精品| 色网站视频免费| 久久99蜜桃精品久久| 亚州av有码| 免费观看性生交大片5| 久久久久精品性色| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精华国产精华液的使用体验| 欧美最新免费一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲av.av天堂| 午夜免费鲁丝| 日韩亚洲欧美综合| 高清毛片免费看| 人妻一区二区av| 亚洲av欧美aⅴ国产| 免费播放大片免费观看视频在线观看| 精品久久国产蜜桃| 久久国产亚洲av麻豆专区| 色婷婷久久久亚洲欧美| 精品亚洲乱码少妇综合久久| 黄色配什么色好看| 精品国产国语对白av| 国产成人a∨麻豆精品| 国产成人aa在线观看| 在线免费观看不下载黄p国产| 如何舔出高潮| 精品久久久噜噜| 熟女av电影| 国产免费一级a男人的天堂| 亚洲精品,欧美精品| 99久久中文字幕三级久久日本| 爱豆传媒免费全集在线观看| 校园人妻丝袜中文字幕| 曰老女人黄片| 极品少妇高潮喷水抽搐| 欧美激情 高清一区二区三区| 国产有黄有色有爽视频| 精品久久久久久久久亚洲| 一级a做视频免费观看| 人妻人人澡人人爽人人| 婷婷成人精品国产| 一区二区日韩欧美中文字幕 | 精品久久久精品久久久| 日韩 亚洲 欧美在线| 蜜桃久久精品国产亚洲av| 在线播放无遮挡| 中文字幕人妻丝袜制服| 久久99蜜桃精品久久| 精品久久久久久久久av| 精品少妇内射三级| 久久人人爽人人片av| 国产色婷婷99| 少妇高潮的动态图| 如日韩欧美国产精品一区二区三区 | 一级,二级,三级黄色视频| 成人国产麻豆网| 中国国产av一级| 一边摸一边做爽爽视频免费| 亚洲国产毛片av蜜桃av| 亚洲成人av在线免费| 69精品国产乱码久久久| 男女国产视频网站| 最近手机中文字幕大全| 乱人伦中国视频| 日本黄色日本黄色录像| 国产 一区精品| 国产日韩一区二区三区精品不卡 | 青春草视频在线免费观看| 久久99一区二区三区| 亚洲精品色激情综合| 久久午夜福利片| 中文字幕制服av| 伊人久久精品亚洲午夜| 一区二区三区精品91| 精品久久国产蜜桃| 在线免费观看不下载黄p国产| 午夜免费男女啪啪视频观看| 亚洲精品亚洲一区二区| 欧美国产精品一级二级三级| 2021少妇久久久久久久久久久| 免费黄频网站在线观看国产| 国产av码专区亚洲av| 国产成人精品婷婷| 日韩亚洲欧美综合| 青春草视频在线免费观看| 日本黄大片高清| 日日撸夜夜添| 国产精品久久久久成人av| 亚洲少妇的诱惑av| 高清午夜精品一区二区三区| 成人国语在线视频| 最近手机中文字幕大全| 国产日韩欧美亚洲二区| 久久国产精品大桥未久av| 亚洲国产av新网站| 亚洲国产最新在线播放| 黑人巨大精品欧美一区二区蜜桃 | 亚洲,欧美,日韩| 在线观看免费日韩欧美大片 | 亚洲精品久久成人aⅴ小说 | 国产欧美另类精品又又久久亚洲欧美| 春色校园在线视频观看| 97在线人人人人妻| 99国产综合亚洲精品| 国产欧美另类精品又又久久亚洲欧美| 在现免费观看毛片| 精品久久久噜噜| 亚洲av中文av极速乱| 国产精品女同一区二区软件| 欧美 日韩 精品 国产| 99国产精品免费福利视频| 又大又黄又爽视频免费| 亚洲,一卡二卡三卡| 在线亚洲精品国产二区图片欧美 | 国产日韩一区二区三区精品不卡 | 精品亚洲成a人片在线观看| 在线天堂最新版资源| 日韩三级伦理在线观看| 日本欧美国产在线视频| 久久婷婷青草| 制服诱惑二区| 青青草视频在线视频观看| 一边摸一边做爽爽视频免费| 两个人免费观看高清视频| 亚洲精品视频女| 搡老乐熟女国产| 嘟嘟电影网在线观看| 十八禁网站网址无遮挡| 国产精品无大码| 国产成人免费无遮挡视频| 新久久久久国产一级毛片| 精品熟女少妇av免费看| 女人精品久久久久毛片| 国产精品久久久久久精品电影小说| 国产色爽女视频免费观看| 国产女主播在线喷水免费视频网站| 伦理电影免费视频| 人妻系列 视频| 91精品三级在线观看| 一级毛片 在线播放| 夜夜骑夜夜射夜夜干| 日韩,欧美,国产一区二区三区| 午夜av观看不卡| 毛片一级片免费看久久久久| 午夜福利视频在线观看免费| 亚洲国产精品一区二区三区在线| 欧美少妇被猛烈插入视频| 国产乱来视频区| 伊人久久精品亚洲午夜| 日韩制服骚丝袜av| 亚洲成人手机| 国产在线一区二区三区精| 最近中文字幕2019免费版| 国产男人的电影天堂91| 中文乱码字字幕精品一区二区三区| 国产不卡av网站在线观看| 五月伊人婷婷丁香| 亚洲婷婷狠狠爱综合网| 久久久a久久爽久久v久久| 美女大奶头黄色视频| 美女xxoo啪啪120秒动态图| 美女视频免费永久观看网站| 久久精品人人爽人人爽视色| 极品人妻少妇av视频| 午夜福利影视在线免费观看| 少妇精品久久久久久久| 国产精品 国内视频| 成人18禁高潮啪啪吃奶动态图 | 久久久精品免费免费高清| av播播在线观看一区| av卡一久久| 中文字幕久久专区| 一级,二级,三级黄色视频| 精品少妇久久久久久888优播| 少妇熟女欧美另类| 少妇精品久久久久久久| 国产色婷婷99| 国产一区有黄有色的免费视频| 亚洲成人手机| 一级毛片 在线播放| 99久久中文字幕三级久久日本| 久久ye,这里只有精品| 少妇人妻精品综合一区二区| 久久亚洲国产成人精品v| 日韩伦理黄色片| 在线 av 中文字幕| 热99久久久久精品小说推荐| 日韩不卡一区二区三区视频在线| 2021少妇久久久久久久久久久| kizo精华| 少妇人妻 视频| 在线 av 中文字幕| 人妻一区二区av| av免费在线看不卡| 99热这里只有是精品在线观看| 国产在线视频一区二区| 99久久中文字幕三级久久日本| 97精品久久久久久久久久精品| 黄色配什么色好看| 久久久久久伊人网av| 精品人妻熟女av久视频| 免费看光身美女| 一级毛片 在线播放| 日韩一区二区三区影片| 成人亚洲精品一区在线观看| 成人国产av品久久久| 久久久久久久久久成人| 国产一区二区三区av在线| 日本欧美国产在线视频| 99re6热这里在线精品视频| 色婷婷av一区二区三区视频| 国产片特级美女逼逼视频| 日韩,欧美,国产一区二区三区| 亚州av有码| 久久精品夜色国产| 亚洲成色77777| av天堂久久9| av黄色大香蕉| 日韩av在线免费看完整版不卡| 18禁在线播放成人免费| 丝袜喷水一区| 69精品国产乱码久久久| 中文乱码字字幕精品一区二区三区| 亚洲精品美女久久av网站| 啦啦啦在线观看免费高清www| 丝袜在线中文字幕| 久久久久久久久久人人人人人人| 精品久久国产蜜桃| 精品99又大又爽又粗少妇毛片| 亚洲欧美一区二区三区黑人 | 亚洲精品久久成人aⅴ小说 | 在线观看国产h片| 在线观看人妻少妇| 黄片无遮挡物在线观看| 免费观看的影片在线观看| 亚洲欧美成人精品一区二区| 99热网站在线观看| 婷婷色av中文字幕| 纵有疾风起免费观看全集完整版| 校园人妻丝袜中文字幕| 男女无遮挡免费网站观看| 99热国产这里只有精品6| 少妇熟女欧美另类| 欧美精品高潮呻吟av久久| 视频在线观看一区二区三区| 91久久精品国产一区二区成人| 亚洲av成人精品一区久久| 日产精品乱码卡一卡2卡三| 久久综合国产亚洲精品| 丁香六月天网| 国产熟女午夜一区二区三区 | 亚洲人成77777在线视频| 黑人猛操日本美女一级片| 久久久久久久久久久丰满| 国产精品一国产av| 国产精品一区www在线观看| 久久国产精品大桥未久av| 在线观看国产h片| 国产日韩欧美在线精品| 91aial.com中文字幕在线观看| 日本欧美国产在线视频| 日韩熟女老妇一区二区性免费视频| 中国国产av一级| 日韩电影二区| 亚洲怡红院男人天堂| 成年女人在线观看亚洲视频| 制服诱惑二区| 精品一区二区三区视频在线| 国产在线免费精品| 国产综合精华液| 美女中出高潮动态图| 26uuu在线亚洲综合色| 最近2019中文字幕mv第一页| 一级毛片黄色毛片免费观看视频| 最近中文字幕高清免费大全6| 亚洲精品久久成人aⅴ小说 | 人人澡人人妻人| 久久婷婷青草| 极品人妻少妇av视频| 丝袜在线中文字幕| 在线看a的网站| 啦啦啦视频在线资源免费观看| 久久久欧美国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产亚洲av天美| 如日韩欧美国产精品一区二区三区 | 一级片'在线观看视频| 老司机影院成人| .国产精品久久| 在线观看美女被高潮喷水网站| 亚洲图色成人| 欧美精品一区二区免费开放| 成年人午夜在线观看视频| 老司机影院毛片| 欧美日韩视频高清一区二区三区二| 美女中出高潮动态图| 黑人高潮一二区| 亚洲图色成人| 久久久久精品久久久久真实原创| 性色av一级| 大香蕉久久成人网| 免费黄色在线免费观看| 免费观看av网站的网址| 国产精品女同一区二区软件| 国产精品人妻久久久久久| 五月玫瑰六月丁香| 十八禁高潮呻吟视频| 中文欧美无线码| 少妇熟女欧美另类| 国产免费福利视频在线观看| 一区二区三区乱码不卡18| 成人亚洲精品一区在线观看| 黄色怎么调成土黄色| 午夜视频国产福利| 日本猛色少妇xxxxx猛交久久| av在线老鸭窝| 国产伦精品一区二区三区视频9| 91精品国产九色| 亚洲色图 男人天堂 中文字幕 | 欧美精品国产亚洲| videos熟女内射| 亚洲美女黄色视频免费看| 日韩 亚洲 欧美在线| 永久免费av网站大全| 我要看黄色一级片免费的| 老司机影院毛片| 亚洲精品av麻豆狂野| 日韩,欧美,国产一区二区三区| 久久人人爽av亚洲精品天堂| 国产色婷婷99| 国产一区二区在线观看av| 亚洲欧美一区二区三区国产| 永久免费av网站大全| 免费日韩欧美在线观看| 免费观看在线日韩| 精品卡一卡二卡四卡免费| 黄色配什么色好看| 一二三四中文在线观看免费高清| 国产在线视频一区二区| 在线观看美女被高潮喷水网站| 精品人妻在线不人妻| 2018国产大陆天天弄谢| 精品一区二区三卡| 亚洲国产av新网站| 熟妇人妻不卡中文字幕| 久久久久精品久久久久真实原创| 中文字幕亚洲精品专区| 欧美日韩视频精品一区| 热re99久久精品国产66热6| 欧美日韩精品成人综合77777| 亚洲不卡免费看| 亚洲国产精品专区欧美| 婷婷色av中文字幕| 国产精品偷伦视频观看了| 熟女人妻精品中文字幕| 亚洲av中文av极速乱| 国产精品99久久99久久久不卡 | 免费av不卡在线播放| 国模一区二区三区四区视频| 亚洲第一区二区三区不卡| 91久久精品国产一区二区成人| 下体分泌物呈黄色| 久久99一区二区三区| 欧美日韩av久久| 欧美精品人与动牲交sv欧美| 欧美精品一区二区免费开放| 国产无遮挡羞羞视频在线观看| 国产 一区精品| 涩涩av久久男人的天堂| 国产男人的电影天堂91| 亚洲精品一二三| 久久 成人 亚洲| 成年美女黄网站色视频大全免费 | 亚洲无线观看免费| 久久国产亚洲av麻豆专区| 全区人妻精品视频| 精品人妻熟女av久视频| 91aial.com中文字幕在线观看| 在线亚洲精品国产二区图片欧美 | 欧美成人精品欧美一级黄| 看非洲黑人一级黄片| videos熟女内射| 2018国产大陆天天弄谢| 乱码一卡2卡4卡精品| 国产成人一区二区在线| 天美传媒精品一区二区| 国产欧美亚洲国产| 好男人视频免费观看在线| 国产av码专区亚洲av| 色婷婷久久久亚洲欧美| 美女大奶头黄色视频| 秋霞在线观看毛片| 一区在线观看完整版| 午夜精品国产一区二区电影| 成人国产麻豆网| 午夜福利视频在线观看免费| 中国三级夫妇交换| 美女中出高潮动态图| 国产亚洲最大av|